Genesis and Geological Significance of Zircons in Orogenic Peridotite
-
摘要: 造山带橄榄岩记录了板块俯冲、碰撞、折返等复杂过程信息,可分为壳源和幔源两种类型.造山带橄榄岩(特别是幔源类型)中锆石极为罕见,锆石内部具有橄榄岩的特征矿物或组合包裹体说明这些锆石可以生长于地幔中.造山带橄榄岩在经历板块汇聚(例如超高压变质等)复杂作用过程中,经历了不同时期的熔/流体的交代作用,对橄榄岩的矿物组合和元素组成都能产生重要影响.橄榄岩中锆石作为典型的交代作用产物,它的形成受控于熔/流体的化学组成、来源属性以及形成物理化学环境等.幔源型造山带橄榄岩中锆石的形成过程可能包括:(1)锆石结晶能力强,在地幔环境变化中Zr优先与其他地幔硅酸盐矿物中的Si结合,形成锆石;(2)原始锆石的溶解和含Zr矿物相(如石榴石等)的破坏或晶间熔体析出,在亚固相线条件下形成锆石;(3)再循环地壳物质来源的熔/流体,交代地幔楔并结晶形成锆石.因此利用锆石可以揭示特定岩石圈域的演化历史,有助于深刻理解大陆克拉通及其边缘过程.Abstract: Orogenic peridotites record the complex geological processes of continental subduction, collision and exhumation, and they can be divided into two types: crustal origin and mantle origin. Zircons are rarely found in orogenic peridotites. The in-situ zircons and zircon inclusions with mantle-rock mineral assemblages indicate that the zircons can grow within the peridotites. During the complex processes of plate aggregation (such as UHP metamorphism), the orogenic peridotites experienced the melt/fluid interaction in different periods, which have an important impact on the mineral and elemental compositions of peridotites. Zircon is one of the typical metasomatic minerals of orogenic peridotites. The zircon formation is controlled by the composition of the melt/fluid, source properties, and the formation of a physical and chemical environment. The mantle-derived zircons from orogenic peridotites have three origins:(1) Zircon has strong crystallization ability, and Zr prefers to combine with Si from silicate minerals in mantle rocks to form zircons. (2) Metamorphic destruction of Zr-bearing mineral phases and precipitation from intergranular melts generated can nucleate zircons under sub-solidus conditions. (3) The melt/fluid from the recycled crust can metasomatize the mantle wedge and form zircons. Thus, zircons can be used to unravel the history of specific lithospheric domains and thus contribute to our understanding of the evolution of continental cratons and their margins.
-
Key words:
- orogenic peridotite /
- origin of zircon /
- crystallization capacity /
- Zr saturation /
- mantle metasomatism /
- petrology
-
图 1 造山带橄榄岩中锆石全球分布
Fig. 1. Global distribution map of zircon in orogenic peridotite
图 2 造山带橄榄岩交代证据
a.柴北缘胜利口纯橄岩中橄榄石及其包裹体矿物背散射电子图像(杨建军等,2013);b.橄榄石被斜方辉石包裹;c.早期橄榄石(Ol1)、尖晶石(Sp)和斜方辉石(Opx1)被晚期斜方辉石(Opx2)包裹;d~f.橄榄岩中硅镁石、金云母和磷灰石等交代矿物出现(b~f.出自本文采自大别山毛屋地区).liz.利蛇纹石;atg.叶蛇纹石;cmt.铬铁矿;Ol.橄榄石;Opx.斜方辉石;Sp.尖晶石;Chu.硅镁石;Phl.金云母;Ap.磷灰石
Fig. 2. Evidence of metasomatism in orogenic peridotite
图 3 造山带橄榄岩中的锆石在薄片中出现的证据
a.苏鲁造山带滕家橄榄岩中锆石产生于石英和斜长石之间(Li et al., 2016);b.苏鲁造山带蒋庄橄榄岩中蛇纹石化橄榄石中包裹原位锆石(Zhang et al., 2005);c.苏鲁造山带芝麻坊异剥橄榄岩中原位锆石的出现(Zhang et al., 2011);d.柴达木北缘胜利口橄榄岩辉石岩脉中锆石包裹于石榴子石和斜方辉石中(Xiong et al., 2014).Zrn.锆石;Pl.斜长石;Qz.石英;Bt.黑云母;Srp.蛇纹石;Ol.橄榄石;Amp.角闪石;Phl.金云母;Opx.斜方辉石;Gt.石榴石;Kely.绿泥镁铝榴石
Fig. 3. Evidence for the occurrence of zircons in thin sections of orogenic peridotite
图 4 造山带橄榄岩锆石中的包裹体
a~c.柴达木北缘胜利口橄榄岩锆石中的石榴石、斜方辉石和橄榄石包裹体(Xiong et al., 2011);d~e.苏鲁造山带滕家橄榄岩锆石中石英和磷灰石包裹体(Li et al., 2016);f.阿尔卑斯Duria橄榄岩锆石中单斜辉石、角闪石和铀氧化物包裹体(Hermann et al., 2006).Zrn.锆石,Gt.石榴石,Opx.斜方辉石,Ol.橄榄石,Qtz.石英,Ap.磷灰石,Cpx.单斜辉石,Amp.角闪石,U-oxide.铀氧化物
Fig. 4. Inclusions in zircons from orogenic peridotite
图 5 大别-苏鲁造山带橄榄岩锆石U-Pb年龄和Hf模式年龄分布
图a据Yang et al.(2009a)、Zhang et al.(2005)、Zhao et al.(2006)、Zheng et al.(2006, 2008, 2014)、Rumble et al.(2002)和Li et al.(2016); 图b据Zheng et al.(2014)
Fig. 5. U-Pb age and Hf model age distribution of peridotite in Dabie-Sulu orogenic belt
-
[1] Amelin, Y., Lee, D.C., Halliday, A.N., 2000.Early-Middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains.Geochimica et Cosmochimica Acta, 64(24):4205-4225.https://doi.org/10.1016/s0016-7037(00)00493-2 doi: 10.1016/S0016-7037(00)00493-2 [2] Ayers, J.C., De LaCruz, K., Miller, C., et al., 2003.Experimental Study of Zircon Coarsening in Quartzite ±H2O at 1.0 GPa and 1 000 ℃, with Implications for Geochronological Studies of High-Grade Metamorphism.American Mineralogist, 88(2-3):365-376. https://doi.org/10.2138/am-2003-2-313 [3] Bea, F., Fershtater, G.B., Montero, P., et al., 2001.Recycling of Continental Crust into the Mantle as Revealed by Kytlym Dunite Zircons, Ural Mts, Russia.Terra Nova, 13(6):407-412. https://doi.org/10.1046/j.1365-3121.2001.00364.x [4] Belousova, E., Griffin, W., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7 [5] Bingen, B., Austrheim, H., Whitehouse, M.J., 2001.Ilmenite as a Source for Zirconium during High-Grade Metamorphism? Textural Evidence from the Caledonides of Western Norway and Implications for Zircon Geochronology.Journal of Petrology, 42(2):355-375. https://doi.org/10.1093/petrology/42.2.355 [6] Bodet, F., Schärer, U., 2000.Evolution of the SE-Asian Continent from U-Pb and Hf Isotopes in Single Grains of Zircon and Baddeleyite from Large Rivers.Geochimica et Cosmochimica Acta, 64(12):2067-2091.https://doi.org/10.1016/s0016-7037(00)00352-5 doi: 10.1016/S0016-7037(00)00352-5 [7] Brueckner, H.K., Medaris, L.G., 2000.A General Model for the Intrusion and Evolution of 'Mantle' Garnet Peridotites in High-Pressure and Ultra-High-Pressure Metamorphic Terranes.Journal of Metamorphic Geology, 18(2):123-133. https://doi.org/10.1046/j.1525-1314.2000.00250.x [8] Brueckner, H.K., Medaris, L.G., 1998.A Tale of Two Orogens—The Contrasting P-T-t History and Geochemical Evolution of Mantle in Ultrahigh-Pressure (UHP) Metamorphic Terranes of the Norwegian Caledonides and the Czech Variscides.Schweizerische Mineralogische und Petrographische Mutteilungen, 78:293-307. https://www.ldeo.columbia.edu/node/12817 [9] Brueckner, H.K., van Roermund, H.L.M., 2004.Dunk Tectonics:A Multiple Subduction/Eduction Model for the Evolution of the Scandinavian Caledonides.Tectonics, 23(2):TC2004.https://doi.org/10.1029/2003tc001502 http://cn.bing.com/academic/profile?id=1143385578030600a64f54560f17c332&encoded=0&v=paper_preview&mkt=zh-cn [10] Cao, Y., Song, S.G., Su, L., et al., 2016.Highly Refractory Peridotites in Songshugou, Qinling Orogen:Insights into Partial Melting and Melt/Fluid-Rock Reactions in Forearc Mantle.Lithos, 252-253:234-254. https://doi.org/10.1016/j.lithos.2016.03.002 [11] Carswell, D.A., Harvey, M.A., Al-Samman, A., 1983.The Petrogenesis of Contrasting Fe-Ti and Mg-Cr Garnet Peridotite Types in the High Grade Gneiss Complex of Western Norway.Bulletin de Minéralogie, 106(6):727-750. https://doi.org/10.3406/bulmi.1983.7696 [12] Chazot, G., Lowry, D., Menzies, M., et al., 1997.Oxygen Isotopic Composition of Hydrous and Anhydrous Mantle Peridotites.Geochimica et Cosmochimica Acta, 61(1):161-169.https://doi.org/10.1016/s0016-7037(96)00314-6 doi: 10.1016/S0016-7037(96)00314-6 [13] Chen, R.X., Li, H.Y., Zheng, Y.F., et al., 2017a.Crust-Mantle Interaction in a Continental Subduction Channel:Evidence from Orogenic Peridotites in North Qaidam, Northern Tibet.Journal of Petrology, 58(2):191-226. https://doi.org/10.1093/petrology/egx011 [14] Chen, Y., Su, B., Chu, Z.Y., 2017b.Modification of an Ancient Subcontinental Lithospheric Mantle by Continental Subduction:Insight from the Maowu Garnet Peridotites in the Dabie UHP Belt, Eastern China.Lithos, 278-281:54-71. https://doi.org/10.1016/j.lithos.2017.01.025 [15] Chen, R.X., Zheng, Y.F., Xie, L.W., 2010.Metamorphic Growth and Recrystallization of Zircon:Distinction by Simultaneous In-Situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen.Lithos, 114(1-2):132-154. https://doi.org/10.1016/j.lithos.2009.08.006 [16] Degeling, H., Eggins, S., Ellis, D.J., 2001.Zr Budgets for Metamorphic Reactions, and the Formation of Zircon from Garnet Breakdown.Mineralogical Magazine, 65(6):749-758. doi: 10.1180/0026461016560006 [17] Ernst, W.G., 2001.Subduction, Ultrahigh-Pressure Metamorphism, and Regurgitation of Buoyant Crustal Slices:Implications for Arcs and Continental Growth.Physics of the Earth and Planetary Interiors, 127(1-4):253-275.https://doi.org/10.1016/s0031-9201(01)00231-x doi: 10.1016/S0031-9201(01)00231-X [18] Ernst, W.G., Liou, J.G., 1995.Contrasting Plate-Tectonic Styles of the Qinling-Dabie-Sulu and Franciscan Metamorphic Belts.Geology, 23(4):353.https://doi.org/10.1130/0091-7613(1995)0230353:cptsot>2.3.co; 2 doi: 10.1130/0091-7613(1995)023<0353:CPTSOT>2.3.CO;2 [19] Evans, B.W., 1977.Metamorphism of Alpine Peridotite and Serpentinite.Annual Review of Earth and Planetary Sciences, 5(1):397-447. https://doi.org/10.1146/annurev.ea.05.050177.002145 [20] Fan, Q.C., Liu, R.X., Ma, B.L., et al., 1996a.Petrology and High-Pressure Mineral Assemblage of Mafic-Ultramafic Rocks of Ultrahigh-Pressure Metamorphic Zone in the Dabie Mountains.Science in China (Ser B), 26(3):265-270 (in Chinese). [21] Fan, Q.C., Liu, R.X., Xu, P., et al., 1996b.Petrogenesic Significance of Ti-Clinohumite (±Ti-Chondrorite)-Magnesite Assemblage in Ultrahigh Pressure Metamorphic Mafic-Ultramafic Rocks in Dabie Area.Bulletin of Mineralogy, Petrology and Geochemistry, 15(1):5-9(in Chinese with English abstract). [22] Fraser, G., Ellis, D., Eggins, S., 1997.Zirconium Abundance in Granulite-Facies Minerals, with Implications for Zircon Geochronology in High-Grade Rocks.Geology, 25(7):607-610.https://doi.org/10.1130/0091-7613(1997)0250607:zaigfm>2.3.co; 2 doi: 10.1130/0091-7613(1997)025<0607:ZAIGFM>2.3.CO;2 [23] Gebauer, D., 1996.A P-T-t Path for an (Ultra? -) High-Pressure Ultramafic/Mafic Rock Associations and Their Felsic Country-Rocks Based on SHRIMP-Dating of Magmatic and Metamorphic Zircon Domains.Example: Alpe Arami (Central Swiss Alps).In: Basu, A., Hart, S.eds., Special AGU-Monograph Dedicated to Profs.Tilton and Tatsumoto: Earth Processes: Reading the Isotopic Code.American Geophysical Union, Washington, D.C., 95, 307-329. [24] Grieco, G., Ferrario, A., Quadt, A.V., et al., 2001.The Zircon-Bearing Chromitites of the Phlogopite Peridotite of Finero (Ivrea Zone, Southern Alps):Evidence and Geochronology of a Metasomatized Mantle Slab.Journal of Petrology, 42(1):89-101. https://doi.org/10.1093/petrology/42.1.89 [25] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282. https://doi.org/10.1016/j.precamres.2003.12.011 [26] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147.https://doi.org/10.1016/s0016-7037(99)00343-9 doi: 10.1016/S0016-7037(99)00343-9 [27] Harrison, T.M., Watson, E.B., 1983.Kinetics of Zircon Dissolution and Zirconium Diffusion in Granitic Melts of Variable Water Content.Contributions to Mineralogy and Petrology, 84(1):66-72.https://doi.org/10.1007/bf01132331 doi: 10.1007/BF01132331 [28] Harrison, T.M., Watson, E.B., Aikman, A.B., 2007.Temperature Spectra of Zircon Crystallization in Plutonic Rocks.Geology, 35(7):635-638. doi: 10.1130/G23505A.1 [29] Helmers, H., Maaskant, P., Hartel, T.H.D., 1990.Garnet Peridotite and Associated High-Grade Rocks from Sulawesi, Indonesia.Lithos, 25(1-3):171-188.https://doi.org/10.1016/0024-4937(90)90013-q doi: 10.1016/0024-4937(90)90013-Q [30] Hermann, J., Rubatto, D., Korsakov, A., et al., 2001.Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan).Contributions to Mineralogy and Petrology, 141(1):66-82. https://doi.org/10.1007/s004100000218 [31] Hermann, J., Rubatto, D., Trommsdorff, V., 2006.Sub-Solidus Oligocene Zircon Formation in Garnet Peridotite during Fast Decompression and Fluid Infiltration (Duria, Central Alps).Mineralogy and Petrology, 88(1-2):181-206. https://doi.org/10.1007/s00710-006-0155-3 [32] Kadarusman, P., 2000.Petrology and P-T Evolution of Garnet Peridotites from Central Sulawesi, Indonesia.Journal of Metamorphic Geology, 18(2):193-209. https://doi.org/10.1046/j.1525-1314.2000.00238.x [33] Katayama, I., Muko, A., Iizuka, T., et al., 2003.Dating of Zircon from Ti-Clinohumite-Bearing Garnet Peridotite:Implication for Timing of Mantle Metasomatism.Geology, 31(8):713-716. doi: 10.1130/G19525.1 [34] Li, H.Y., Chen, R.X., Zheng, Y.F., et al., 2016.The Crust-Mantle Interaction in Continental Subduction Channels:Zircon Evidence from Orogenic Peridotite in the Sulu Orogen.Journal of Geophysical Research:Solid Earth, 121(2):687-712.https://doi.org/10.1002/2015jb012231 doi: 10.1002/jgrb.v121.2 [35] Li, H.Y., Chen, R.X., Zheng, Y.F., et al., 2018.Crustal Metasomatism at the Slab-Mantle Interface in a Continental Subduction Channel:Geochemical Evidence from Orogenic Peridotite in the Sulu Orogen.Journal of Geophysical Research:Solid Earth, 123(3):2174-2198.https://doi.org/10.1002/2017jb014015 doi: 10.1002/jgrb.v123.3 [36] Li, W.C., Chen, R.X., Zheng, Y.F., et al., 2013.Zirconological Tracing of Transition between Aqueous Fluid and Hydrous Melt in the Crust:Constraints from Pegmatite Vein and Host Gneiss in the Sulu Orogen.Lithos, 162-163:157-174. https://doi.org/10.1016/j.lithos.2013.01.004 [37] Li, X.P., Yang, J.S., Robinson, P., et al., 2011.Petrology and Geochemistry of UHP-Metamorphosed Ultramafic-Mafic Rocks from the Main Hole of the Chinese Continental Scientific Drilling Project (CCSD-MH), China:Fluid/Melt-Rock Interaction.Journal of Asian Earth Sciences, 42(4):661-683. https://doi.org/10.1016/j.jseaes.2011.01.010 [38] Liati, A., Franz, L., Gebauer, D., et al., 2004.The Timing of Mantle and Crustal Events in South Namibia, as Defined by SHRIMP-Dating of Zircon Domains from a Garnet Peridotite Xenolith of the Gibeon Kimberlite Province.Journal of African Earth Sciences, 39(3-5):147-157. https://doi.org/10.1016/j.jafrearsci.2004.07.054 [39] Liati, A., Gebauer, D., 2009.Crustal Origin of Zircon in a Garnet Peridotite:A Study of U-Pb SHRIMP Dating, Mineral Inclusions and REE Geochemistry (Erzgebirge, Bohemian Massif).European Journal of Mineralogy, 21(4):737-750. https://doi.org/10.1127/0935-1221/2009/0021-1939 [40] Liou, J.G., Ernst, W.G., Zhang, R.Y., et al., 2009.Ultrahigh-Pressure Minerals and Metamorphic Terranes—The View from China.Journal of Asian Earth Sciences, 35(3-4):199-231. https://doi.org/10.1016/j.jseaes.2008.10.012 [41] Liou, J.G., Tsujimori, T., Zhang, R.Y., et al., 2004.Global UHP Metamorphism and Continental Subduction/Collision:The Himalayan Model.International Geology Review, 46(1):1-27. https://doi.org/10.2747/0020-6814.46.1.1 [42] Liou, J.G., Zhang, R.Y., Ernst, W.G., 2007.Very High-Pressure Orogenic Garnet Peridotites.Proceedings of the National Academy of Sciences, 104(22):9116-9121. https://doi.org/10.1073/pnas.0607300104 [43] Liu, F.L., Liou, J.G., 2011.Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism:A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks.Journal of Asian Earth Sciences, 40(1):1-39. https://doi.org/10.1016/j.jseaes.2010.08.007 [44] Lu, F.X., Wang, Y., Chen, M.H., et al., 1998.Geochemical Characteristics and Emplacement Ages of the Mengyin Kimberlites, Shandong Province, China.International Geology Review, 40(11):998-1006. https://doi.org/10.1080/00206819809465251 [45] Maruyama, S., Liou, J.G., Terabayashi, M., 1996.Blueschists and Eclogites of the World and Their Exhumation.International Geology Review, 38(6):485-594. https://doi.org/10.1080/00206819709465347 [46] Mattey, D., Lowry, D., MacPherson, C., 1994.Oxygen Isotope Composition of Mantle Peridotite.Earth and Planetary Science Letters, 128(3-4):231-241.https://doi.org/10.1016/0012-821x(94)90147-3 doi: 10.1016/0012-821X(94)90147-3 [47] Medaris, L.G., 1999.Garnet Peridotites in Eurasian High-Pressure and Ultrahigh-Pressure Terranes:A Diversity of Origins and Thermal Histories.International Geology Review, 41(9):799-815. https://doi.org/10.1080/00206819909465170 [48] Medaris, L.G., Carswell, D.A., 1990.Petrogenesis of Mg-Cr Garnet Peridotites in European Metamorphic Belt.In: Carswell, D.A., ed., Eclogite Facies Rocks.Springer Netherlands, Dordrecht, 260-290. [49] Nakajima, Y., 1998.Ti-Clinohumite-Bearing Garnet Peridotite from Kumdy-Kol Area in the Kokchetav UHP Complex, Northern Kazakhstan.EOS Transactions of the American Geophysical Union, 79. [50] Nowell, G.M., Kempton, P.D., Pearson, D.G., 1998a.Hf-Nd Systematics of Kimberlites: Relevance to Terrestrial Hf-Nd Systematics.7th Int.Kimberlite Conf.Cape Town, South Africa.Ext.Abst., 628-630. [51] Nowell, G.M., Pearson, D.G., Kempton, P.D., et al., 1998b.The Source Regions/Components of Kimberlites: Constraints from Hf-Nd Isotope Systematics.7th Int.Kimberlite Conf.Cape Town, South Africa.Ext.Abst., 640-642. [52] Nowell, G.M., Pearson, D.G., 1998.Hf Isotope Constraints on the Genesis of Kimberlitic Megacrysts: Evidence for a Deep Mantle Component in Kimberlites.7th Int.Kimberlite Conf.Cape Town, South Africa.Ext.Abst., 634-636. [53] O'Hara, M.J., Richardson, S.W., Wilson, G., 1971.Garnet-Peridotite Stability and Occurrence in Crust and Mantle.Contributions to Mineralogy and Petrology, 32(1):48-68.https://doi.org/10.1007/bf00372233 doi: 10.1007/BF00372233 [54] Ota, T., Gladkochub, D.P., Sklyarov, E.V., et al., 2004.P-T History of Garnet-Websterites in the Sharyzhalgai Complex, Southwestern Margin of Siberian Craton:Evidence for Paleoproterozoic High-Pressure Metamorphism.Precambrian Research, 132(4):327-348. https://doi.org/10.1016/j.precamres.2004.03.009 [55] Palme, H., O'Neill, H.St.O., 2007.Cosmochemical Estimates of Mantle Composition.Treatise on Geochemistry, 2:1-38. [56] Rubatto, D., 2002.Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism.Chemical Geology, 184(1-2):123-138.https://doi.org/10.1016/s0009-2541(01)00355-2 doi: 10.1016/S0009-2541(01)00355-2 [57] Rubatto, D., Gebauer, D., Compagnoni, R., 1999.Dating of Eclogite-Facies Zircons:The Age of Alpine Metamorphism in the Sesia-Lanzo Zone (Western Alps).Earth and Planetary Science Letters, 167(3-4):141-158.https://doi.org/10.1016/s0012-821x(99)00031-x doi: 10.1016/S0012-821X(99)00031-X [58] Rubatto, D., Hermann, J., 2003.Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps):Implications for Zr and Hf Budget in Subduction Zones.Geochimica et Cosmochimica Acta, 67(12):2173-2187.https://doi.org/10.1016/s0016-7037(02)01321-2 doi: 10.1016/S0016-7037(02)01321-2 [59] Rumble, D., Giorgis, D., Ireland, T., et al., 2002.Low δ18O Zircons, U-Pb Dating, and the Age of the Qinglongshan Oxygen and Hydrogen Isotope Anomaly near Donghai in Jiangsu Province, China.Geochimica et Cosmochimica Acta, 66(12):2299-2306.https://doi.org/10.1016/s0016-7037(02)00844-x doi: 10.1016/S0016-7037(02)00844-X [60] Scambelluri, M., Hermann, J., Morten, L., et al., 2006.Melt-Versus Fluid-Induced Metasomatism in Spinel to Garnet Wedge Peridotites (Ulten Zone, Eastern Italian Alps):Clues from Trace Element and Li Abundances.Contributions to Mineralogy and Petrology, 151(4):372-394. https://doi.org/10.1007/s00410-006-0064-9 [61] Scambelluri, M., Pettke, T., Rampone, E., et al., 2014.Petrology and Trace Element Budgets of High-Pressure Peridotites Indicate Subduction Dehydration of Serpentinized Mantle (Cima Di Gagnone, Central Alps, Switzerland).Journal of Petrology, 55(3):459-498. https://doi.org/10.1093/petrology/egt068 [62] Shen, J., Li, S.G., Wang, S.J., et al., 2018.Subducted Mg-Rich Carbonates into the Deep Mantle Wedge.Earth and Planetary Science Letters, 503, 118-130. https://doi.org/10.1016/j.epsl.2018.09.011 [63] Smith, D., Griffin, W.L., 2005.Garnetite Xenoliths and Mantle-Water Interactions below the Colorado Plateau, Southwestern United States.Journal of Petrology, 46(9):1901-1924. https://doi.org/10.1093/petrology/egi042 [64] Song, S., Zhang, L., Niu, Y., et al., 2005.Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau:A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision.Earth and Planetary Science Letters, 234(1-2):99-118. https://doi.org/10.1016/j.epsl.2005.02.036 [65] Song, S.G., Su, L., 2010.Rheological Properties of Mantle Peridotites at Yushigou in the North Qilian Mountains and Their Implications for Plate Dynamics.Acta Geologica Sinica (English Edition), 72(2):131-141.https://doi.org/10.1111/j.1755-6724.1998.tb00389.x doi: 10.1111/acgs.1998.72.issue-2 [66] Song, S.G., Su, L., Niu, Y.L., et al., 2007.Petrological and Geochemical Constraints on the Origin of Garnet Peridotite in the North Qaidam Ultrahigh-Pressure Metamorphic Belt, Northwestern China.Lithos, 96(1-2):243-265. https://doi.org/10.1016/j.lithos.2006.09.017 [67] Song, S.G., Zhang, L.F., Niu, Y.L., 2004.Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China.American Mineralogist, 89(8-9):1330-1336. https://doi.org/10.2138/am-2004-8-922 [68] Spengler, D., Brueckner, H.K., van Roermund, H.L.M., et al., 2009.Long-Lived, Cold Burial of Baltica to 200 km Depth.Earth and Planetary Science Letters, 281(1-2):27-35. https://doi.org/10.1016/j.epsl.2009.02.001 [69] Su, B., Chen, Y., Guo, S., et al., 2016.Carbonatitic Metasomatism in Orogenic Dunites from Lijiatun in the Sulu UHP Terrane, Eastern China.Lithos, 262:266-284. https://doi.org/10.1016/j.lithos.2016.07.007 [70] Su, L., Song, S.G., Wang, Z.H., 1999.CH4-Rich Fluid Inclusions in the Yushigou Mantle Peridotite and Their Implications, North Qilian Mountains, China.Chinese Science Bulletin, 44(21):1992-1995.https://doi.org/10.1007/bf02887126 doi: 10.1007/BF02887126 [71] Vavra, G., Schmid, R., Gebauer, D., 1999.Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons:Geochronology of the Ivrea Zone (Southern Alps).Contributions to Mineralogy and Petrology, 134(4):380-404. https://doi.org/10.1007/s004100050492 [72] Vrijmoed, J.C., Austrheim, H., John, T., et al., 2013.Metasomatism in the Ultrahigh-Pressure Svartberget Garnet-Peridotite (Western Gneiss Region, Norway):Implications for the Transport of Crust-Derived Fluids within the Mantle.Journal of Petrology, 54(9):1815-1848. https://doi.org/10.1093/petrology/egt032 [73] Watson, E.B., 1996.Dissolution, Growth and Survival of Zircons during Crustal Fusion:Kinetic Principals, Geological Models and Implications for Isotopic Inheritance.Transactions of the Royal Society of Edinburgh:Earth Sciences, 87(1-2):43-56. doi: 10.1017/S0263593300006465 [74] Whitehouse, M.J., Platt, J.P., 2003.Dating High-Grade Metamorphism:Constraints from Rare-Earth Elements in Zircon and Garnet.Contributions to Mineralogy and Petrology, 145(1):61-74. https://doi.org/10.1007/s00410-002-0432-z [75] Wu, Y.B., Zheng, Y.F., Zhao, Z.F., et al., 2006.U-Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen.Geochimica et Cosmochimica Acta, 70(14):3743-3761. https://doi.org/10.1016/j.gca.2006.05.011 [76] Xia, Q.K., Liu, J., Liu, S.C., et al., 2013.High Water Content in Mesozoic Primitive Basalts of the North China Craton and Implications on the Destruction of Cratonic Mantle Lithosphere.Earth and Planetary Science Letters, 361:85-97. https://doi.org/10.1016/j.epsl.2012.11.024 [77] Xiong, F.H., Yang, J.S., Xu, X.Z., et al., 2018.Inclusions in Olivine and Implications—Based on Mineral Research of Dunite of Bulqiza Ophiolite, Albania.Earth Science, 43(5):1464-1473(in Chinese with English abstract). https://www.researchgate.net/publication/326346047_Inclusions_in_Olivine_and_Implications-Based_on_Mineral_Research_of_Dunite_of_Bulqiza_Ophiolite_Albania [78] Xiong, Q., Zheng, J.P., Griffin, W.L., et al., 2011.Zircons in the Shenglikou Ultrahigh-Pressure Garnet Peridotite Massif and Its Country Rocks from the North Qaidam Terrane (Western China):Meso-Neoproterozoic Crust-Mantle Coupling and Early Paleozoic Convergent Plate-Margin Processes.Precambrian Research, 187(1-2):33-57. https://doi.org/10.1016/j.precamres.2011.02.003 [79] Xiong, Q., Griffin, W.L., Zheng, J.P., et al., 2016.Southward Trench Migration at ~130-120 Ma Caused Accretion of the Neo-Tethyan Forearc Lithosphere in Tibetan Ophiolites.Earth and Planetary Science Letters, 438:57-65. https://doi.org/10.1016/j.epsl.2016.01.014 [80] Xiong, Q., Zheng, J.P., Griffin, W.L., et al., 2014.Pyroxenite Dykes in Orogenic Peridotite from North Qaidam (NE Tibet, China) Track Metasomatism and Segregation in the Mantle Wedge.Journal of Petrology, 55(12):2347-2376. https://doi.org/10.1093/petrology/egu059 [81] Xu, X.Z., Yang, J.S., Xiong, F.H., et al., 2018.Characteristics of Titanium-Bearing Inclusions Found in Corundum of Luobusa Podiform Chromitite, Tibet.Earth Science, 43(4):1025-1037(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804007 [82] Yang, J.J., Godard, G., Kienast, J.R., et al., 1993.Ultrahigh-Pressure (60 kbar) Magnesite-Bearing Garnet Peridotites from Northeastern Jiangsu, China.The Journal of Geology, 101(5):541-554. https://doi.org/10.1086/648248 [83] Yang, J.J., Huang, M.X., Naemura, K., et al., 2013.Towards a Law for the Metamorphic Evolution of Mantle-Derived Orogenic Peridotites.Acta Petrologica Sinica, 29(5):1479-1485(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201305002 [84] Yang, J.J., Powell, R., 2008.Ultrahigh-Pressure Garnet Peridotites from the Devolatilization of Sea-Floor Hydrated Ultramafic Rocks.Journal of Metamorphic Geology, 26(6):695-716.https://doi.org/10.1111/j.1525-1314.2008.00780.x doi: 10.1111/jmg.2008.26.issue-6 [85] Yang, J.S., Li, T.F., Chen, S.Z., et al., 2009a.Genesis of Garnet Peridotites in the Sulu UHP Belt:Examples from the Chinese Continental Scientific Drilling Project-Main Hole, PP1 and PP3 Drillholes.Tectonophysics, 475(2):359-382. https://doi.org/10.1016/j.tecto.2009.02.032 [86] Yang, Y.H., Wu, F.Y., Wilde, S.A., et al., 2009b.In Situ Perovskite Sr-Nd Isotopic Constraints on the Petrogenesis of the Ordovician Mengyin Kimberlites in the North China Craton.Chemical Geology, 264(1-4):24-42. https://doi.org/10.1016/j.chemgeo.2009.02.011 [87] Ye, K., Song, Y.R., Chen, Y., et al., 2009.Multistage Metamorphism of Orogenic Garnet-Lherzolite from Zhimafang, Sulu UHP Terrane, E.China:Implications for Mantle Wedge Convection during Progressive Oceanic and Continental Subduction.Lithos, 109(3-4):155-175. https://doi.org/10.1016/j.lithos.2008.08.005 [88] Yu, H., Zhang, H.F., Santosh, M., 2017.Mylonitized Peridotites of Songshugou in the Qinling Orogen, Central China:A Fragment of Fossil Oceanic Lithosphere Mantle.Gondwana Research, 52:1-17. https://doi.org/10.1016/j.gr.2017.08.007 [89] Zhang, R.Y., Yang, J.S., Wooden, J.L., et al., 2005.U-Pb SHRIMP Geochronology of Zircon in Garnet Peridotite from the Sulu UHP Terrane, China:Implications for Mantle Metasomatism and Subduction-Zone UHP Metamorphism.Earth and Planetary Science Letters, 237(3-4):729-743. https://doi.org/10.1016/j.epsl.2005.07.003 [90] Zhang, Z.M., Dong, X., Liou, J.G., et al., 2011.Metasomatism of Garnet Peridotite from Jiangzhuang, Southern Sulu UHP Belt:Constraints on the Interactions between Crust and Mantle Rocks during Subduction of Continental Lithosphere.Journal of Metamorphic Geology, 29(9):917-937.https://doi.org/10.1111/j.1525-1314.2011.00947.x doi: 10.1111/jmg.2011.29.issue-9 [91] Zhang, H.F., Sun, M., Zhou, X.H., et al., 2002.Mesozoic Lithosphere Destruction beneath the North China Craton:Evidence from Major-, Trace-Element and Sr-Nd-Pb Isotope Studies of Fangcheng Basalts.Contributions to Mineralogy and Petrology, 144(2):241-254. https://doi.org/10.1007/s00410-002-0395-0 [92] Zhang, R.Y., Liou, J.G., Yang, J.S., et al., 2000.Petrochemical Constraints for Dual Origin of Garnet Peridotites from the Dabie-Sulu UHP Terrane, Eastern-Central China.Journal of Metamorphic Geology, 18(2):149-166. https://doi.org/10.1046/j.1525-1314.2000.00248.x [93] Zhang, R.Y., Pan, Y.M., Yang, Y.H., et al., 2008.Chemical Composition and Ultrahigh-P Metamorphism of Garnet Peridotites from the Sulu UHP Terrane, China:Investigation of Major, Trace Elements and Hf Isotopes of Minerals.Chemical Geology, 255(1-2):250-264. https://doi.org/10.1016/j.chemgeo.2008.06.049 [94] Zhao, Z.F., Zheng, Y.F., Wei, C.S., et al., 2008.Zircon U-Pb Ages, Hf and O Isotopes Constrain the Crustal Architecture of the Ultrahigh-Pressure Dabie Orogen in China.Chemical Geology, 253(3-4):222-242. https://doi.org/10.1016/j.chemgeo.2008.05.011 [95] Zhao, R.X., Liou, J.G., Zhang, R.Y., et al., 2006.SHRIMP U-Pb Zircon Dating of the Rongcheng Eclogite and Associated Peridotite: New Constraints for Ultrahigh-Pressure Metamorphism of Mantle-Derived Mafic-Ultramafic Bodies from the Sulu Terrane.In: Hacker, B.R., McClelland, W.C., Liou, J.G., eds., Ultrahigh-Pressure Metamorphism: Deep Continental Subduction, Special Paper 403.Geological Society of America, Boulder, 115-125. [96] Zheng, J.P., 2005.The U-Pb Dating Ages and Hf Isotopic Compositions of Zircon from Various Granulitic Xenoliths:The Formation and Reworking of the Lower Crust beneath the North China.Bulletin of Mineralogy, Petrology and Geochemistry, 24(1):7-16(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=3ebc8cefa17d37d7d6a9d3d46e90dd44&encoded=0&v=paper_preview&mkt=zh-cn [97] Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2006.A Refractory Mantle Protolith in Younger Continental Crust, East-Central China:Age and Composition of Zircon in the Sulu Ultrahigh-Pressure Peridotite.Geology, 34(9):705-708.https://doi.org/10.1130/g22569.1 doi: 10.1130/G22569.1 [98] Zheng, J.P., Sun, M., Griffin, W.L., et al., 2008.Age and Geochemistry of Contrasting Peridotite Types in the Dabie UHP Belt, Eastern China:Petrogenetic and Geodynamic Implications.Chemical Geology, 247(1-2):282-304. https://doi.org/10.1016/j.chemgeo.2007.10.023 [99] Zheng, J.P., Tang, H.Y., Xiong, Q., et al., 2014.Linking Continental Deep Subduction with Destruction of a Cratonic Margin:Strongly Reworked North China SCLM Intruded in the Triassic Sulu UHP Belt.Contributions to Mineralogy and Petrology, 168(1):1028. https://doi.org/10.1007/s00410-014-1028-0 [100] Zheng, J.P., Zhang, R.Y., Griffin, W.L., et al., 2005.Heterogeneous and Metasomatized Mantle Recorded by Trace Elements in Minerals of the Donghai Garnet Peridotites, Sulu UHP Terrane, China.Chemical Geology, 221(3-4):243-259. https://doi.org/10.1016/j.chemgeo.2005.05.002 [101] Zheng, Y.F., 2008.A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt.Chinese Science Bulletin, 53(18):2129-2152 (in Chinese). doi: 10.1007-s11434-008-0388-0/ [102] Zheng, Y.F., 2009.Fluid Regime in Continental Subduction Zones:Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks.Journal of the Geological Society, 166(4):763-782.https://doi.org/10.1144/0016-76492008-016r doi: 10.1144/0016-76492008-016R [103] Zheng, Y.F., 2012.Metamorphic Chemical Geodynamics in Continental Subduction Zones.Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 [104] Zheng, Y.F., Chen, R.X., Xu, Z., et al., 2016.The Transport of Water in Subduction Zones.Science China Earth Sciences, 59(4):651-682. https://doi.org/10.1007/s11430-015-5258-4 [105] Zheng, Y.F., Zhao, Z.F., Li, S.G., et al., 2003.Oxygen Isotope Equilibrium between Ultrahigh-Pressure Metamorphic Minerals and Its Constraints on Sm-Nd and Rb-Sr Chronometers.Geological Society, London, Special Publications, 220(1):93-117.https://doi.org/10.1144/gsl.sp.2003.220.01.06 doi: 10.1144/GSL.SP.2003.220.01.06 [106] 樊祺诚, 刘若新, 马宝林, 等, 1996a.大别山超高压变质带镁铁-超镁铁岩的岩石学与高压矿物组合.中国科学(B辑), 26(3):265-270. http://www.cnki.com.cn/Article/CJFDTotal-JDXK199603010.htm [107] 樊祺诚, 刘若新, 徐平, 等, 1996b.大别山超高压变质镁铁-超镁铁岩中钛斜硅镁石(±钛粒硅镁石)—菱镁矿组合成因.矿物岩石地球化学通报, 15(1):5-9. [108] 熊发挥, 杨经绥, 徐向珍, 等, 2018.阿尔巴尼亚布尔其泽纯橄岩壳中橄榄石的包裹体研究.地球科学, 43(5):1464-1473. http://earth-science.net/WebPage/Article.aspx?id=3806 [109] 徐向珍, 杨经绥, 熊发挥, 等, 2018.罗布莎豆荚状铬铁矿床中刚玉的含Ti矿物包裹体特征.地球科学, 43(4):1025-1037. http://earth-science.net/WebPage/Article.aspx?id=3794 [110] 杨建军, 黄梦曦, 苗村康輔, 2013.关于造山带幔源橄榄岩变质演化的一个普遍规律?岩石学报, 29(5):1479-1485. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201305002 [111] 郑建平, 2005.捕虏体麻粒岩锆石U-Pb年龄和铪同位素:华北地块下地壳的形成与再造.矿物岩石地球化学通报, 24(1):7-16. doi: 10.3969/j.issn.1007-2802.2005.01.002 [112] 郑永飞, 2008.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例.科学通报, 53(18):2129-2152. doi: 10.3321/j.issn:0023-074X.2008.18.001