• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏曲水县色甫金铜矿成矿流体性质与来源

    李应栩 宋旭波 李光明 向安平 兰熙阳 张林奎 次仁桑布 曹华文

    李应栩, 宋旭波, 李光明, 向安平, 兰熙阳, 张林奎, 次仁桑布, 曹华文, 2019. 西藏曲水县色甫金铜矿成矿流体性质与来源. 地球科学, 44(6): 2017-2038. doi: 10.3799/dqkx.2018.380
    引用本文: 李应栩, 宋旭波, 李光明, 向安平, 兰熙阳, 张林奎, 次仁桑布, 曹华文, 2019. 西藏曲水县色甫金铜矿成矿流体性质与来源. 地球科学, 44(6): 2017-2038. doi: 10.3799/dqkx.2018.380
    Li Yingxu, Song Xubo, Li Guangming, Xiang Anping, Lan Xiyang, Zhang Linkui, Ciren Sangbu, Cao Huawen, 2019. Properties and Sources of Ore-Forming Fluids in Sefu Gold-Copper Deposit, Quxu County, Tibet, China. Earth Science, 44(6): 2017-2038. doi: 10.3799/dqkx.2018.380
    Citation: Li Yingxu, Song Xubo, Li Guangming, Xiang Anping, Lan Xiyang, Zhang Linkui, Ciren Sangbu, Cao Huawen, 2019. Properties and Sources of Ore-Forming Fluids in Sefu Gold-Copper Deposit, Quxu County, Tibet, China. Earth Science, 44(6): 2017-2038. doi: 10.3799/dqkx.2018.380

    西藏曲水县色甫金铜矿成矿流体性质与来源

    doi: 10.3799/dqkx.2018.380
    基金项目: 

    国家重点研发计划项目 2016YFC0600308

    中国地质调查局地质调查项目 DD20190147

    国家自然科学基金资助项目 41702086

    国家重点基础研究发展计划 2011CB403105

    详细信息
      作者简介:

      李应栩(1982-), 男, 工程师, 主要从事地质矿产调查与成矿预测研究工作

      通讯作者:

      李光明

    • 中图分类号: P611

    Properties and Sources of Ore-Forming Fluids in Sefu Gold-Copper Deposit, Quxu County, Tibet, China

    • 摘要: 色甫金铜矿是新近在冈底斯南缘新生代斑岩成矿带内揭示的一个叠加于热液脉型铜矿上的浅成低温热液型金矿.详细的野外地质调查显示,色甫金铜矿和邻近的鸡公西矿区范围内先后经历了早始新世磁铁矿化、晚始新世-早渐新世与韧性剪切活动有关、早中新世钼矿化和铜矿化以及稍晚的金矿化等多期热液活动.对各期流体活动形成的石英中流体包裹体的岩相学、显微测温、显微激光拉曼和氢-氧同位素分析显示,与磁铁矿化有关的流体为岩浆热液混合建造水的高温、高盐度富水流体;与钼矿化有关的流体为岩浆热液与大气降水混合的高温、高盐度富水流体;与铜矿体形成有关的流体为具有岩浆贡献的中高温含CO2低盐度流体与大气降水来源的低温低盐度富水流体混合的产物;与金矿体形成有关的流体为具有岩浆贡献的中温含CO2±CH4±N2的中低盐度流体与大气降水来源的低温低盐度富水流体混合的产物.利用流体包裹体显微测温对其捕获温压估算的结果显示,铜矿体和钼矿化体形成前,该地区有过1.5~4.1 km的剥蚀,之后至金矿体形成前时有过近6 km的剥蚀,金矿体形成后剥蚀为0.8~1.2 km.矿区后续工作应优先针对近南北向断裂中赋存的蚀变岩型金矿开展工作.

       

    • 图  1  色甫金铜矿大地构造位置及南冈底斯主要铜矿床和金矿床分布略图

      刘洪等(2019)

      Fig.  1.  Tectonic location of Sefu gold-copper deposit and main copper deposits and gold deposits in southern Gangdese metallogenic belt

      图  2  色甫金铜矿区域地质图

      Fig.  2.  Regional geological map of Sefu gold-copper deposit

      图  3  色甫金铜矿矿区地质简图

      Fig.  3.  Sketch geological map of Sefu gold-copper deposit

      图  4  色甫金铜矿和鸡公西矿区矿体露头和矿石野外照片

      a.鸡公西矿区始新世黑云母二长花岗岩与昌果组接触带上发育的含钾长石石英-磁铁矿脉;b.鸡公西矿区近东西向断裂中的含电气石石英-钾长石脉,局部含星点状辉钼矿;c.色甫金铜矿区近南北向断裂右行切割错动铜矿化断裂面;d.色甫金铜矿区近东西向断裂面上的张性充填特征石英和绿泥石;e.色甫金铜矿区金矿体(品位151×10-6)赋存断裂及其中的变安山岩透镜体;f.色甫金铜矿区金矿体赋存断裂中的碎裂岩化和劈理化带;g.鸡公西矿区近东西向发育辉钼矿化石英脉的断裂被近南北向断裂切割错动;h.铜矿石;i.金矿石;Au.金矿体;Cu.铜矿体;Chl.绿泥石;Ill.伊利石;Ksp.钾长石;Mt.磁铁矿;Prl.叶蜡石;Q.石英;Tur.电气石

      Fig.  4.  Field photographs of orebody outcrop and ores in Sefu gold-copper deposit and Jigongxi ore spot

      图  5  色甫金铜矿矿区主要矿体剖面

      a.A-A’剖面;b.B-B’剖面

      Fig.  5.  Geological section of main orebodies in Sefu gold-copper deposit

      图  6  本次研究样品部分代表性标本照片

      a.发育于切割昌果组片理的北倾断裂中的含白云母石英脉;b.含辉钼矿石英脉;c.黄铜矿石;d.绿泥石化变安山岩铜矿石中共生的黄铜矿和黄铁矿;e.含铜石英-绿泥石脉中共生的黄铜矿和黄铁矿;f.与金矿化有关的黄铁矿、伊利石化叠加于与铜矿化有关的硅化、绿泥石化;Chl.绿泥石;Clp.黄铜矿;Ill.伊利石;Ksp.钾长石;Mus.白云母;Py.黄铁矿;Q.石英

      Fig.  6.  Photographs of some samples studied

      图  7  色甫金铜矿和鸡公西矿区流体包裹体镜下照片

      a.与金矿石中黄铁矿(部分风化为褐铁矿)共生的石英中的流体包裹体群;b.纯气相CO2流体包裹体(C2类);c.ADV类流体包裹体,主要赋存于含辉钼矿石英脉和含钾长石石英-磁铁矿脉中,子矿物主要为石盐;d.发育于与韧性剪切活动有关的石英脉中的AC2类流体包裹体,室温下由水溶液相、液相CO2相和气相CO2相组成;e.含黄铜矿黄铁矿石英-绿泥石脉(铜矿石)石英中液相CO2流体包裹体(C1类);f.含黄铜矿黄铁矿石英-绿泥石脉(铜矿石)石英中含液相CO2的水溶液流体包裹体(AC1类);Q.石英;Py.黄铁矿;Lm.褐铁矿;V.气相;L.液相;S.子矿物相;Vco2.气相二氧化碳;Lco2.液相二氧化碳

      Fig.  7.  Microphotographs of fluid inclusions in Sefu and Jigongxi

      图  8  色甫金铜矿和鸡公西矿点流体包裹体显微激光拉曼分析图谱和测点位置

      a.铜矿石的石英中AC1类流体包裹体液相CO2相;b.铜矿石的石英中AC1类流体包裹体水溶液;c.铜矿石的石英中C1类流体包裹体;d.金矿石的石英中AC3类流体包裹体气相CO2相,含少CH4;e.金矿石的石英中C2类流体包裹体;f.AV类流体包裹体气相;AP.测点位置

      Fig.  8.  Spectrum and analysis point of micro-laser Raman analysis for fluid inclusions from Sefu and Jigongxi

      图  9  H2O-CO2±NaCl体系相分离深度-温度特征

      卢焕章(2008)

      Fig.  9.  Characteristics of phase separation depth-temperature field for H2O-CO2±NaCl fluid system

      图  10  色甫金铜矿区金矿石中流体包裹体捕获温压图解

      等容线据Rodder(1984)及其中文献

      Fig.  10.  Trapping temperature-pressure diagram of fluid inclusions in gold ores of Sefu gold-copper deposit

      图  11  色甫金铜矿区金矿石和铜矿石中流体包裹体盐度-均一温度图

      等密度线据Rodder(1984)及其中文献

      Fig.  11.  Salinity-homogenization temperature diagram for fluid inclusions in ores of Sefu gold-copper deposit

      图  12  色甫金铜矿区金矿石中富水流体包裹体均一温度频数

      Fig.  12.  Frequency diagram of homogenization temperature for fluid inclusions in gold ores of Sefu gold-copper deposit

      图  13  色甫金铜矿区铜矿石中流体包裹体捕获温压图解

      等容线据Rodder(1984)及其中文献;CO2密度:g/cm3

      Fig.  13.  Trapping temperature-pressure diagram of fluid inclusions in copper ores of Sefu deposit

      图  14  鸡公西矿区含辉钼矿石英脉中ADV类流体包裹体Tm-Th图解

      底图据Becker et al.(2008)

      Fig.  14.  Tm-Th diagram for ADV type fluid inclusions in quartz veins containing molybdenite from Jigongxi deposit

      图  15  色甫金铜矿矿区与韧性剪切活动有关的石英脉中流体包裹体捕获温度-压力图解

      变质相范围据Frost and Frost(2014);等容线据Rodder(1984)及其中文献

      Fig.  15.  Trapping temperature-pressure diagram of fluid inclusions in quartz related to ductile-shearing activity in Sefu

      图  16  色甫金铜矿和鸡公西矿区流体δD-δ18O图解

      变质水范围据Taylor(1974);建造水和岩浆水范围据郑永飞和陈江峰(2000);现代西藏地热水范围据郑淑蕙等(1982);中国大气降水线据郑淑蕙等(1983);粘土矿物线据陈骏和王鹤年(2004)

      Fig.  16.  δD-δ18O diagrams of fluid in Sefu and Jigongxi deposit

      图  17  色甫金铜矿和鸡公西矿区流体压力-温度演化图

      变质相范围据Frost and Frost(2014)

      Fig.  17.  P-T evolution path of fluid in Sefu and Jigongxi deposit

      表  1  色甫金铜矿和鸡公西矿区热液脉体特征

      Table  1.   Summaried hydrothermal veins'characteristics of Sefu gold-copper deposit and Jigongxi mine spot

      期次 分布区域 受控构造 金属矿化 围岩蚀变 流体包裹体类型
      鸡公西矿点 始新世黑云母花岗岩与昌果组接触带 磁铁矿化;矽卡岩型、含钾长石-石英-磁铁矿脉型 钾长石化、石榴子石矽卡岩化、角岩化、硅化 ADV
      色甫铜金矿区和鸡公西矿点 近东西走向北倾切割昌果组片理的韧-脆性断裂 暂未见 硅化、绿帘石化、白云母化、绿泥石化 AC2
      1 鸡公西矿点 近东西走向南倾正断层 星点状辉钼矿化 硅化、钾长石化、电气石化 ADV
      2 色甫铜金矿区 近东西走向南倾正断层 脉状黄铜矿化、黄铁矿化,风化为孔雀石、褐铁矿 硅化、绿泥石化 AV+AC1+C1
      色甫铜金矿区 近南北走向东倾走滑断层 黄铁矿化、金矿化 黄铁绢英岩化 AV+AC3+C2
      下载: 导出CSV

      表  2  色甫金铜矿和鸡公西矿区流体包裹体显微测温结果

      Table  2.   Summaried fluid inclusion microthermometric results of Sefu gold-copper deposit and Jigongxi ore spot

      热液期次 类型 大小
      (μm)
      数量
      (个)
      气相充填度
      (%)
      Te Tm, CO2 Tm, cal Th, CO2 Tm, ice Tm Th, l-v 盐度
      (% NaCleqv)
      (℃)
      ADV 8~15 11 20~30 / > 470 395~480(L) \
      AC2 6~14 16 20~30 / -56.8~-57.1 8.2~8.6 15.4~22.9(L) / / 185~237(L) 2.81~3.57
      ADV 8~17 11 10~40 / / / / / 210~483 231~450(L) 32.39~57.49
      AC1 5~15 5 40~45 / -56.8~-57.3 8.1~9.2 24.1~29.0(L) / / 287~306(L) 1.63~3.76
      C1 4~10 26 / / -56.8~-57.4 / 11.8~17.1(L) / / / /
      AV 4~11 28 15 -22.7~-23.8 / / / -2.7~-8.7 / 181~347(L) 4.49~12.51
      AC3 5~25 13 60~80 / -58.5~-69.3 -5.2~6.2 25.6~31.1(V) / / 184~273(L) 7.14~19.41
      C2 5~18 35 / / -57.9~-68.5 / 17.5~24.3(V) / / / /
      AV 5~15 22 5~20 -22.7~-23.5 / / / -0.4~-4.1 / 226~333(L) 0.70~6.59
      下载: 导出CSV

      表  3  色甫金铜矿和鸡公西矿区石英和磁铁矿的O同位素以及石英中流体包裹体的H同位素组成分析结果

      Table  3.   Analysis results for oxygen isotopes of quartz and magnetite and hydrogen isotopes of fluid inclusions in quartz of Sefu gold-copper deposit and Jigongxi ore spot

      热液期次 矿物 样品编号 δ18O矿物(‰) T*(℃) δ18OH2O(‰) δDH2O(‰)
      磁铁矿 D1035B20 0 622 \ /
      磁铁矿 D1035B21 -0.7 622 \ /
      石英 D1035B21 6.6 622 5.78 -82.3
      石英 D1010B1 7.8 397 3.67 -92.7
      石英 D1010B2 9.8 397 5.67 -91.5
      石英 D1018-2B1 8.2 397 4.07 -88.9
      石英 D1013B1 9.5 397 5.37 -93.4
      石英 D1037OT1 6.7 570 5.35 -92.5
      石英 D1104-1B1 8.8 570 7.45 -81.3
      石英 D1033B2 8.7 570 7.35 -86.9
      石英 D1033B3 10.3 570 8.95 -89.3
      石英 D1079B2 11.2 570 9.85 -91.1
      石英 D1608B1 12.7 570 11.35 -86.8
      石英 D1612B1 12.3 570 10.95 -71.5
      石英 D1024B2 9.9 331 4.04 -88.6
      石英 D1070B1 9.2 331 3.34 -86.8
      石英 D1078B2 8.5 331 2.64 -86.1
      石英 D1602B1 11.2 331 5.34 -93.2
      石英 D1605B2 9.4 331 3.54 -91.1
      石英 ZK002-41 11 331 5.14 -82.9
      石英 D1022-2B2 9.4 270 1.34 -85.5
      石英 D1040B2 9.8 270 1.74 -78.7
      石英 D1045-1B1 10.1 270 2.04 -71.5
      石英 D1045-5B2 10.3 270 2.24 -79.2
      石英 ZK002-42 10.2 270 2.14 -74
      注:T*.据显微测温结果和磁铁矿-石英氧同位素温度计估算的流体包裹体的平均捕获温度;\.未获得相关数据;/.未测.
      下载: 导出CSV
    • [1] Becker, S.P., Fall, A., Bodnar, R.J., 2008.Synthetic Fluid Inclusions. XVII. PVTX Properties of High Salinity H2O-NaCl Solutions (>30% NaCl): Application to Fluid Inclusions that Homogenize by Halite Disappearance from Porphyry Copper and Other Hydrothermal Ore Deposits. Economic Geology, 103(3): 539-554. https://doi.org/10.2113/gsecongeo.103.3.539
      [2] Bodnar, R.J, Vityk, M.O., 1994.Interpretation of Micro-Thermomertric Data for H2O-NaCI Fluid Inclusions.In: de Vivo, B., Frezzotti, M.I., eds., Fluid Inclusions in Minerals: Methods and Application. Verginia Tech, Blacksberg, 117-130.
      [3] Bottinga, Y., Javoy, M., 1973. Comments on Oxygen Isotope Geothermometry. Earth and Planetary Science Letters, 20(2):250-265. doi: 10.1016/0012-821X(73)90165-9
      [4] Brown, P.E., Lamb, W.M., 1989.P-V-T Properties of Fluids in the System H2O±CO2±NaCl:New Graphical Presentations and Implications for Fluid Inclusion Studies.Geochimica et Cosmochimica Acta, 53(6):1209-1221. https://doi.org/10.1016/0016-7037(89)90057-4
      [5] Chen, J., Wang, H.N., 2004.Geochemistry.Science Press, Beijing(in Chinese).
      [6] Chi, G. X., Lu, H. Z., 2008. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 24(9): 1945-1953(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200809001
      [7] Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972.Oxygen Isotope Exchange between Quartz and Water. Journal of Geophysical Research, 77(17): 3057-3067. https://doi.org/10.1029/jb077i017p03057
      [8] Copeland, P., Harrison, T.M., Kidd, W.S.F., et al., 1987.Rapid Early Miocene Acceleration of Uplift in the Gangdese Belt, Xizang (Southern Tibet), and Its Bearing on Accommodation Mechanisms of the India-Asia Collision. Earth and Planetary Science Letters, 86(2-4): 240-252. https://doi.org/10.1016/0012-821x(87)90224-x
      [9] Diamond, L.W., 2001.Review of the Systematics of CO2-H2O Fluid Inclusions. Lithos, 55(1-4): 69-99. https://doi.org/10.1016/s0024-4937(00)00039-6
      [10] Frost, B. R., Frost, C. D., 2014. Essentials of Igneous and Metamorphic Petrology. Cambridge University Press, New York.
      [11] Hedenquist, J.W., Lowenstern, J.B., 1994.The Role of Magmas in the Formation of Hydrothermal Ore Deposits.Nature, 370:519-527. https://doi.org/10.1038/370519a0
      [12] Hou, Z.Q., Zheng, Y.C., Yang, Z.M., et al., 2012.Metallogenesis of Continental Collision Setting: Part Ⅰ. Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet.Mineral Deposits, 31(4):647-670(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201204003.htm
      [13] Hu, J.R., 1995.Deformation Features of Ductile Shear Belt in Qushui County. Tibetan Geology, (1): 99-109(in Chinese with English abstract).
      [14] Li, G.M., Zeng, Q.G., Yong, Y.Y., et al., 2005.Discovery of Epithermal Au-Sb Deposits in Gangdese Metallogenic Belt of Tibet and Its Significance:Case Study of Longruri Au-Sb Deposit. Mineral Deposits, 24(6): 595-602(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200506002.htm
      [15] Liu, H., Zhang, L. K., Huang, H. X., 2019. Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper Deposit from the Southern Lhasa Microterrane Terrane, Tibet: Evidence from Fluid Inclusions, H-O-C Isotopic Composition. Earth Science, 44(6): 1935-1956 (in Chinese with English abstract).
      [16] Liu, Y.F., Hou, Z.Q., Yang, Z.M., et al., 2011.Study on Fluid Inclusion of Nongruri Gold Deposit, Tibet, China. Acta Petrologica Sinica, 27(7): 2150-2158(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107022
      [17] Lu, H. Z., 2008. Role of CO2 Fluid in the Formation of Gold Deposits: Fluid Inclusion Evidences. Geochimica, 37(4): 321-328(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200804005.htm
      [18] Lu, H.Z., Chi, G.X., Zhu, X.Q., et al., 2018.Geological Characteristics and Ore Forming Fluids of Orogenic Gold Deposits. Geotectonica et Metallogenia, 42(2): 244-265(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201802005
      [19] Meng, Y.K., Xu, Z.Q., Ma, S.W., et al., 2016.Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet. Earth Science, 41(7): 1081-1098(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201607001.htm
      [20] Pan, G.T., Mo, X.X., Hou, Z.Q., etal., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English Abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      [21] Phillips, G.N., Evans, K.A., 2004.Role of CO2 in the Formation of Gold Deposits. Nature, 429(6994): 860-863. https://doi.org/10.1038/nature02644
      [22] Rodder, E., 1984. Fluid Inclusions. Reviews in Mineralogy. Mineralogical Society of America, 12:1-644. http://d.old.wanfangdata.com.cn/Periodical/dqkx200802015
      [23] Rusk, B. G., Reed, M. H., Dilles, J. H., 2008. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana. Economic Geology, 103(2): 307-334. https://doi.org/10.2113/gsecongeo.103.2.307
      [24] Shepherd, T. J., Rankin, A. H., Alderton, D. H. M., 1985. A Practical Guide to Fluid Inclusion Studies. Chapman & Hall, Blackie.
      [25] Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883. https://doi.org/10.2113/gsecongeo.69.6.843
      [26] Wang, J., Sun, F.Y., Yu, L., et al., 2017.Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China. Earth Science, 42(6): 941-956(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.074
      [27] Wang, Y.Y., Tang, J.X., Song, Y., et al., 2018.Characteristics of the Main Ore Minerals in Tiegelongnan Porphyry-High Sulfidation Deposit, Tibet, China.Acta Mineralogica Sinica, 38(1): 109-122(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201801014
      [28] Xing, J.B., Ge, L.S., Zou, Y.L., et al., 2003.Geological Geochemical Character of Dongga Gold Deposit in Xietongmen County, Tibet. Gold Geology, 9(2): 28-32(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjdz200302004
      [29] Xu, J. H., Xiao, X., Chi, H. G., et al., 2011. Fluid Inclusion Study on Gold-Copper Mineralization in Lower Devonian Strata of the Kelan Basin, Altay, China.Acta Petrologica Sinica, 27(5):1299-1310(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201105006
      [30] Yang, Z.M., Hou, Z.Q., Li, Z.Q., et al., 2008a.Direct Record of Primary Fluid Exsolved from Magma: Evidence from Unidirectional Solidification texture(UST) in Quartz Found in Qulong Porphyry Copper Deposit, Tibet.Mineral Deposits, 27(2): 188-199(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200802005.htm
      [31] Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008b.Qulong Superlarge Porphyry Cu Deposit in Tibet:Geology, Alteration and Mineralization. Mineral Deposits, 27(3): 279-318(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200803003.htm
      [32] Zhang, S.K., Zheng, Y.Y., Zhang, G.Y., et al., 2013.Geochronological Constraints on Jigongcun Quartz-Vein Type Molybdenum Deposit in Quxu County, Tibet. Mineral Deposits, 32(3): 641-648(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201303014
      [33] Zheng, S.H., Hou, F.G., Ni, B.L., 1983.Hydrogen and Oxygen Isotopic Studies of Meteoric Water in China.Chinese Science Bulletin, 28(13):801-806(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgdqhx-e201703006
      [34] Zheng, S.H., Zhang, Z.F., Ni, B.L., et al., 1982.Hydrogen and Oxygen Isotopic Studies of Thermal Waters in Xizang. Acta Scicentiarum Naturalum Universitatis Pekinensis, 18(1):99-106(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ198201010.htm
      [35] Zheng, Y. F., Chen, J. F., 2000. Stable Isotope Geochemistry. Science Press, Beijing(in Chinese).
      [36] Zhong, W.T., Li, Y.X., Li, G.M., et al., 2015.Fluid Inclusion of the Seripu Gold Deposit in Dabu of Gangdise, Tibet. Acta Geologica Sinica, 89(3): 599-607(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201503012
      [37] Zhu, X.Q., Guo, X.W., Zhang, X.H., et al., 2018.Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau.Earth Science, 43 (6):1903-1920(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201806009
      [38] 陈骏, 王鹤年, 2004.地球化学.北京:科学出版社.
      [39] 胡敬仁, 1995.西藏曲水县色甫-科木韧性剪切带变形变质特征.西藏地质, (1):99-109. http://www.cqvip.com/QK/97137X/199501/1918628.html
      [40] 侯增谦, 郑远川, 杨志明, 等, 2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质, 31(4):647-670. doi: 10.3969/j.issn.0258-7106.2012.04.002
      [41] 李光明, 曾庆贵, 雍永源, 等, 2005.西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义——以西藏弄如日金锑矿床为例.矿床地质, 24(6):595-602. doi: 10.3969/j.issn.0258-7106.2005.06.003
      [42] 刘洪, 张林奎, 黄瀚霄, 等, 2019.西藏南拉萨微地体鲁尔玛斑岩型铜矿成矿流体性质及演化——来自流体包裹体和H-O-C同位素组成的证据.地球科学, 44(6): 1935-1956. http://earth-science.net/WebPage/Article.aspx?id=4248
      [43] 刘云飞, 侯增谦, 杨志明, 等, 2011.西藏弄如日金矿流体包裹体研究.岩石学报, 27(7):2150-2158. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107022
      [44] 卢焕章, 2008.CO2流体与金矿化:流体包裹体的证据.地球化学, 37(4):321-328. doi: 10.3321/j.issn:0379-1726.2008.04.006
      [45] 卢焕章, 池国祥, 朱笑青, 等, 2018.造山型金矿的地质特征和成矿流体.大地构造与成矿学, 42(2):244-265. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201802005
      [46] 孟元库, 许志琴, 马士委, 等, 2016.藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束.地球科学, 41(7):1081-1098. http://earth-science.net/WebPage/Article.aspx?id=3320
      [47] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      [48] 王键, 孙丰月, 禹禄, 等, 2017.青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征.地球科学, 42 (6):941-956. https://doi.org/10.3799/dqkx.2017.074
      [49] 王艺云, 唐菊兴, 宋扬, 等, 2018.西藏铁格隆南斑岩-高硫型浅成低温热液矿床主要矿石矿物特征.矿物学报, 38 (1):109-122. http://d.old.wanfangdata.com.cn/Periodical/kwxb201801014
      [50] 邢俊兵, 葛良胜, 邹依林, 等, 2003.西藏谢通门县洞嘎金矿床地质地球化学特征.黄金地质, 9(2):28-32. http://d.old.wanfangdata.com.cn/Periodical/hjdz200302004
      [51] 徐九华, 肖星, 迟好刚, 等, 2011.阿尔泰南缘克兰盆地的脉状金-铜矿化及其流体演化.岩石学报, 27(5):1299-1310. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201105006
      [52] 杨志明, 侯增谦, 李振清, 等, 2008a.西藏驱龙斑岩铜钼矿床中UST石英的发现:初始岩浆流体的直接记录.矿床地质, 27(2):188-199. http://d.old.wanfangdata.com.cn/Periodical/kcdz200802004
      [53] 杨志明, 侯增谦, 宋玉财, 等, 2008b.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质, 27(3):279-318. http://d.old.wanfangdata.com.cn/Periodical/kcdz200803002
      [54] 张苏坤, 郑有业, 张刚阳, 等, 2013.西藏曲水县鸡公村石英脉型钼矿床成矿时代约束.矿床地质, 32(3):641-648. doi: 10.3969/j.issn.0258-7106.2013.03.014
      [55] 郑淑蕙, 侯发高, 倪葆龄, 1983.我国大气降水的氢氧稳定同位素研究.科学通报, 28(13):801-806. doi: 10.1111-j.1365-2966.2010.17200.x/
      [56] 郑淑蕙, 张知非, 倪葆龄, 等, 1982.西藏地热水的氢氧稳定同位素研究.北京大学学报, 18(1):99-106. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198304001.htm
      [57] 郑永飞, 陈江峰, 2000.稳定同位素地球化学.北京:科学出版社.
      [58] 钟婉婷, 李应栩, 李光明, 等, 2015.西藏冈底斯成矿带达布矿区色日普金矿流体包裹体研究.地质学报, 89(3): 599-607. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503012
      [59] 朱晓青, 郭兴伟, 张训华, 等.2018.青藏高原中-南部新生代构造演化的热年代学制约.地球科学, 43(6): 1903-1920. http://earth-science.net/WebPage/Article.aspx?id=3854
    • 加载中
    图(17) / 表(3)
    计量
    • 文章访问数:  3836
    • HTML全文浏览量:  1338
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-08-11
    • 刊出日期:  2019-06-15

    目录

      /

      返回文章
      返回