Application of Short-Wave Infrared Spectroscopy in Gangjiang Porphyry Cu-Mo Deposit in Nimu Ore Field, Tibet
-
摘要: 为进一步探明岗讲斑岩铜-钼矿床蚀变和矿化结构, 有效指导下一步勘查工作, 利用短波红外光谱技术对矿床内典型剖面上的4个钻孔进行了系统的测试分析.共检测到绢云母类、高岭石类、绿泥石类、硫酸盐类和碳酸盐类等蚀变矿物, 其中尤以绢云母类矿物最为发育.对绢云母进行短波红外光谱测试分析显示:在靠近矿体的位置, 有较大的伊利石结晶度(≥ 1.5)和较小的绢云母Al-OH吸收位置(≤ 2 205 nm); 而在远离矿体的位置伊利石结晶度和绢云母Al-OH吸收位置分别为0.8~1.2和2 207~2 209 nm.同时, 铁氧化物强度值与氧化矿体的出现具有同步性.表明短波红外光谱的这些特征参数有助于进一步理解岗讲斑岩铜-钼矿床蚀变和矿化结构, 有效识别成矿流体性质, 有潜力成为该矿区及其他类似矿区有效的找矿指标.Abstract: In order to reveal the alteration and mineralization structure of the Gangjiang porphyry copper-molybdenum deposit, the short-wave infrared spectroscopy (SWIR) technique was systematically used to analyze the four drill-holes in the typical section of the deposit.Five types of altered mineral groups were detected, i.e.sericite, kaolinite, chlorite, sulphate and carbonate.Short wave infrared spectroscopy results of sericite show that there is a greater illite crystallinity (≥ 1.5) and a smaller sericite Al-OH absorption position (≤ 2 205 nm) towards the ore body.However, the value of illite crystallinity and sericite Al-OH absorption position distal the ore body are 0.8-1.2 and 2 207-2 209 nm, respectively.In addition, the iron oxide intensity value is synchronized oxidized ore body.It is indicated that these characteristic parameters of short-wave infrared spectroscopy are helpful to the understanding of the alteration and mineralization structure of the Gangjiang porphyry Cu-Mo deposit, which may effectively restrict the ore-forming fluid condition and provide a potential prospecting indicator for the target mine and other similar mining areas.
-
图 1 岗讲斑岩铜-钼矿床地质简图
Fig. 1. Simplified geological map of the Gangjiang porphyry Cu-Mo deposit
图 3 岗讲斑岩铜-钼矿床岩矿岩心及显微照片
a.发育有A脉的钾化石英二长岩;b.石英二长斑岩;c.流纹英安斑岩;d.闪长质岩脉(深)侵入流纹英安斑岩(浅)中;e.浅绿色伊利石化叠加在早期钾化的石英二长岩之上,又被后期高岭石化(白色)沿后期裂隙所交代;f.强烈高岭石化的流纹英安斑岩;g.绿泥石化(绿色)石英二长斑岩被后期泥化(白色)沿裂隙交代;h.绿泥石-绢云母化流纹英安斑岩;i.后期热液将早期黑云母交代溶蚀为港湾状,并在其内和周围形成石英+绢云母+黄铁矿;j.黑云母被大面积蚀变为绿泥石;k.卡式双晶的钾长石内包含钾化形成的黑云母,并在边缘被绢云母交代;l.绢云母沿解理和裂隙交代钾长石.Bt.黑云母;Chl.绿泥石;Kfs.钾长石;Pl.斜长石;Py.黄铁矿;Qtz.石英;Srt.绢云母
Fig. 3. Drill core and microscopic photographs of rocks and ore in the Gangjiang porphyry Cu-Mo deposit
-
[1] Chang, Z., Yang, Z., 2012.Evaluation of Inter-Instrument Variations among Short Wavelength Infrared (SWIR) De-vices.Economic Geology, 107(7):1479-1488. https://doi.org/10.2113/econgeo.107.7.1479 [2] Chang, Z.S., Hedenquist, J.W., White, N.C., et al., 2011.Ex-ploration Tools for Linked Porphyry and Epithermal De-posits:Example from the Mankayan Intrusion-Centered Cu-Au District, Luzon, Philippines.Economic Geology, 106(8):1365-1398. https://doi.org/10.2113/econ-geo.106.8.1365 [3] Chen, S.B., Huang, B.Q., Li, C., et al., 2018.Alteration and Mineralization of the Yuhai Cu Deposit in Eastern Tian-shan, Xinjiang and Applications of Short Wavelength In-fra-Red (SWIR) in Exploration.Earth Science, 43(9):2911-2928(in Chinese with English abstract). [4] Clark, R.N., King, T.V.V., Klejwa, M., et al., 1990.High Spectral Resolution Reflectance Spectroscopy of Minerals.Journal of Geophysical Research, 95(B8):12653-12680. doi: 10.1029/JB095iB08p12653 [5] Duke, E.F., 1994.Near Infrared Spectra of Muscovite, Tscher-mak Substitution, and Metamorphic Reaction Progress:Implications for Remote Sensing.Geology, 22(7):621. doi: 10.1130/0091-7613(1994)022<0621:NISOMT>2.3.CO;2 [6] Guo, N., Thomas, C., Tang, J.X., et al., 2017.Mapping White Mica Alteration Associated with the Jiama Porphyry-Skarn Cu Deposit, Central Tibet Using Field SWIR Spectrometry.Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2017.07.027 [7] Halley, S., Dilles, J.H., Tosdal, R.M., 2015.Footprints:Hydro-thermal Alteration and Geochemical Dispersion around Porphyry Copper Deposits.SEG Newsletter, 100:11-17 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216533037/ [8] Herrmann, W., Blake, M., Doyle, M., et al., 2001.Short Wave-length Infrared (SWIR) Spectral Analysis of Hydrother-mal Alteration Zones Associated with Base Metal Sul-fide Deposits at Rosebery and Western Tharsis, Tasma-nia, and Highway-Reward, Queensland.Economic Geolo-gy, 96(5):939-955. https://doi.org/10.2113/96.5.939 [9] Hou, Z.Q., Yang, Z.M., Qu, X.M., et al., 2009.The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen.Ore Geolo-gy Reviews, 36(1-3):25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006 [10] Hunt, G.R., 1977.Spectral Signatures of Particulate Minerals in the Visible and near Infrared.Geophysics, 42(3):501-513. https://doi.org/10.1190/1.1440721 [11] Jones, S., 2005.Short Wavelength Infrared Spectral Characteris-tics of the HW Horizon:Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Van-couver Island, British Columbia, Canada.Economic Geolo-gy, 100(2):273-294. https://doi.org/10.2113/100.2.273 [12] Leng, C.B., Zhang, X.C., Zhong, H., et al., 2013.Re-Os Mo-lybdenite Ages and Zircon Hf Isotopes of the Gangjiang Porphyry Cu-Mo Deposit in the Tibetan Orogen.Minera-lium Deposita, 48(5):585-602. https://doi.org/10.1007/s00126-012-0448-x [13] Leng, C.B., Zhang, X.C., Zhou, W.D., 2010.A Primary Study of the Geological Characteristics and the Zircon U-Pb Age of the Gangjiang Porphyry Copper-Molybdenum Deposit in Nimu, Tibet.Earth Science Frontiers, 17(2):185-197(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201002017 [14] Li, J.X., Qin, K.Z, Li, G.M., et al., 2007.K-Ar and 40Ar-39Ar Age Dating of Nimu Porphyry Copper Orefield in Central Gangdese:Constrains on Magmatic-Hydrothermal Evolu-tion and Metallogenetic Tectonic Setting.Acta Petrologica Sinica, 23(5):953-966(in Chinese with English abstract). [15] Lian, C.Y, Zhang, G., Yuan, C.H., 2005a.Application of SWIR Reflectance Spectroscopy to Pulang Porphyry Copper Ore District, Yunnan Province.Mineral Deposits, 24(6):621-637(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200506006 [16] Lian, C.Y., Zhang, G., Yuan, C.H., et al., 2005b.Application of SWIR Reflectance Spectroscopy in Mapping of Hy-drothermal Alteration Minerals:A Case Study of the Tu-wu Porphyry Copper Prospect, Xinjiang.Geology in Chi-na, 32(3):483-495(in Chinese with English abstract). [17] Lowell, J.D., Guilbert, J.M., 1970.Lateral and Vertical Altera-tion-Mineralization Zoning in Porphyry Ore Deposits.Economic Geology, 65(4):373-408. https://doi.org/10.2113/gsecongeo.65.4.373 [18] Neal, L.C., Wilkinson, J.J., Mason, P.J., et al., 2018.Spectral Characteristics of Propylitic Alteration Minerals as a Vectoring Tool for Porphyry Copper Deposits.Journal of Geochemical Exploration, 184:179-198. https://doi.org/10.1016/j.gexplo.2017.10.019 [19] Sillitoe, R.H., 2010.Porphyry Copper Systems.Economic Ge-ology, 105(1):3-41. https://doi.org/10.2113/gsecon-geo.105.1.3 [20] Thompson, A.J.B., Hauff, P.L., Robitaille, A.J., 1999.Altera-tion Mapping in Exploration:Application of Short-Wave In-frared (SWIR) Spectroscopy.SEG Newsletter, 39:1-13. [21] van Ruitenbeek, F.J.A., Cudahy, T., Hale, M., et al., 2005.Tracing Fluid Pathways in Fossil Hydrothermal Systems with Near-Infrared Spectroscopy.Geology, 33(7):597. doi: 10.1130/G21375.1 [22] Wang, R., Cudahy, T., Laukamp, C., et al., 2017.White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Aus-tralia.Economic Geology, 112(5):1153-1176. https://doi.org/10.5382/econgeo.2017.4505 [23] Wang, X.C., Yan, Z.G., Zhou, W.D., et al., 2002.Preliminary Study on Geological Features of Porphyry-Type Copper Deposits in the Northwesten Nimu, Middle Section of Gangdisi Belt, Tibet.Geology and Prospecting, 38(1):5-8(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt200201003 [24] Xu, C., Chen, H.Y., White, N., et al., 2017.Alteration and Mineralization of Xinan Cu-Mo Ore Deposit in Zijinshan Orefield, Fujian Province, and Application of Short Wavelength Infra-Red Technology (SWIR) to Explora-tion.Mineral Deposits, 36(5):1013-1038(in Chinese with English abstract). [25] Yang, K., Browne, P.R.L., Huntington, J.F., et al., 2001.Char-acterising the Hydrothermal Alteration of the Broadlands-Ohaaki Geothermal System, New Zealand, Using Short-Wave Infrared Spectroscopy.Journal of Volcanology and Geothermal Research, 106(1-2):53-65. doi: 10.1016/S0377-0273(00)00264-X [26] Yang, K., Huntington, J.F., Gemmell, J.B., et al., 2011.Varia-tions in Composition and Abundance of White Mica in the Hydrothermal Alteration System at Hellyer, Tasma-nia, as Revealed by Infrared Reflectance Spectroscopy.Journal of Geochemical Exploration, 108(2):143-156. https://doi.org/10.1016/j.gexplo.2011.01.001 [27] Yang, K., Lian, C., Huntington, J.F., et al., 2005.Infrared Spectral Reflectance Characterization of the Hydrother-mal Alteration at the Tuwu Cu-Au Deposit, Xinjiang, China.Mineralium Deposita, 40(3):324-336. https://doi.org/10.1007/s00126-005-0479-7 [28] Yang, Z., Jiang, H., Yang, M.G., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance.Earth Science, 42(3):339-356(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201703003 [29] Yang, Z.M., Hou, Z.Q., Yang, Z.S., et al., 2012.Application of Short Wavelength Infrared (SWIR) Technique in Ex-ploration of Poorly Eroded Porphyry Cu District:A Case Study of Niancun Ore District, Tibet.Mineral Deposits, 31(4):699-717(in Chinese with English abstract). [30] Zhang, G., Lian, C.Y., Wang, R.S., 2005.Application of the Portable Infrared Mineral Analyser (PIMA) in Mineral Mapping in the Qulong Copper Prospect, Mozhugongka County, Tibet.Geological Bulletin of China, 24(5):480-484(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200505015 [31] Zhang, S.T, Chen, H.Y., Zhang, X.B., 2017.Application of Short Wavelength Infrared(SWIR)Technique to Explora-tion of Skarn Deposit:A Case Study of Tonglvshan Cu-Fe-Au deposit, Edongnan (Southeast Hubei) Ore Con-centration Area.Mineral Deposits, 36(6):1263-1288(in Chinese with English abstract). [32] 陈寿波, 黄宝强, 李琛, 等, 2018.新疆东天山玉海铜矿蚀变矿化特征及SWIR勘查应用研究.地球科学, 43(9):2911-2928. http://www.earth-science.net/WebPage/Article.aspx?id=3924 [33] 冷成彪, 张兴春, 周维德, 2010.西藏尼木地区岗讲斑岩铜-钼矿床地质特征及锆石U-Pb年龄.地学前缘, 17(2):185-197. http://d.old.wanfangdata.com.cn/Periodical/dxqy201002017 [34] 李金祥, 秦克章, 李光明, 等, 2007.冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar/39Ar年龄:对岩浆-热液系统演化和成矿构造背景的制约.岩石学报, 23(5):953-966. [35] 连长云, 章革, 元春华, 等, 2005a.短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用.矿床地质, 24(6):621-637. http://d.old.wanfangdata.com.cn/Periodical/kcdz200506006 [36] 连长云, 章革, 元春华, 等, 2005b.短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用——以土屋斑岩铜矿床为例.中国地质, 32(3):483-495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200503019 [37] 王小春, 晏子贵, 周维德, 等, 2002.初论西藏冈底斯带中段尼木西北部斑岩铜矿地质特征.地质与勘探, 38(1):5-8. doi: 10.3969/j.issn.0495-5331.2002.01.003 [38] 许超, 陈华勇, White, N., 等, 2017.福建紫金山矿田西南铜钼矿段蚀变矿化特征及SWIR勘查应用研究.矿床地质, 36(5):1013-1038. http://d.old.wanfangdata.com.cn/Periodical/kcdz201705001 [39] 杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3):339-356. http://www.earth-science.net/WebPage/Article.aspx?id=3545 [40] 杨志明, 侯增谦, 杨竹森, 等, 2012.短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用:以西藏念村矿区为例.矿床地质, 31(4):699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004 [41] 章革, 连长云, 王润生, 2005.便携式短波红外矿物分析仪(PI-MA)在西藏墨竹工卡县驱龙铜矿区矿物填图中的应用.地质通报, 24(5):480-484. doi: 10.3969/j.issn.1671-2552.2005.05.015 [42] 张世涛, 陈华勇, 张小波, 等, 2017.短波红外光谱技术在矽卡岩型矿床中的应用——以鄂东南铜绿山铜铁金矿床为例.矿床地质, 36(6):1263-1288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201706002 -
dqkx-44-6-2143-Table.pdf