Discovery of Siliceous Molar Tooth Structure and Its Genesis in Gaoyuzhuang Formation at Nankou, Beijing
-
摘要: 臼齿构造主要发育于中新元古代地层中,目前所报道的臼齿构造均由纯净的、基本等粒的微晶方解石(或白云石)构成.野外地质考察中,在北京南口长城系高于庄组第3段泥晶灰岩中发现了形态多样的臼齿状构造,野外观察和室内显微镜下分析,发现臼齿状构造与宿主岩石边界多呈圆弧状或港湾状,界线清晰.扫描电镜(SEM)和能谱分析(EDX)表明,"臼齿"成分主要以硅质为主,矿物成分为玉髓和自生石英.从臼齿状构造的形态和充填序列分析,发现南口臼齿状构造形成经历了裂缝形成、裂缝充填和后期破坏再充填等过程.认为臼齿状构造可能是多成因的结果,其中在半固结的条件下由地质事件引起的微裂隙系统可能是臼齿状构造形成的重要因素之一.Abstract: The molar tooth structure(MTS), a special kind of microstructure consisting of pure equigranular micritic calcite or micritic dolomite, mainly developed in Meso-Neoproterozoic strata. During the field geologic investigation, the molar tooth structures were observed in the micritic limestone in the third member of Gaoyuzhuang Formation (Changcheng System) in Nankou, Beijing. Through detailed field observations and microscopic studies, a variety of MTSs were found. The boundaries between host rock and MTS show obvious distinction with a circular arc shape or a gulf-like shape. It is found by scanning electron microscopy (SEM) and energy disperse X-ray microanalysis(EDX) that the MTS consists of siliceous component, such as chalcedony and authigenic quartz. According to the morphology and the filling sequence, the MTS's formation is characterized by multi-genesis and multi-stage, and may be subdivided into four periods, such as crack forming period, crack filling period, crack transforming period, and crack refilling period. It's a key factor of the MTS's formation that the fissure systems are produced by the tectonic movement in semi-consolidated condition.
-
Key words:
- Changcheng System /
- Gaoyuzhuang Formation /
- molar tooth structure /
- genesis /
- tectonics
-
表 1 臼齿状构造及宿主岩石的化学组成(%)
Table 1. Chemical compositions of MTS and host rock (%)
测点 SiO2 CaO MgO CO2 Al2O3 K2O FeO BaO 矿物 备注 BN01 100 - - - - - - - 玉髓 臼齿状构造 BN02 67.37 - - - 17.35 15.28 - - 钾长石 宿主岩石中陆源碎屑 BN03 66.63 - - - 17.70 15.67 - - 钾长石 宿主岩石中陆源碎屑 BN04 6.98 4.66 1.77 - - - 86.59 - 褐铁矿 宿主岩石中自生矿物 BN05 - 37.85 26.28 35.87 - - - - 白云石 宿主岩石 BN06 - 68.02 - 31.98 - - - - 方解石 方解石脉 表 2 臼齿状构造及宿主岩石成分分析结果
Table 2. Analytical results of MTS and host rock
测点 质量百分比(%) 原子百分比(%) Si O Al K Ca Mg Fe C Si O Al K Ca Mg Fe C BN01 46.74 53.26 - - - - - - 33.33 66.67 - - - - - - BN02 31.49 46.64 9.18 12.69 - - - - 23.85 62.01 7.24 6.90 - - - - BN03 31.15 46.48 9.37 13.01 - - - - 23.63 61.89 7.40 7.09 - - - - BN04 3.26 25.03 - - 3.33 1.07 67.31 - 3.86 51.93 - - 2.76 1.46 40.00 - BN05 - 47.31 - - 27.05 15.85 - 9.79 - 57.99 - - 13.24 12.79 - 15.99 BN06 - 42.66 - - 48.61 - - 8.73 57.89 26.33 15.78 -
[1] Anbar, A. D., 2002. Proterozoic Ocean Chemistry and Evolution:A Bioinorganic Bridge?. Science, 297(5584):1137-1142. https://doi.org/10.1126/science.1069651 [2] Bauerman, H., 1885. Report on the Geology of the Country near the Forth-Ninth Parallel of North Latitude West of the Rocky Mountains. Canada Geological Survey of Report Progress, 1882-1884 (Part B):1-42. [3] Calver, C.R., Baillie, P.W., 1990. Early Diagenetic Concretions Associated with Intrastratal Shrinkage Cracks in an Upper Proterozoic Dolomite, Tasmania, Australia. Journal of Sedimentary Petrology, 60(2):293-305. http://cn.bing.com/academic/profile?id=251f8a44276c170e53aa758ebcb9b201&encoded=0&v=paper_preview&mkt=zh-cn [4] Chen, L.Q., 2013.Characteristics and Geological Significance of Microbially Induced Sedimentary Structures(MISS) in Mesoproterozoic Dahongyu Formation of Xinglong County, Hebei Province. Acta Petrologica et Mineralogica, 32(3):366-372 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201303008 [5] Duan, Y., Yao, Y.C., Qiu, X., et al., 2017. Dolomite Formation Facilitated by Three Halophilic Archaea. Earth Science, 42(3):389-396 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.029 [6] Eby, D. E., 1975. Carbonate Sedimentation under Elevated Salinities and Implication for Origin of "Molar-Tooth" Structure in the Middle Belt Carbonate Internal (Late Precambrian), Northwestern Montana. Geological Society of America, 7:1062-1063. [7] Fairchild, I., Einsele, G., Song, T. R., 1997. Possible Seismic Origin of Molar Tooth Structures in Neoproterozoic Carbonate Ramp Deposits, North China. Sedimentology, 44(4):611-636. https://doi.org/10.1046/j.1365-3091.1997.d01-40.x [8] Feng, L., Li, Z.F., Lu, L., et al., 2015.Study on the Origin of Molar-Tooth Structure-Bearing Carbonates in the Lower Neoproterozoic in Xuzhou Area. Geological Journal of China Universities, 21(2):203-214 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201502004 [9] Furniss, G., Rittel, J. F., Winston, D., 1998. Gas Bubble and Expansion Crack Origin of "Molar-Tooth" Calcite Structures in the Middle Proterozoic Belt Supergroup, Western Montana. Journal of Sedimentary Research, 68(1):104-114. https://doi.org/10.2110/jsr.68.104 [10] Hoffman, P. F., 1998. A Neoproterozoic Snowball Earth. Science, 281(5381):1342-1346. https://doi.org/10.1126/science.281.5381.1342 [11] Kasting, J. F., 1987. Theoretical Constraints on Oxygen and Carbon Dioxide Concentrations in the Precambrian Atmosphere. Precambrian Research, 34(3-4):205-229. https://doi.org/10.1016/0301-9268(87)90001-5 [12] Kaufman, A. J., Jacobsen, S. B., Knoll, A. H., 1993. The Vendian Record of Sr and C Isotopic Variations in Seawater:Implications for Tectonics and Paleoclimate. Earth and Planetary Science Letters, 120(3-4):409-430. https://doi.org/10.1016/0012-821x(93)90254-7 [13] Kempe, S., Degens, E. T., 1985. An Early Soda Ocean?. Chemical Geology, 53(1-2):95-108. https://doi.org/10.1016/0009-2541(85)90023-3 [14] Knoll, A. H., 1984. Microbiotas of the Late Precambrian Hunnberg Formation, Nordaustland. Jounal of Paleontology, 58(1):131-162. http://www.jstor.org/stable/1304740 [15] Kuang, H. W., Jin, G. C., Liu, Y. X., 2009. Genesis Types of the Neoproterozoic Molar Tooth Structures in the Southeastern Jilin and Eastern Liaoning Provinces and Its Research Significances. Science in China (Series D:Earth Sciences), 52(S1):135-142. https://doi.org/10.1007/s11430-009-5007-7 [16] Kuang, H.W., Liu, Y.Q., Peng, N., et al., 2011.On Origin of Molar Tooth Carbonate Rocks. Journal of Palaeogeography, 13(3):253-261 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201103004.htm [17] Li, J., Liu, C.L., Zheng, Y., et al., 2017. Rupture Process of the Ms7.0 Lushan Earthquake Determined by Joint Inversion of Local Static GPS Records, Strong Motion Data, and Teleseismogram. Journal of Earth Science, 28(2):404-410. https:/doi.org/10.1007/s12583-017-0757-1 http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111023 [18] Liu, H.M., Zhang, S., Song, G.Q., et al., 2017. A Discussion on the Origin of Shale Reservoir Inter-Laminar Fractures in the Shahejie Formation of Paleogene, Dongying Depression. Journal of Earth Science, 28(6):1064-1077. https:/doi.org/10.1007/s12583-016-0946-3 [19] Liu, W.F., Meng, X.H., Ge, M., et al., 2004. Origin of the Neoproterozoic Molar-Tooth Carbonates in the Xuzhou-Huainan Area. Geological Review, 50(5):454-463 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005452 [20] Liu, Y. X., Liu, Y. Q., Kuang, H. W., 2005. Molar-Tooth Carbonate Constrained by Depositional Environment and Geological History. Advance in Earth Sciences, 20(7):710-716 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200507002 [21] Liu, Z.L., Meng, X.H., Ge, M., et al., 2011.Morphological Characteristics and Genesis of Molar-Tooth Structures in Gaoyuzhuang Formation of Jixian Area. Acta Geoscientica Sinica, 32(1):27-36 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Conference/9558156 [22] Long, D. G. F., 2007. Tomographic Study of Paleoproterozoic Carbonates as Key to Understanding the Formation of Molar-Tooth Structure. Gondwana Research, 12(4):566-570. https://doi.org/10.1016/j.gr.2007.02.004 [23] Luo, J.M., Luo, S.S., Zhu, J.Q., et al., 2015.The Storm Deposits from the Mesoto Neoproterozoic Gaoyuzhuang and Wumishan Formations in the Yanshan Region, Northern China. Sedimentary Geology and Tethyan Geology, 35(2):29-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TTSD201502005.htm [24] Mei, M.X., 2007. Some Reviews on the Precambrian Molar-Tooth Enigma:Information from the Gaoyuzhuang Formation at Jixian Section in Tianjin. Journal of Palaeogeography, 9(6):597-610 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX200706006.htm [25] Mei, M.X., 2008.Third Member of Mesoproterozoic Gaoyuzhuang Formation at Qiangou Section in Yanqing County of Beijing:A Typically Non-Stromatolitic Carbonate Succession of the Precambrian. Acta Sedimentologica Sinica, 26(4):565-574 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200804006.htm [26] Mei, M.X., 2012.Seismite Represented by Shock Deformational Structure:A Case Study of the Third Member of Mesoproterozoic Gaoyuzhuang Formation in Xuanhua County of Hebei Province. Earth Science Frontiers, 19(2):239-247 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201202034 [27] Mei, M.X., Meng, Q.F., 2016. Timing of the Rise of Atmospheric Oxygen Content Level:A Geobiological Process that is Closely and Genetically Related to the Geodynamics. Journal of Palaeogeography, 18(1):1-20 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gdlxb201601001 [28] Mei, M.X., Meng, Q.F., Liu, Z.R., 2007.Overview of Advances in Studies of Primary Sedimentary Structures Formed by Microbes. Journal of Palaeogeography, 9(4):353-367 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200704002 [29] Meng, X.H., Ge, M., Kuang, H.W., et al., 2006.Origin of Microsparite Carbonates and the Significance in the Evolution of the Earth in Proterozoic. Acta Petrologica Sinica, 22(8):2133-2143 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200608003 [30] Pavlov, A. A., Kasting, J. F., Brown, L. L., et al., 2000. Greenhouse Warming by CH4 in the Atmosphere of Early Earth. Journal of Geophysical Research:Planets, 105(E5):11981-11990. https://doi.org/10.1029/1999je001134 [31] Peng, N., Liu, Y.Q., Kuang, H.W., 2012.Relationship between Depositional Environment and Morphology of Molar Tooth:Taking the Neoproterozoic Molar-Tooth in Dalian, China as an Example. Geological Journal of China Universities, 18(1):180-188 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201201019.htm [32] Pratt, B. R., 1998. Molar-Tooth Structure in Proterozoic Carbonate Rocks:Origin from Synsedimentary Earthquakes, and Implications for the Nature and Evolution of Basins and Marine Sediment. Geological Society of America Bulletin, 110(8):1028-1045. https://doi.org/10.1130/0016-7606(1998)110<1028:mtsipc>2.3.co; 2 doi: 10.1130/0016-7606(1998)110<1028:mtsipc>2.3.co;2 [33] Qiao, X.F., Gao, L.Z., 2007. Mesoproterozoic Palaeoearthquake and Palaeogeography in Yan-Liao Aulacogen. Journal of Palaeogeography, 9(4):337-352 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200704001 [34] Qiao, X.F., Song, T.R., Gao, L.Z., et al., 1994.Seismic Sequence in Carbonate Rocks by Vibrational Liquefaction. Acta Geologica Sinica, 68(1):16-34, 101-102 (in Chinese with English abstract). http://www.cqvip.com/QK/86253X/199403/1005047317.html [35] Shi, X.Y., Jiang, G.Q., Zhang, C.H., et al., 2008. Sand Veins and Microbially Induced Sedimentary Structures from the Black Shale of the Mesoproterozoic Chuanlinggou Formation (ca.1.7 Ga) in North China:Implications for Methane Degassing from Microbial Mats. Earth Science, 33(5):577-590 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200805003.htm [36] Sun, S.F., Zhu, S.X., Huang, X.G., 2006. Discovery of Megafossils from the Mesoproterozoic Gaoyuzhuang Formation in the Jixian Section, Tianjin and Its Stratigraphic Significance. Acta Palaeontologica Sinica, 45(2):207-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gswxb200602005 [37] Xiao, D.S., Fu, Q., 2011.The Genetic Mechanism of Authigenic Quartz in Lower Shihezi Formation of Hanggin Banner, Northern Ordos Basin. Acta Petrologica et Mineralogica, 30(1):113-120 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201101010 [38] Yao, Y.C., Qiu, X., Wang, H.M., et al., 2018. Dolomite Formation Mediated by Halophilic Archaeal Cells under Different Conditions and Carboxylated Microspheres. Earth Science, 43(2):449-458 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.579 [39] 陈留勤, 2013.河北兴隆中元古界大红峪组微生物成因构造特征及其地质意义.岩石矿物学杂志, 32(3):366-372. doi: 10.3969/j.issn.1000-6524.2013.03.008 [40] 段勇, 药彦辰, 邱轩, 等, 2017.三株嗜盐古菌诱导形成白云石.地球科学, 42(3):389-396. doi: 10.3799/dqkx.2017.029 [41] 冯乐, 李壮福, 陆鹿, 等, 2015.徐州地区新元古界下部具臼齿构造碳酸盐岩事件成因探讨.高校地质学报, 21(2):203-214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201502004 [42] 旷红伟, 柳永清, 彭楠, 等, 2011.再论臼齿碳酸盐岩成因.古地理学报, 13(3):253-261. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201103001 [43] 刘为付, 孟祥化, 葛铭, 等, 2004.徐州-淮南地区新元古代臼齿碳酸盐岩成因探讨.地质论评, 50(5):454-463. doi: 10.3321/j.issn:0371-5736.2004.05.002 [44] 刘燕学, 柳永清, 旷红伟, 2005.一种严格受控于环境和时间的特殊碳酸盐岩-臼齿构造碳酸盐岩.地球科学进展, 20(7):710-716. doi: 10.3321/j.issn:1001-8166.2005.07.002 [45] 刘自亮, 孟祥化, 葛铭, 等, 2011.蓟县高于庄组臼齿构造形态特征及成因意义.地球学报, 32(1):27-36. doi: 10.3975/cagsb.2011.01.04 [46] 罗军梅, 罗顺社, 朱俊强, 等, 2015.燕山地区中新元古界高于庄组和雾迷山组风暴沉积特征分析.沉积与特提斯地质, 35(2):29-34. doi: 10.3969/j.issn.1009-3850.2015.02.005 [47] 梅冥相, 2007.前寒武纪"臼齿状构造谜"的一些认识:来自天津蓟县剖面高于庄组的信息.古地理学报, 9(6):597-610. doi: 10.3969/j.issn.1671-1505.2007.06.004 [48] 梅冥相, 2008.北京延庆千沟中元古代高于庄组第三段:一个典型的前寒武纪非叠层石碳酸盐岩沉积序列.沉积学报, 26(4):565-574. http://d.old.wanfangdata.com.cn/Periodical/cjxb200804004 [49] 梅冥相, 2012.震动变形构造所表征的震积岩:以河北宣化中元古界高于庄组第三段为例.地学前缘, 19(2):239-247. http://d.old.wanfangdata.com.cn/Periodical/dxqy201202034 [50] 梅冥相, 孟庆芬, 2016.大气圈氧气含量水平上升的时间进程:一个与地球动力学过程紧密相关的地球生物学过程.古地理学报, 18(1):1-20. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201601001 [51] 梅冥相, 孟庆芬, 刘智荣, 2007.微生物形成的原生沉积构造研究进展综述.古地理学报, 9(4):353-367. doi: 10.3969/j.issn.1671-1505.2007.04.002 [52] 孟祥化, 葛铭, 旷红伟, 等, 2006.微亮晶(臼齿)碳酸盐成因及其在元古宙地球演化中的意义.岩石学报, 22(8):2133-2143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200608003 [53] 彭楠, 柳永清, 旷红伟, 2012.沉积环境与臼齿构造(Molar-tooth)形态的关系——以大连新元古代臼齿构造为例.高校地质学报, 18(1):180-188. doi: 10.3969/j.issn.1006-7493.2012.01.017 [54] 乔秀夫, 高林志, 2007.燕辽裂陷槽中元古代古地震与古地理.古地理学报, 9(4):337-352. doi: 10.3969/j.issn.1671-1505.2007.04.001 [55] 乔秀夫, 宋天锐, 高林志, 等, 1994.碳酸盐岩振动液化地震序列.地质学报, 68(1):16-34, 101-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400057156 [56] 史晓颖, 蒋干清, 张传恒, 等, 2008.华北地台中元古代串岭沟组页岩中的砂脉构造:17亿年前甲烷气逃逸的沉积标识?.地球科学, 33(5):577-590. http://www.earth-science.net/article/id/1678 [57] 孙淑芬, 朱士兴, 黄学光, 2006.天津蓟县中元古界高于庄组宏观化石的发现及其地质意义.古生物学报, 45(2):207-220. doi: 10.3969/j.issn.0001-6616.2006.02.005 [58] 肖冬生, 付强, 2011.鄂尔多斯盆地北部杭锦旗区块下石盒子组自生石英形成机制.岩石矿物学杂志, 30(1):113-120. doi: 10.3969/j.issn.1000-6524.2011.01.010 [59] 药彦辰, 邱轩, 王红梅, 等, 2018.不同状态嗜盐古菌细胞及羧基微球诱导白云石沉淀.地球科学, 43(2):449-458. doi: 10.3799/dqkx.2017.579