• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    自生粘土矿物对文昌A凹陷深部储层的制约

    袁晓蔷 姚光庆 杨香华 尤丽 陆江

    袁晓蔷, 姚光庆, 杨香华, 尤丽, 陆江, 2019. 自生粘土矿物对文昌A凹陷深部储层的制约. 地球科学, 44(3): 909-918. doi: 10.3799/dqkx.2018.368
    引用本文: 袁晓蔷, 姚光庆, 杨香华, 尤丽, 陆江, 2019. 自生粘土矿物对文昌A凹陷深部储层的制约. 地球科学, 44(3): 909-918. doi: 10.3799/dqkx.2018.368
    Yuan Xiaoqiang, Yao Guangqing, Yang Xianghua, You Li, Lu Jiang, 2019. Constraints of Authigenic Clay Minerals on Deep Reservoirs in Wenchang A Sag. Earth Science, 44(3): 909-918. doi: 10.3799/dqkx.2018.368
    Citation: Yuan Xiaoqiang, Yao Guangqing, Yang Xianghua, You Li, Lu Jiang, 2019. Constraints of Authigenic Clay Minerals on Deep Reservoirs in Wenchang A Sag. Earth Science, 44(3): 909-918. doi: 10.3799/dqkx.2018.368

    自生粘土矿物对文昌A凹陷深部储层的制约

    doi: 10.3799/dqkx.2018.368
    基金项目: 

    国家"十三五"油气重大专项 2016ZX05024-006

    详细信息
      作者简介:

      袁晓蔷(1989-), 女, 博士研究生, 从事油气储层及开发地质研究工作

      通讯作者:

      姚光庆

    • 中图分类号: P618.13

    Constraints of Authigenic Clay Minerals on Deep Reservoirs in Wenchang A Sag

    • 摘要: 目前关于自生粘土矿物对深层孔隙结构及油气运聚的影响方面的研究十分薄弱.综合利用铸体薄片、全岩XRD、扫描电镜、恒速压汞等测试手段,分析自生粘土矿物对孔隙连通性、孔喉直径及其分布的影响,并结合埋藏史和生烃史探讨了低渗透砂岩不同孔隙结构类型的油气差异富集条件.珠海组深部储层压实作用较强,自生粘土矿物含量较高.碎屑颗粒以线接触-凹凸接触为主,识别出"孔隙+粗喉道"和"喉道主控"2种孔隙结构类型,前者孔隙体积和粗喉道占比较高,后者主要以细喉道为主;自生粘土矿物分割占据大量孔喉空间,自生伊利石主要为孔喉充填型,自生绿泥石主要为颗粒包壳型;珠海组储层与下渐新统恩平组烃源岩不整合接触形成纵向"下生上储"、横向连续分布的有利源储组合,烃源岩持续生烃.珠海组是典型的深埋藏碎屑岩低渗储层,仍具备良好的储集条件,储层发育受机械压实作用和自生粘土矿物共同控制;压实作用是原生孔隙损失的初始因素,以绿泥石和伊利石为代表的自生粘土矿物高度发育是制约优质储层发育的关键因素.

       

    • 图  1  研究区构造位置(a)及地层系统(b)

      Fig.  1.  Location of the study area (a) and stratum system (b)

      图  2  珠海组深部储层主要矿物与孔隙度相关关系

      Fig.  2.  Relations between porosity and the content of mineral components from XRD results

      图  3  珠海组深部储层主要矿物与渗透率相关关系

      Fig.  3.  Relations between permeability and the content of mineral components from XRD results

      图  4  珠海组深部储层微观孔隙结构

      a.B2井3860.90m,碎屑颗粒不完全溶蚀;b.B1井3761.75m,长石颗粒不同程度溶蚀,见粒内溶孔;c.B1井3763.50m,残余粒间孔发育,连通性较差,见粒内溶孔及原生粘土质颗粒;d.B2井3752.75m,颗粒线接触处及孔隙衬里绿泥石包壳发育(红色箭头处),石英加大边覆盖绿泥石包壳生长(黑色箭头处);e.A3井3991.00m,碎屑颗粒线-凹凸接触处及孔隙衬里自生绿泥石包壳发育;f.A4井3664.82m,碎屑颗粒线-凹凸接触部位自生粘土包壳发育,基本无可视孔隙;g.A2井3768.30m,粗砂岩颗粒间线接触,见粒内溶孔与残余粒间孔孤立分布;h.A2井3 677.10m,颗粒线-凹凸接触,接触部位见自生粘土包壳;i.A2井3779.00m,颗粒线-凹凸接触,接触部位绿泥石包壳发育(红色箭头处),石英加大边覆盖绿泥石包壳生长(黑色箭头处)

      Fig.  4.  Micropore characteristics of Zhuhai Formation in study area

      图  5  珠海组深部低渗储层自生粘土矿物显微特征

      a.A1井3767.90m,细砂岩,丝毛状伊利石充填粒间孔;b.A3井3991.03m,细砂岩,栉壳状绿泥石覆盖颗粒表面;c.A3井3796.53m,细砂岩,丝毛状伊利石充填粒间孔;d.B4井3683.33m,粗砂岩,片状伊利石充填溶蚀孔;e.B1井3760.83m,细砂岩,碎屑颗粒表面及粒间,针叶状绿泥石与少量丝毛状伊利石共生;f.B2井3870.00m,中砂岩,片状伊利石及自生石英充填粒间孔.扫描电镜实验在中海油湛江分公司研究院实验中心和中国地质大学(武汉)构造与油气教育部重点实验室完成

      Fig.  5.  SEM images of authigenic clay minerals in deep low permeability reservoir of Zhuhai Formation

      图  6  珠海组深部低渗砂岩样品恒速压汞进汞曲线

      Fig.  6.  Mercury intrusion curves measured by rate-controlled mercury porosimetry, Zhuhai Formation

      图  7  珠海组深部低渗砂岩样品恒速压汞测试统计结果

      恒速压汞测试在中海油湛江分公司研究院实验中心完成

      Fig.  7.  Statistical results of rate-controlled mercury intrusion, Zhuhai Formation

      图  8  文昌A凹陷渐新统埋藏史、生烃史及油气聚集

      Fig.  8.  Buried history, hydrocarbon generation and accumulation history of Oligocene in WenchangASag

      表  1  珠海组全岩X射线衍射定量分析

      Table  1.   Statistical data of quantitative analysis measured by whole-rock X-ray diffraction, Zhuhai Formation

      井号 深度
      (m)
      岩性 石英
      (%)
      长石
      (%)
      碳酸盐矿物
      (%)
      粘土总量
      (%)
      相对含量(%)
      伊利石 绿泥石 伊/蒙混层
      A1 3 763.47 中砂岩 62 19 7 12 57 12 14
      3 766.08 中砂岩 65 14 7 14 57 11 12
      A2 3 797.73 粗砂岩 64.7 18.1 1.7 15.5 12 49 39
      3 851.72 细砂岩 71.4 11.3 2.3 12.5 15 52 33
      A3 3 789.35 中砂岩 61 13.9 3.1 20.3 14 27 59
      3 980.06 细砂岩 58.1 20.8 5 16.1 11 69 20
      B1 3 753.71 细砂岩 63.3 11.9 5.8 11.2 28.5 47.4 24.1
      3 756.20 细砂岩 63.8 12.1 6.3 13.1 48.8 25.7 25.5
      B2 3 752.78 粉砂岩 65 22 1 12 0 67 33
      3 758.71 粉砂岩 61 28 0 11 0 51 49
      注:XRD在中海油湛江分公司研究院实验中心和中国地质大学
      (武汉)构造与油气教育部重点实验室共同完成.
      下载: 导出CSV

      表  2  文昌A凹陷珠海组深部储层物性

      Table  2.   Porosity and permeability of deep reservoir from Zhuhai Formation in Wenchang A Sag

      井号 深度(m) 岩性 渗透率(10-3μm2) 孔隙度(%) 井号 深度(m) 岩性 渗透率(10-3μm2) 孔隙度(%)
      A1 3 759.75 粗砂岩 1.17 12.30 A4 3 667.59 粗砂岩 28.70 10.10
      A1 3 760.79 粗砂岩 4.69 9.90 A4 3 668.08 粗砂岩 7.85 8.26
      A1 3 769.53 粗砂岩 2.04 12.80 B1 3 654.31 细砂岩 3.16 12.90
      A1 3 866.06 粗砂岩 10.11 7.60 B1 3 656.18 细砂岩 6.75 11.68
      A1 3 963.45 粗砂岩 0.08 5.90 B1 3 753.71 细砂岩 1.45 14.13
      A2 3 705.40 粗砂岩 7.87 9.51 B1 3 755.62 细砂岩 0.28 10.11
      A2 3 797.60 细砂岩 2.51 9.47 B1 3 758.10 细砂岩 0.54 13.30
      A2 3 803.39 细砂岩 0.56 8.58 B1 3 761.44 细砂岩 1.56 10.72
      A2 3 851.45 细砂岩 4.61 9.75 B2 3 752.45 细砂岩 45.78 12.21
      A2 3 852.26 细砂岩 0.73 10.48 B2 3 869.98 细砂岩 6.31 14.40
      A3 3 721.51 粗砂岩 2.61 15.84 B2 3 982.23 细砂岩 0.84 9.18
      A3 3 784.59 粗砂岩 0.87 6.31 B3 3 600.42 粗砂岩 12.50 13.30
      A3 3 789.35 中砂岩 12.60 6.31 B3 3 608.30 粗砂岩 11.10 12.80
      A3 3 980.06 细砂岩 10.88 3.27 B3 3 775.43 细砂岩 2.23 9.10
      A3 3 996.69 细砂岩 1.61 7.37 B3 3 781.94 细砂岩 0.19 3.50
      A4 3 653.48 细砂岩 1.20 10.30 B4 3 683.56 粗砂岩 10.13 12.17
      A4 3 654.07 细砂岩 16.60 9.90 B4 3 686.85 粗砂岩 2.19 10.27
      A4 3 662.44 中砂岩 1.32 7.82 B4 3 687.43 粗砂岩 14.80 13.47
      A4 3 666.84 细砂岩 16.60 8.58 B4 3 689.34 细砂岩 1.04 8.23
      注:物性分析在中海油湛江分公司研究院实验中心完成,孔隙度为气测孔隙度,渗透率为气测渗透率.
      下载: 导出CSV
    • [1] Ajdukiewicz J.M., Larese R.E..2012.How Clay Grain Coats Inhibit Quartz Cement and Preserve Porosity in Deeply Buried Sandstones:Observations and Experiments.AAPG Bulletin, 96(11):2091-2119. https://doi.org/10.1306/02211211075
      [2] Cao Y.C., Xi K.L., Liu K.Y., et al.2018.Reservoir Properties Characterization and Its Genetic Mechanism for Tight Sandstone Oil and Gas Reservoir in Lacustrine Basin:The Case of the Fourth Member of Lower Cretaceous Quantou Formation in the Southern Songliao Basin.Acta Petrolei Sinica, 39(3):247-265 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201803001
      [3] Ehrenberg S.N..1993.Preservation of Anomalously High Porosity in Deeply Buried Sandstones by Grain-Coating Chlorite:Examples from the Norwegian Continental Shelf.AAPG Bulletin, 77(7):1260-1286.https://doi.org/10.1306/BDFF8E5C-1718-11D7-8645000102 C1865D doi: 10.1306/BDFF8E5C-1718-11D7-8645000102C1865D
      [4] Feng Z.X., Liu C.L..1999.Geological Characteristics of Reservoir and Caprock in Wenchang A Sag of the Pearl River Mouth Basin.China Offshore Oil and Gas (Geology), 13(6):421-428 (in Chinese with English abstract).
      [5] Giles M.R., de Boer R.B..1990.Origin and Significance of Redistributional Secondary Porosity.Marine and Petroleum Geology, 7(4):378-397. https://doi.org/10.1016/0264-8172(90)90016-a
      [6] Lai J., Wang G.W., Wang Z.Y., et al.2018.A Review on Pore Structure Characterization in Tight Sandstones.Earth-Science Reviews, 177:436-457. https://doi.org/10.1016/j.earscirev.2017.12.003
      [7] Lu J., Zhou G., Zheng R.F., et al.2016.Oil Origin and Accumulation Characteristics in Middle-Deep Strata of Wenchang A Sag, Pearl River Mouth Basin.China Offshore Oil and Gas, 28(1):20-28 (in Chinese with English abstract).
      [8] Mozley P.S., Heath J.E., Dewers T.A., et al.2016.Origin and Heterogeneity of Pore Sizes in the Mount Simon Sandstone and Eau Claire Formation:Implications for Multiphase Fluid Flow.Geosphere, 12(4):1341-1361. https://doi.org/10.1130/ges01245.1
      [9] Rushing J.A., Newsham K.E., Blasingame T.A..2008.Rock Typing: Keys to Understanding Productivity in Tight Gas Sands.SPE 114164.https: //doi.org/10.2118/114164-MS
      [10] Sun N.L., Zhong J.H., Liu S.G., et al.2017.Diagenesis and Physical Property Evolution of Gravity Flow Tight Reservoir of Yanchang Formation in Southern Ordos Basin.Earth Science, 42(10):1802-1816 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.558
      [11] Sun X.L., Lin C.Y., Dong C.M., et al.2017.Influence of Chlorite on Siliceous Cement under Control of Reservoir Lithology.Earth Science, 42(9):1599-1607 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.528
      [12] Taghavi A.A., Mørk A., Emadi M.A..2006.Sequence Stratigraphically Controlled Diagenesis Governs Reservoir Quality in the Carbonate Dehluran Field, Southwest Iran.Petroleum Geoscience, 12(2):115-126. https://doi.org/10.1144/1354-079305-672
      [13] Xi K.L., Cao Y.C., Zhao X.Z., et al.2014.Genetic Mechanism of Paleogene Middle-Deep Effective Reservoirs in Baxian Sag.Natural Gas Geoscience, 25(8):1144-1155 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201408003
      [14] Xie Y.H., Fu M.Y., Chen Q.Q., et al.2016.Controlling Factors of Reservoir Development under High Temperature in an Extensional Basin:A Case Study from Wenchang A Sag in Pearl River Estuary Basin.Geological Science and Technology Information, 35(1):59-67 (in Chinese with English abstract).
      [15] Xu S.L., You L., Li C., et al.2016.Characterization of Pore-Throat Structure in Low-Permeability Reservoir from Zhuhai Formation of 10 Area in Wenchang A Sag.Journal of Northeast Petroleum University, 40(5):55-62 (in Chinese with English abstract).
      [16] Yao Y.B., Liu D.M..2012.Comparison of Low-Field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals.Fuel, 95:152-158. https://doi.org/10.1016/j.fuel.2011.12.039
      [17] You, L, Xu S.L., Li C., et al.2018.Diagenesis-Porosity Evolution and "Sweet Spot" Distribution of Low Permeability Reservoirs:A Case Study from Oligocene Zhuhai Formation in Wenchang A Sag, Pearl River Mouth Basin, Northern South China Sea.Petroleum Exploration and Development, 45(2):235-246 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201802006
      [18] You L., Zhang Y.Z., Li C., et al.2014.Factors of Controlling the Distribution of the Low Permeability Reservoir "Sweet Spots" from Zhuhai Formation of Wenchang 10 Area.Journal of Northeast Petroleum University, 38(3):18-24, 30 (in Chinese with English abstract).
      [19] Yuan G.H., Cao Y.C., Jia Z.Z., et al.2015.Selective Dissolution of Feldspars in the Presence of Carbonates:The Way to Generate Secondary Pores in Buried Sandstones by Organic CO2. Marine and Petroleum Geology, 60:105-119. https://doi.org/10.1016/j.marpetgeo.2014.11.001
      [20] Zhang L.C., Lu S.F., Xiao D.S., et al.2017.Pore Structure Characteristics of Tight Sandstones in the Northern Songliao Basin, China.Marine and Petroleum Geology, 88:170-180. https://doi.org/10.1016/j.marpetgeo.2017.08.005
      [21] Zhao L.S..1988.The Condition on Formation of Oil (Gas) Field and Oil (Gas) Accumulation in Zhujiangkou Basin.Petroleum Exploration and Development, (1): 1-9 (in Chinese with English abstract).
      [22] Zhao Z.H., Xu S.J., Jiang X.H., et al.2016.Deep Strata Geologic Structure and Tight Sandy Conglomerate Gas Exploration in Songliao Basin, East China.Petroleum Exploration and Development, 43(1):13-25. https://doi.org/10.1016/s1876-3804(16)30002-7
      [23] Zhu X.M., Liu F., Tan M.X., et al.2015.Diagenesis and Genesis of Favorable Reservoir of Fan Delta in Eocene Shahejie Fm., Zhanhua Sag, Jiyang Depression, Bohai Bay Basin.Geological Review, 61(4):843-851 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201504012
      [24] 操应长, 葸克来, 刘可禹, 等.2018.陆相湖盆致密砂岩油气储层储集性能表征与成储机制——以松辽盆地南部下白垩统泉头组四段为例.石油学报, 39(3):247-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201803001
      [25] 冯正祥, 刘春兰.1999.珠江口盆地文昌A凹陷储集层及盖层特征.中国海上油气(地质), 13(6):421-428. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199906007.htm
      [26] 陆江, 周刚, 郑榕芬, 等.2016.珠江口盆地文昌A凹陷中深层原油来源及成藏特征.中国海上油气, 28(1):20-28. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201601003
      [27] 孙宁亮, 钟建华, 刘绍光, 等.2017.鄂尔多斯盆地南部延长组重力流致密储层成岩作用及物性演化.地球科学, 42(10):1802-1816. https://doi.org/10.3799/dqkx.2017.558
      [28] 孙小龙, 林承焰, 董春梅, 等.2017.储层岩性控制下的绿泥石对硅质胶结的影响.地球科学, 42(9):1599-1607. https://doi.org/10.3799/dqkx.2017.528
      [29] 葸克来, 操应长, 赵贤正, 等.2014.霸县凹陷古近系中深层有效储层成因机制.天然气地球科学, 25(8):1144-1155. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201408003
      [30] 谢玉洪, 伏美燕, 陈倩倩, 等.2016.张性盆地高温砂岩储层发育控制因素:以珠江口盆地文昌A凹陷为例.地质科技情报, 35(1):59-67. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201601009.htm
      [31] 徐守立, 尤丽, 李才, 等.2016.文昌A凹陷10区珠海组低渗储层孔喉结构特征.东北石油大学学报, 40(5):55-62. doi: 10.3969/j.issn.2095-4107.2016.05.007
      [32] 尤丽, 徐守立, 李才, 等.2018.低渗储集层成岩孔隙演化与"甜点"分布——以南海北部珠江口盆地文昌A凹陷渐新统珠海组为例.石油勘探与开发, 45(2):235-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201802006
      [33] 尤丽, 张迎朝, 李才, 等.2014.文昌10区珠海组低渗储层"甜点"控制因素.东北石油大学学报, 38(3):18-24, 30. doi: 10.3969/j.issn.2095-4107.2014.03.003
      [34] 赵柳生.1988.珠江口盆地油气藏形成条件及油气富集规律.石油勘探与开发, (1): 1-9.
      [35] 朱筱敏, 刘芬, 谈明轩, 等.2015.济阳坳陷沾化凹陷陡坡带始新统沙三段扇三角洲储层成岩作用与有利储层成因.地质论评, 61(4):843-851. http://d.old.wanfangdata.com.cn/Periodical/dzlp201504012
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  5204
    • HTML全文浏览量:  1695
    • PDF下载量:  22
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-11-07
    • 刊出日期:  2019-03-15

    目录

      /

      返回文章
      返回