Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper (Gold) Deposit from Western Gangdise
-
摘要: 目前冈底斯成矿带报道的斑岩型矿床主要集中在东段,而鲁尔玛斑岩型铜(金)矿为冈底斯成矿带西段新发现的铜矿,具有钾硅酸盐化、绢英岩化、青磐岩等明显的斑岩型矿床蚀变特征.其热液脉体从早到晚化分为:钾硅酸盐化脉(A脉)、石英-金属硫化物脉(B脉)以及石英-绿帘石-碳酸盐化脉(D脉).对各阶段热液脉体的的流体包裹体进行了岩相学、显微测温、显微激光拉曼和H-O-C同位素等分析.发现A脉石英中流体包裹体的形成温度集中在390~460℃,盐度介于4.5%~21.6% NaCleqv和43.6%~59.6% NaCleqv两个区间;B脉石英中流体包裹体的形成温度集中在310~380℃,盐度介于3.6%~19.8% NaCleqv和6.0%~16.0% NaCleqv两个区间;D脉石英和方解石中流体包裹体的形成温度集中在200~320℃,盐度集中在0.4%~14.7% NaCleqv.拉曼分析表明,鲁尔玛铜(金)矿的流体包裹体含CO2、N2、CH4等气体及石盐子晶和多种金属硫化物和金属氧化物子晶.各热液脉体石英中流体包裹体的δDH2O,V-SMOW值的变化范围为-128‰~-110‰,δ18OH2O,V-SMOW值的变化范围为-9.09‰~-1.45‰,方解石的δ13CCal,V-PDB值的变化范围为-20.8‰~-19.8‰,δ18OCal,V-SMOW值的变化范围为-5.9‰~-4.9‰,展现出岩浆热液的特征,晚期还有大气降水的加入.研究结果显示,成矿流体属高温、高盐度、含CO2、N2、CH4等气体和Cu、Fe、Mo等金属元素的Ca+-Na+-Cl-H2O体系流体,具有典型的斑岩型铜矿床成矿流体的特征.成矿流体从深部封闭体系运移到浅部的开放体系,温压环境突变导致金属硫化物沉淀,形成A脉和B脉型矿化.随着成矿物质的大量析出,同时伴随着大气降水等因素的影响,流体温度、盐度迅速降低,产生D脉型矿化.Abstract: The current studies of the deposits in the Gangdese metallogenic belt is predominate in the eastern section, but the new discovered Luerma porphyry copper (gold) Deposit belongs to the western segment of Gangdise polymetallic metallogenic belt. The Luerma copper (gold) deposit developed typical porphyry deposits'hydrothermal alteration zones, which are divided as potassium-silicification zone, sericitization zone, clayization zone, and propylitization-propylitization zone from proximal to distal, respectively. Hornfels and malachite are also generally distributed in the mining area. Moreover, three main types of hydrothermal veins have been identified based on its mineral assemblages, cutting relationship and alteration features, which consist of the potassium-silicification vein (A vein), the medium-term quartz-polymetallic sulfides vein (B vein), and the epidote-carbonatation (D vein), respectively. Petrographic, microthermometric, laser Raman microprobe and H -O -C results of fluid inclusions in different hydrothermal veins. Fluid inclusions of A vein's homogenization temperatures, and salinities vary from 390~460℃, 4.5%~21.6% NaCleqv, 43.6%~59.6% NaCleqv, respectively; fluid inclusions of B vein's homogenization temperatures, and salinities, vary from 310~380℃, 3.6%~19.8% NaCleqv, 6.0%~16.0% NaCleqv, respectively; fluid inclusions of D vein's homogenization temperatures, and salinities, vary from 200~320℃, 0.4%~14.7% NaCleqv, 0.70~1.00 g/cm3, respectively. And the carbon, hydrogen, oxygen isotope test results reveals that the δDH2O, V-SMOW values of fluid inclusions in quartz veins range from -128‰ to -100‰, and δ18OH2O, V-SMOW values of fluid inclusions in quartz veins range from -9.09 ‰ to -1.45‰, the δ13CCal, V-PDB values of calcite veins range from -20.8‰ to -19.9‰, and δ18OCal, V-SMOW values of calcite veins range 9.4‰ to 10.5‰, indicating a feature of magmatic hydrothermal, but may mixtured geothermal water in late stage. In brief, the ore-forming fluid of the Luerma copper (gold) deposit is a Ca+-Na+-Cl-H2O fluid system, with high contents of CO2, N2, and CH4, high homogenization temperature, high salinity and, low-moderate density, rich in metallic elements as Cu, Fe, and Mo et al., which characteristics similar to typical porphyry copper deposits. These studies suggest that, the luerma copper ore ore-forming fluid moved from the deep closed system to the shallow open system and broke through the critical state of decompressing boiling rapidly, which occurred phase separation resulting in the precipitation of metal sulfide, forming A vein and B vein type mineralization. Afterwards, as the heavy precipitation of minerals in ore bearing hydrothermal fluid, and the mixing of atmospheric precipitation, et al., the temperature and salinity of the fluid decreased rapidly, resulting in D vein mineralization.
-
图 4 鲁尔玛铜(金)矿野外及镜下特征
a.鲁尔玛铜(金)矿蚀变分带特征;b.孔雀石化、蓝铜矿化的石英二长斑岩;c.泥化带;d.二长闪长岩中S1阶段的钾长石脉(A1脉)和S2阶段的石英-硫化物脉(B3脉)被S3阶段的石英-方解石-绿帘石-金属硫化物脉(D3脉)穿插;e.二长闪长岩中S2阶段的石英-硫化物脉(B3脉)被S3阶段的石英-方解石-绿帘石脉(D3脉)穿插;f.角岩化砂岩中S2阶段的石英-硫化物脉(B3脉)被S3阶段的方解石脉(D1脉)穿插;g.石英二长斑岩中S1阶段的钾长石-石英-硫化物脉(A2脉)被S2阶段的石英-硫化物脉(B3脉)穿插;h.石英二长斑岩中S1阶段的石英-硫化物脉(A3脉)被S3阶段的石英-方解石-绿帘石脉(D2脉)穿插;i.角岩化砂岩中S1阶段的石英-黄铁矿-黄铜矿-辉钼矿脉(A3脉);j.石英二长斑岩中S2阶段的石英-硫化物脉(B3脉);k.矿化石英二长斑岩中S2阶段的石英-硫化物脉(B2脉)反光镜下的特征;l.矿化石英二长斑岩中的S2阶段的石英-黄铁矿脉(B1脉),两侧有强的绢云母化、硫化物化、泥化;Qz.石英;Cal.方解石;Epi.绿帘石;Kfs.钾长石;Sul.金属硫化物;Py.黄铁矿;Cp.黄铜矿;Mol.辉钼矿;Ser.绢云母
Fig. 4. Macroscopical and microscopic graphs of Luerma copper (gold) deposit
图 5 鲁尔玛铜(金)矿床中流体包裹体的显微照片
a.S1阶段石英脉(A脉)中群状分布的气液两相(Ⅰ型)流体包裹体;b.S3阶段石英脉(D脉)中孤立分布的富液两相(Ⅰa型)流体包裹体;c.S2阶段石英脉(B脉)中孤立分布的富气两相(Ⅰb型)流体包裹体;d.S1阶段石英脉(A脉)中孤立分布的含石盐三相(Ⅱb型)流体包裹体;e.S1阶段石英脉(A脉)中孤立分布的含金属硫化物三相(Ⅱb型)流体包裹体;f.S3阶段方解石脉中群状分布的富液两相(Ⅰa型)流体包裹体;g.S2阶段石英脉(B脉)中孤立分布的富气两相(Ⅰb型)流体包裹体;h.S1阶段石英脉(D脉)中群状分布的富气两相(Ⅰb型)流体包裹体和含石盐三相(Ⅱb型)流体包裹体;i.S2阶段石英脉(B脉)中群状分布的富气两相(Ⅰb型)流体包裹体和含石盐三相(Ⅱb型)流体包裹体;j.S2阶段石英脉(B脉)中孤立分布的富气两相(Ⅰb型)流体包裹体;k.S3阶段石英脉(D脉)中群状分布的富气两相(Ⅰb型)流体包裹体和含石盐三相(Ⅱb型)流体包裹体;l.S3阶段方解石脉(D脉)中群状分布的富液两相(Ⅰa型)流体包裹体;L.液相;V.气象;H.石盐;Cal.碳酸盐矿物;S.金属硫化物
Fig. 5. Micrographs of fluid inclusions in quartz from the Luerma copper (gold) deposit
图 7 各阶段包裹体显微照片及激光拉曼光谱
a.S1阶段含硫化物钾硅酸盐化石英脉(A脉)含子矿物三相(Ⅱ型)流体包裹体液相(H2O+CO2)拉曼特征;b.S1阶段含硫化物钾硅酸盐化石英脉(A脉)含子矿物三相(Ⅱ型)流体包裹体气相(H2O+CO2+N2+CH4)拉曼特征;c.S1阶段含硫化物钾硅酸盐化石英脉(A脉)含子矿物三相(Ⅱ型)流体包裹体子矿物(黄铁矿)拉曼特征;d. S1阶段含硫化物钾硅酸盐化石英脉(A脉)含子矿物三相(Ⅱ型)流体包裹体子矿物(辉钼矿)拉曼特征,NaCl信号;e.S2阶段含硫化物无蚀变晕石英脉(B脉)含子矿物三相(Ⅱ型)流体包裹体子矿物(方解石+赤铁矿+黄铜矿)拉曼特征;f.S2阶段韩含硫化物无蚀变晕石英脉(B脉)气液两相(Ⅰ型)流体包裹体气相(H2O+CO2+N2+CH4)拉曼特征;g.S3阶段含硫化物石英-绿帘石-碳酸盐化石英脉(D脉)含子矿物三相(Ⅱ型)流体包裹体液相(H2O)拉曼特征;h.S3阶段含硫化物石英-绿帘石-碳酸盐化石英脉(D脉)含子矿物三相(Ⅱ型)流体包裹体气相(H2O+CO2 +CH4)拉曼特征;i.S3含硫化物石英-绿帘石-碳酸盐化阶段石英脉(D脉)含子矿物三相(Ⅱ型)流体包裹体子矿物(石盐)拉曼特征;Py.黄铁矿;Cp.黄铜矿;Mol.辉钼矿;Cal.方解石
Fig. 7. Laser Raman spectra and photographs of fluid inclusions in quartz
图 8 鲁尔玛铜(金)矿成矿流体的δ18OH2O, V-SMOW-δDH2O,V-SMOW图解(a)和δ18OCal, V-SMOW-δ13CCal,V-PDB图解(b)
a底图据Taylor(1974);i据郑淑蕙等(1982);b底图刘建明和刘家军(1997);S1.石英-钾长石-多金属硫化物阶段;S2.石英-多金属硫化物阶段;S3.石英-碳酸盐矿物-多金属硫化物阶段
Fig. 8. Plots of δ18OH2O, V-SMOW-δDH2O, V-SMOW (a) and δ18OCal, V-SMOW-δ13CCal, V-PDB (b) for ore forming fluids from Luerma deposit
图 10 鲁尔玛铜(金)矿流体包裹体盐度-均一温度-压力
S1.石英-钾长石-多金属硫化物阶段;S2.石英-多金属硫化物阶段;S3.石英-碳酸盐矿物-多金属硫化物阶段;L.液相;V.气相底图据Bodnar et al.(1985)
Fig. 10. The salinity-homogenization temperature-pressure diagram from Luerma copper (gold) deposit
表 1 鲁尔玛铜(金)矿主要热液脉体类型及特征
Table 1. Major types and characteristics of hydrothermal veins in Luerma copper (gold) deposit
成矿阶段 类型 矿物组合 蚀变 形态 产出特征 Kfs(A1脉) 不规则弯曲,连续性差的脉状,脉宽:0.5~2.5 cm 产出于石英二长斑岩中,少量产于二长闪长岩中 石英-钾长石-多金属硫化物阶段(S1) A脉 Qz+Kfs±Bi± Mag±Cp±Py± Mol (A2脉) 钾硅酸盐化 不规则脉状,弯曲、连续性差,裂隙中充填晚期硫化物,脉宽:0.1~2.0 cm 产出于石英二长斑岩中,少量产于二长闪长岩中 Qz±Mag±Cp± Py±Mol (A3脉) 不规则脉状,弯曲、连续性差,裂隙中充填晚期硫化物,脉宽:0.5~3.0 cm 产出于石英二长斑岩中,少量产于二长闪长岩和角岩化砂岩中 Qz(B1脉) 较为平直和连续的脉状、网脉状,脉宽:0.5~5.0 cm 产出于石英二长斑岩中,少量产于二长闪长岩中 石英-多金属硫化物阶段(S2) B脉 Qz+Py(B2脉) 绢英岩化 较为平直和连续的脉状、网脉状,脉宽:0.5~5.0 cm 产出于石英二长斑岩中,少量产于二长闪长岩和角岩化砂岩中 Qz+Py+Cp±Mol (B3脉) 较为平直和连续的脉状、网脉状,脉宽:0.5~5.0 cm 产出于石英二长斑岩中,少量产于二长闪长岩和角岩化砂岩中 Cal(D1脉) 不规则脉状、网脉状,脉宽:0.1~2.0 cm 产出于石英二长斑岩中,少量产于二长闪长岩和角岩化砂岩中 石英-碳酸盐矿物-多金属硫化物阶段(S3) D脉 Cal±Py±Cp±Mol (D2脉) 青磐岩化 不规则脉状、网脉状,脉宽:0.1~1.5 cm 产出于石英二长斑岩中,少量产于二长闪长岩和角岩化砂岩中 Qz±Cal±Epi± Py±Cp ±Mol(D3脉) 不规则脉状、网脉状,脉宽:0.1~1.5 cm 产出于石英二长斑岩中,少量产于二长闪长岩和角岩化砂岩中 注:Qz.石英;Cal.方解石;Epi.绿帘石;Ksp.钾长石;Bi.黑云母;Mag.磁铁矿;Py.黄铁矿;Cp.黄铜矿;Mol.辉钼矿. 表 2 鲁尔玛铜(金)矿床流体包裹体显微测温结果统计
Table 2. Microthermometry results of fluid inclusions from Luerma copper (gold) deposit
成矿阶段 热液脉体类型 包裹体类型 冰消失温度 气泡消失温度 石盐子晶消失温度 均一态 范围(℃) 测点 范围(℃) 测点 范围(℃) 测点 Ⅰa -18.9~-3.1 (平均为-8.8) 69 376~476 (平均为430) 69 L Ⅰb -17.9~-2.8 (平均为-8.5) 30 391~491 (平均为422) 30 L\V 石英-钾长石-多金属硫化物阶段(S1) A脉 Ⅱa -18.7~-16.7 (平均为-17.8) 3 424~455(平均为438) 3 L±S Ⅱb 372~397(平均为369) 16 383~491 (平均为421) 16 L±S Ⅰa -15.8~-2.1 (平均为-7.5) 108 270~389(平均为337) 108 L 石英-多金属硫化物阶段(S2) B脉 Ⅰb -13.5~-1.8 (平均为-5.9) 14 294~392(平均为346) 14 L\V Ⅱa -16.5~-2.3 (平均为-8.0) 12 301~361(平均为327) 12 L±S Ⅱb 275~325(平均为298) 17 272~363 (平均为312) 17 L±S Ⅰa -10.7~-0.2 (平均为-4.3) 134 167~344(平均为250) 134 L 石英-碳酸盐矿物-多金属硫化物阶段(S3) D脉 Ⅰb -7.6~-3.2 (平均为-7.3) 3 273~294(平均为284) 3 L\V Ⅱa -9.5~-0.7 (平均为-6.4) 15 175~284(平均为219) 15 L±S 注:Ia型流体包裹体为富液两相流体包裹体,Ib型流体包裹体为富气两相流体包裹体;Ⅱa型流体包裹体为含子矿物(不含石盐子晶)三相包裹体;Ⅱb型流体包裹体为含石盐子晶(高盐度)三相包裹体;L.液态;V.气态;S.硫化物. 表 3 鲁尔玛铜(金)矿床流体包裹体激光拉曼测试结果
Table 3. Raman spectra of fluid inclusions from Luerma copper (gold) deposit
成矿阶段 热液脉体类型 包裹体类型 测试
对象成分 测点 拉曼特征峰值(cm-1) 石英-钾长石-多金属硫化物阶段(S1) 钾硅酸盐化脉(A脉) 气液两相包裹体
(Ⅰ型)液相 H2O 9 3 000~3 720 气相 H2O 8 3 000~3 720 CO2 2 1 282~1 288,1 386~1 390 N2 1 2 328~2 333 含子矿物包裹体
(Ⅱ型)液相 H2O 8 3 000~3 720 气相 H2O 5 3 000~3 720 CO2 1 1 282~1 288,1 386~13 90 CH4 1 2 913~2 919 N2 1 2 328~2 333 子矿
物Py 1 341,376,427 Cp 2 290~292 Mag 1 664 Mol 1 379 石英-多金属硫化物阶段(S2) 石英-金属硫化物脉(B脉) 气液两相包裹体
(Ⅰ型)液相 H2O 10 3 000~3 720 气相 H2O 9 3 000~3 720 CO2 1 1 282~1 288,1 386~1 390 含子矿物包裹体
(Ⅱ型)液相 H2O 12 3 000~3 720 液相
气相H2O 12 3 000~3 720 CH4 1 2 913~2 919 N2 1 2 328~2 333 子矿
物Mag 1 664 Py 1 341,376,427 Cp 2 290~292,317~320,378~381 Mol 1 379,403 Hem 1 1 312 Cal 1 1 086 石英-碳酸盐矿物-多金属硫化物阶段(S3) 石英-绿帘石-碳酸盐化脉(D脉) 气液两相包裹体
(Ⅰ型)液相 H2O 4 3 000~37 20 气相 H2O 5 3 000~3 720 CH4 1 2 913~2 919 含子矿物包裹体
(Ⅱ型)液相 H2O 12 3 000~3 720 气相 H2O 5 3 000~3 720 CO2 2 1 282~1 288,1 386~1 390 CH4 1 2 913~2 919 子矿
物Py 2 341,376,427 Cp 2 290~292,317~320,378~381 Hem 1 1 314 Cal 1 1 086 注:Mag.磁铁矿;Py.黄铁矿;Cp.黄铜矿;Mol.辉钼矿;Hem.赤铁矿;Cal.方解石. 表 4 鲁尔玛铜(金)矿石英及其流体包裹体水的氢、氧同位素组成
Table 4. δ18OH2O, V-SMOW-δDH2O, V-SMOW isotopic compositions of quartz from Luerma copper (gold) deposit
样号 成矿阶段 脉体类型 测试对象 石英
δ18OQz,V-SMOW(‰)流体包裹体H2O δ18OH2 O,V-SMOW (‰) δDH2 O, V-SMOW (‰) ZK03-12 S1 A脉 石英及包裹体H2O 8.1 -2.3 -100 ZK03-13 S1 A脉 石英及包裹体H2O 10.0 -0.4 -105 ZK03-21 S2 B脉 石英及包裹体H2O 10.9 -4.3 -108 ZK03-02 S2 B脉 石英及包裹体H2O 10.5 -1.7 -108 ZK02-08 S3 D脉 石英及包裹体H2O 8.3 -2.1 -125 ZK01-10 S3 D脉 石英及包裹体H2O 10.2 -5.6 -126 ZK01-12 S3 D脉 石英及包裹体H2O 8.6 -7.2 -128 表 5 鲁尔玛铜(金)矿热液方解石的碳、氧同位素组成
Table 5. δ18Ocal, V-PDB-δ13Ccal, V-PDB isotopic compositions of quartz from Luerma copper (gold) deposit
样号 成矿阶段 脉体类型 测试对象 δ13CCal,V-PDB (‰) δ18OCal,V-PDB (‰) δ18OH2 O,V-SMOW (‰) ZK02-29 S3 D脉 方解石 -4.9 -20.8 9.4 ZK02-25-1 S3 D脉 方解石 -5.9 -19.8 10.5 -
[1] Bischoff, J.L., 1991.Densities of Liquids and Vapors in Boiling NaCl-H2O Solutions:A P-V-T-x Summary from 300℃ to 500° C. American Journal of Science, 291(4):309-338. https://doi.org/10.2475/ajs.291.4.309 [2] Bodnar, R. J., 1983. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-x Properties of Inclusion Fluids. Economic Geology, 78(3):535-542. https://doi.org/10.2113/gsecon-geo.78.3.535 [3] Bodnar, R.J., Burnham, C.W., Sterner, S.M., 1985.Synthetic Fluid Inclusions in Natural Quartz. Ⅲ. Determination of Phase Equilibrium Properties in the System H2O-NaCl to 1 000℃ and 1 500 bars.Geochimica et Cosmochimica Acta, 49(9):1861-1873. https://doi.org/10.1016/0016-7037(85)90081-x [4] Chen, Y.J., Ni, P., Fan, H.R., et al., 2007.Diagnostic Fluid In-clusions of Different Types Hydrothermal Gold Deposits. Acta Petrologica Sinica, 23 (9):2085-2108(in Chinese with English abstract). [5] Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972.Oxygen Iso-tope Exchange between Quartz and Water. Journal of Geophysical Research, 77(17):3057-3067. https://doi.org/10.1029/jb077i017p03057 [6] Cline, J.S., Bodnar, R.J., 1991.Can Economic Porphyry Cop-per Mineralization be Generated by a Typical Calc-Alka-line Melt? Journal of Geophysical Research, 96(B5):8113-8126. doi: 10.1029/91JB00053 [7] Diamond, L. W., Marshall, D. D., Jackman, J. A., et al., 1990.Elemental Analysis of Individual Fluid Inclusions in Min-erals by Secondary Ion Mass Spectrometry (SIMS):Ap-plication to Cation Ratios of Fluid Inclusions in an Ar-chaean Mesothermal Gold-Quartz Vein. Geochimica et Cosmochimica Acta, 54(3):545-552. https://doi.org/10.1016/0016-7037(90)90351-k [8] Gou, Z. B., Liu, H., Li, J., et al., 2018. The Petrogenesis and Tectonic Significance of Early Cretaceous Volcanic Rocks in Nixiong Area from the Central and Northern Lhasa Terrane.Earth Science, 43(8):2780-2794(in Chi-nese with English abstract). https://doi.org/10.3799/dqkx.2018.153 [9] Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., et al., 1998.Orogenic Gold Deposits:A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types.Ore Geology Reviews, 13(1-5):7-27.https://doi.org/10.1016/s0169-1368(97) 00012-7 doi: 10.1016/s0169-1368(97)00012-7 [10] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geol-ogy, 83(1):197-202. https://doi.org/10.2113/gsecon-geo.83.1.197 [11] Hou, Z.Q., 2010.Metallogenesis of Continental Collision.Acta Geologica Sinica, 84(1):30-58(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304026 [12] Hou, Z.Q., Yang, Z.M., Lu, Y.J., et al., 2015.A Genetic Link-age between Subduction-and Collision-Related Porphy-ry Cu Deposits in Continental Collision Zones.Geology, 43(3):247-250. https://doi.org/10.1130/g36362.1 [13] Hu, Q.C., Yan, H., Wu, C.M., 2014.Constrains of Properties and Evolution Patterns of H2O-Cl-S Fluid on Forming of Porphyry-Epithermal Cu-Au Deposit. Geological Re-view, 60(3):601-610(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201403012 [14] Huang, Y., Li, G.M., Ding, J., et al., 2017.Origin of the New-ly Discovered Zhunuo Porphyry Cu-Mo-Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau, SW China. Acta Geo-logica Sinica (English Edition), 91(1):109-134. https://doi.org/10.1111/1755-6724.13066 [15] Li, F. Q., Liu, W., Zhang, S. Z., et al., 2012. Chronology and Geochemical Characteristics of Yawa Mafic Complex in the Dajiacuo Area, Southern Gangdese. Acta Geologica Sinica, 86(10):1592-1603(in Chinese with English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201210004 [16] Li, G.M., Pan, G.T., Wang, G.M., et al., 2004.Evaluation and Prospecting Value of Mineral Resources in Gangdise Metallogenic Belt, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edi-tion), 31(1):22-27(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200401004 [17] Li, M., Sun, X., Zheng, Y. Y., et al., 2015. Characteristic of Fluid Inclusions of the Zhunuo Porphyry Copper Deposit in the Gangdese Belt, Tibet.Acta Petrologica Sinica, 31(5):1335-1347(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505011 [18] Li, Y.X., Li, G.M., Xie, Y.L., et al., 2018.Properties and Evo-lution Path of Ore-Forming Fluid in Qiagong Polymetal-lic Deposit of Middle Gangdese in Tibet, China. Earth Science, 43(8):2684-2700(in Chinese with English ab-stract). [19] Liu, H., Li, G. M., Huang, H. X., et al., 2018. Petrogenesis of Late Cretaceous Jiangla' angzong I-Type Granite in Cen-tral Lhasa Terrane, Tibet, China:Constraints from Whole-Rock Geochemistry, Zircon U-Pb Geochronology, and Sr-Nd-Pb-Hf Isotopes.Acta Geologica Sinica (English Edi-tion), 92(4):1396-1414. https://doi.org/10.1111/1755-6724.13634 [20] Liu, H., Lü, X.B., Liu, G., et al., 2012.Origin and Evolution of Ore-Forming Fluids in Jincheng Gold Ore Deposit, Luoshan, Henan.Journal of Mineralogy and Petrology, 32(3):51-61(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201203008 [21] Liu, J.M., Liu, J.J., 1997.Basin Fluid Genetic Model of Sedi-ment-Hosted Microdisseminated Gold Deposits in the Gold-Triangle Area between Guizhou, Guangxi and Yun-nan. Acta Mineralogica Sinica, 17(4):448-456(in Chi-nese with English abstract). [22] Loucks, R.R., Mavrogenes, J.A., 1999.Gold Solubility in Su-percritical Hydrothermal Brines Measured in Synthetic Fluid Inclusions.Science, 284(5423):2159-2163. https://doi.org/10.1126/science.284.5423.2159 [23] Lu, H.Z., Bi, X.W., Wang, D., et al., 2016.Ore-Forming Flu-ids of Porphyry Copper (Molybdenum-Gold) Deposits. Mineral Deposits, 35(5):933-952(in Chinese with Eng-lish abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201605004.htm [24] Lü, X.B., Yao, S.Z., He, M.C., 2001.The Determining of the Salinity of the Ore-Forming Fluid Inclusions Using ML-RM. Earth Science Frontiers, 8(4):429-433(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200104037.htm [25] Mo, X.X., Niu, Y.L., Dong, G.C., et al., 2008.Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volca-nic Succession in Southern Tibet.Chemical Geology, 250(1-4):49-67. https://doi.org/10.1016/j.chem-geo.2008.02.003 [26] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolu-tion of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018 [27] Pan, G. T., Xiao, Q. H., Lu, S. N., et al., 2009. Subdivision of Tectonic Units in China.Geology in China, 36(1):1-28(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804003 [28] She, H.Q., Li, J.W., Feng, C.Y., et al., 2006.The High-Tem-perature and Hypersaline Fluid Inclusions and Its Impli-cations to the Metallogenesis in Duobuza Porphyry Cop-per Deposit, Tibet.Acta Geologica Sinica, 80(9):1434-1447(in Chinese with English abstract). [29] Song, Y., Tang, J. X., Qu, X. M., et al., 2014. Progress in the Study of Mineralization in the Bangongco-Nujiang Metal-logenic Belt and Some New Recognition. Advances in Earth Science, 29(7):795-809(in Chinese with English abstract). [30] Tafti, R., Mortensen, J.K., Lang, J.R., et al., 2009.Jurassic U-Pb and Re-Os Ages for the Newly Discovered Xi-etongmen Cu-Au Porphyry District, Tibet, PRC:Impli-cations for Metallogenic Epochs in the Southern Gangdese Belt.Economic Geology, 104(1):127. https://doi.org/10.2113/gsecongeo.104.1.127 [31] Tang, J. X., Wang, Q., Yang, H. H., et al., 2017. Mineraliza-tion, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Ti-bet.Acta Geoscientica Sinica, 38(5):571-613(in Chinese with English abstract). https://www.researchgate.net/publication/274327612_Porphyry_and_Epithermal_Deposits_and_40Ar39Ar_Geochronology_of_the_Baguio_District_Philippines [32] Tang, J.X., Zhang, L., Li, Z.J., et al., 2006.Porphyry Copper Deposit Controlled by Structural Nose Trap:Yulong Por-phyry Copper Deposit in Eastern Tibet. Mineral Depos-its, 25(6):652-662(in Chinese with English abstract). [33] Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883. https://doi.org/10.2113/gsecongeo.69.6.843 [34] Wang, R., Tafti, R., Hou, Z.Q., et al., 2017.Across-Arc Geo-chemical Variation in the Jurassic Magmatic Zone, Southern Tibet:Implication for Continental Arc-Related Porphyry Cu-Au Mineralization.Chemical Geology, 451:116-134. doi: 10.1016/j.chemgeo.2017.01.010 [35] Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet.Earth-Science Reviews, 181:122-143. https://doi.org/10.1016/j.earsci-rev.2018.02.019 [36] Xu, Z.Q., Dilek, Y., Cao, H., et al., 2015.Paleo-Tethyan Evo-lution of Tibet as Recorded in the East Cimmerides and West Cathaysides.Journal of Asian Earth Sciences, 105:320-337. doi: 10.1016/j.jseaes.2015.01.021 [37] Yang, Z. M., Hou, Z. Q., Chang, Z. S., et al., 2016. Cospatial Eocene and Miocene Granitoids from the Jiru Cu Depos-it in Tibet:Petrogenesis and Implications for the Forma-tion of Collisional and Postcollisional Porphyry Cu Sys-tems in Continental Collision Zones. Lithos, 245:243-257. https://doi.org/10.1016/j.lithos.2015.04.002 [38] Yang, Z.M., Hou, Z.Q., Li, Z.Q., et al., 2008.Direct Record of Primary Fluid Exsolved from Magma:Evidence from Unidirectional Solidification Texture (UST) in Quartz Found in Qulong Porphyry Copper Deposit, Tibet.Min-eral Deposits, 27(2):188-199(in Chinese with English abstract). [39] Zheng, S.H., Zhang, Z.F., Ni, B.L., et al., 1982.Hydrogen and Oxygen Isotopic Studies of Thermal Waters in Xizang. Acta Scicentiarum Naturalium Universitatis Pekinesis, 18(1):99-106(in Chinese with English abstract). [40] Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2015.Metallogenesis and the Minerogenetic Series in the Gangdese Polymetal-lic Copper Belt. Journal of Asian Earth Sciences, 103:23-39. https://doi.org/10.1016/j.jseaes.2014.11.036 [41] Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008.SHRIMP Zir-con Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Forma-tion, Southern Gangdese, South Tibet.International Ge-ology Review, 50(5):442-471. https://doi.org/10.2747/0020-6814.50.5.442 [42] 陈衍景, 倪培, 范宏瑞, 等, 2007.不同类型热液金矿系统的流体包裹体特征.岩石学报, 23(9):2085-2108. doi: 10.3969/j.issn.1000-0569.2007.09.009 [43] 苟正彬, 刘函, 李俊, 等, 2018.拉萨地块中北部尼雄地区早白垩世火山岩的成因及构造意义.地球科学, 43(8):2780-2794. https://doi.org/10.3799/dqkx.2018.153 [44] 侯增谦, 2010.大陆碰撞成矿论.地质学报, 84(1):30-58. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201001002 [45] 胡庆成, 闫浩, 吴春明, 2014.斑岩-浅成低温热液型Cu-Au矿H2O-Cl-S流体性质和演化方式对成矿的制约.地质论评, 60(3):601-610. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201403012 [46] 李奋其, 刘伟, 张士贞, 等, 2012.冈底斯南部打加错地区鸭洼基性杂岩的年代学及地球化学特征.地质学报, 86(10):1592-1603. doi: 10.3969/j.issn.0001-5717.2012.10.004 [47] 李光明, 潘桂棠, 王高明, 等, 2004.西藏冈底斯成矿带矿产资源远景评价与展望.成都理工大学学报(自然科学版), 31(1):22-27. doi: 10.3969/j.issn.1671-9727.2004.01.004 [48] 李淼, 孙祥, 郑有业, 等, 2015.西藏冈底斯朱诺斑岩型铜矿床流体包裹体特征.岩石学报, 31(5):1335-1347. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505011 [49] 李应栩, 李光明, 谢玉玲, 等, 2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学, 43(8):2684-2700. https://doi.org/10.3799/dqkx.2018.170 [50] 刘洪, 吕新彪, 刘阁, 等, 2012.河南罗山金城金矿成矿流体性质及演化.矿物岩石, 32(3):51-61. doi: 10.3969/j.issn.1001-6872.2012.03.008 [51] 刘建明, 刘家军, 1997.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报, 17(4):448-456. doi: 10.3321/j.issn:1000-4734.1997.04.012 [52] 卢焕章, 毕献武, 王蝶, 等, 2016.斑岩铜(钼-金)矿床的成矿流体.矿床地质, 35(5):933-952. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200709016 [53] 吕新彪, 姚书振, 何谋春.2001.成矿流体包裹体盐度的拉曼光谱测定.地学前缘, 8(4):429-433. doi: 10.3321/j.issn:1005-2321.2001.04.025 [54] 潘桂棠, 肖庆辉, 陆松年, 等, 2009.中国大地构造单元划分.中国地质, 36(1):1-28. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200901001 [55] 佘宏全, 李进文, 丰成友, 等.2006.西藏多不杂斑岩铜矿床高温高盐度流体包裹体及其成因意义.地质学报, 80(9):1434-1447, 1491. doi: 10.3321/j.issn:0001-5717.2006.09.017 [56] 宋扬, 唐菊兴, 曲晓明, 等, 2014.西藏班公湖-怒江成矿带研究进展及一些新认识.地球科学进展, 29(7):795-809. [57] 唐菊兴, 王勤, 杨欢欢, 等, 2017.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力.地球学报, 38(5):571-613. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705002 [58] 唐菊兴, 张丽, 李志军, 等, 2006.西藏玉龙铜矿床:鼻状构造圈闭控制的特大型矿床.矿床地质, 25(6):652-662. doi: 10.3969/j.issn.0258-7106.2006.06.002 [59] 杨志明, 侯增谦, 李振清, 等, 2008.西藏驱龙斑岩铜钼矿床中UST石英的发现:初始岩浆流体的直接记录.矿床地质, 27(2):188-199. doi: 10.3969/j.issn.0258-7106.2008.02.004 [60] 郑淑蕙, 张知非, 倪葆龄, 等, 1982.西藏地热水的氢氧稳定同位素研究.北京大学学报(自然科学版), 18(1):99-106. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198304001.htm