• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    非完整井下单井注抽试验数值模拟方法改进

    顾昊琛 王全荣 詹红兵

    顾昊琛, 王全荣, 詹红兵, 2020. 非完整井下单井注抽试验数值模拟方法改进. 地球科学, 45(2): 685-692. doi: 10.3799/dqkx.2018.366
    引用本文: 顾昊琛, 王全荣, 詹红兵, 2020. 非完整井下单井注抽试验数值模拟方法改进. 地球科学, 45(2): 685-692. doi: 10.3799/dqkx.2018.366
    Gu Haochen, Wang Quanrong, Zhan Hongbin, 2020. An Improved Approach in Modeling Injection-Withdraw Test of the Partially Penetrating Well. Earth Science, 45(2): 685-692. doi: 10.3799/dqkx.2018.366
    Citation: Gu Haochen, Wang Quanrong, Zhan Hongbin, 2020. An Improved Approach in Modeling Injection-Withdraw Test of the Partially Penetrating Well. Earth Science, 45(2): 685-692. doi: 10.3799/dqkx.2018.366

    非完整井下单井注抽试验数值模拟方法改进

    doi: 10.3799/dqkx.2018.366
    基金项目: 

    国家自然科学基金青年基金 41502229

    国家自然科学基金创新群体 41521001

    中央高校基本科研业务费专项资金摇篮计划 CUGL160407

    中国地质调查局项目 DD20190263

    中国地质调查局项目 DD2019040022

    详细信息
      作者简介:

      顾昊琛(1994—), 男, 硕士研究生, 主要从事地下水流动及污染物迁移规律数值模拟研究

      通讯作者:

      王全荣

    • 中图分类号: P641.2

    An Improved Approach in Modeling Injection-Withdraw Test of the Partially Penetrating Well

    • 摘要: 单井注抽试验(SWIW试验)具有成本低、耗时短、易操作等优点,被广泛用于获取野外含水层的弥散度等物理化学参数.然而,井筒附近的流场变化复杂,给模型求解带来不便,尤其是非完整井问题.针对非完整井SWIW试验问题,MODFLOW/MT3DMS软件中包含3种模块:传统WELL模块、高渗透性WELL模块和MNW模块,分别代表 3种常规的数值模拟方法.研究表明现有的这3个模块都存在一些假设条件,野外试验条件可能难以满足.为此,本研究提出一种新的计算方法,即将MNW模块中考虑井中溶质混溶的公式运用到高渗透性WELL模块上,通过一个参数反求案例的分析,证明SWIW试验模拟结果的精度得到提高.基于改进后的模型,探究传统模型中常用的两个假设条件的影响:忽略滤水管空间位置和假设试验过程中流场是稳定.结果表明:(1)非完整井井筒滤水管的位置对浓度结果的影响不可忽略;(2)含水层渗透系数与储水系数的比值较小时,稳定流场这个假设条件会带来误差.

       

    • 图  1  单井注抽试验概念模型示意图(Wang et al., 2017

      a.注入过程;b.抽取过程(初期);B为厚度(m);黑色箭头表示井筒附近水流方向,蓝色箭头表示距离井较远的含水层水流方向,红色深浅表示溶质浓度的高低

      Fig.  1.  The conceptual model of single well injection and extraction test

      图  2  网格系统平面示意图

      Fig.  2.  Grid system in a plan view

      图  3  网格系统三维示意图

      Fig.  3.  Grid system in 3-D view

      图  4  3种模型井筒滤水管里的水位对比

      Fig.  4.  Comparison of water level between three modules in the wellbore

      图  5  3种模型井筒浓度对比图

      a.井筒滤水管顶部;b.井筒滤水管中部

      Fig.  5.  Comparison of concentration between three modules in the wellbore

      图  6  3种模块拟合结果

      Fig.  6.  The fitting results of the three modules

      图  7  滤水管在不同位置下的计算结果对比

      Fig.  7.  Results comparison of the new method under different inlet pipe positions

      图  8  不同K/Ss下的井筒水位图

      Fig.  8.  The water level in wellbore under different K/Ss

      图  9  不同K/Ss下的井筒浓度

      Fig.  9.  The concentration in wellbore under different K/Ss

      表  1  3种模块反求的参数

      Table  1.   Parameters estimated by the three modules

      孔隙度 弥散度(m)
      COMSOL模型 0.3 0.62
      改进后的高渗CW模型 0.3 0.60
      Huang et al.(2010)的解析解 0.5 0.59
      MNW模型 0.3 0.45
      下载: 导出CSV
    • [1] Chen, C., Wen, Z., Liang, X., et al., 2017. Estimation of Hydrogeological Parameters for Representative Aquifers in Jianghan Plain. Earth Science, 42(5):743-750(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705007.htm
      [2] Cvetkovic, V., Cheng, H., 2011. Evaluation of Single-Well Injection-Withdrawal Tests in Swedish Crystalline Rock Using the Lagrangian Travel Time Approach. Water Resources Research, 47(2):1-11. https://doi.org/10.1029/2010WR009627
      [3] Gelhar, L.W., Collins, M.A., 1971. General Analysis of Longitudinal Dispersion in Nonuniform Flow. Water Resources Research, 7(6):1511-1521. https://doi.org/10.1029/WR007i006p01511
      [4] Gouze, P., Le Borgne, T., Leprovost, R., et al., 2008. Non-Fickian Dispersion in Porous Media:1. Multiscale Measurements Using Single-Well Injection Withdrawal Tracer Tests. Water Resources Research, 44(6):1-11. https://doi.org/10.1029/2007wr006278
      [5] Harbaugh, A.W., 2005. The US Geological Survey Modular Ground-Water Model: the Ground-Water Flow Process. US Geological Survey, Reston VA, 253.
      [6] Huang, J.Q., Christ, J.A., Goltz, M.N., 2010. Analytical Solutions for Efficient Interpretation of Single-Well Push-Pull Tracer Tests. Water Resources Research, 46(8). https://doi.org/10.1029/2008wr007647
      [7] Istok, J.D., 2013. Push-Pull Tests for Site Characterization. Springer-Verlag Berlin Heidelberg, New York.
      [8] Li, M., Liu, W.B., Chen, C.X., 2003. Can MODFLOW Simulating the Groundwater Flow of Mixing Well? Hydrogeology & Engineering Geology, 30(5):116-117 (in Chinese).
      [9] Li, X., Wen, Z., Liang, X., et al., 2017. Aquifer Parameter Estimation of Transient Pumping Test Based on Analytical and Numerical Method. Earth Science, 42(5):743-750 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201705009.htm
      [10] Mathias, S.A., Todman, L.C., 2010.Step-Drawdown Tests and the Forchheimer Equation. Water Resources Research, 46(7). https://doi.org/10.1029/2009WR008635
      [11] McDonald, B., Harbaugh, A.W., 1988. MODFLOW, A Modular Three-Dimensional Finite Difference Ground-Water Flow Model, US Geological Survey, Reston VA, 588.
      [12] Neville, C.J., Tonkin, M.J., 2004. Modeling Multiaquifer Wells with MODFLOW. Ground Water, 42(6):910-919. https://doi.org/10.1111/j.1745-6584.2004.t01-9-.x
      [13] Peaceman, D.W., 1983. Interpretation of Well-Block Pressures in Numerical Reservoir Simulation with Nonsquare Grid Blocks and Anisotropic Permeability. SPE Journal, 23(03):531-543. https://doi.org/10.2118/10528-pa
      [14] Rorabaugh, M.I., 1953. Graphical and Theoretical Analysis of Step-Drawdown Test of Artesian Well. Proceedings of American Society of Civil Engineers, 79(362).
      [15] Schroth, M.H., Istok, J.D., 2005. Approximate Solution for Solute Transport during Spherical-Flow Push-Pull Tests. Ground Water, 43(2):280-284. https://doi.org/10.1111/j.1745-6584.2005.0002.x
      [16] Tsang, Y.W., 1995. Study of Alternative Tracer Tests in Characterizing Transport in Fractured Rocks. Geophysical Research Letters, 22(11):1421-1424. https://doi.org/10.1029/95gl01093
      [17] Wang, Q.R., Zhan, H.B., Wang, Y.X., 2017. Single-Well Push-Pull Test in Transient Forchheimer Flow Field. Journal of Hydrology, 549:125-132. doi: 10.1016/j.jhydrol.2017.03.066
      [18] Zheng, C.M., Wang, P.P., 1999. MT3DMS:A Modular Three-Dimensional Multispecies Transport Model.Army Corps of Engineers, 169(4):1196-1197. https://doi.org/10.2214/ajr.169.4.9308495
      [19] Zheng, C.M., 2010. MT3DMS v5.3 Supplemental User's Guide.U.S. Army Corps of Engineers, Washington DC, 51.
      [20] 陈晨, 文章, 梁杏等, 2017.江汉平原典型含水层水文地质参数反演.地球科学, 42(5):728-733. doi: 10.3799/dqkx.2017.060
      [21] 黎明, 刘文波, 陈崇希, 2003.MODFLOW能模拟地下水混合井流吗?水文地质工程地质, 30(5):116-117. doi: 10.3969/j.issn.1000-3665.2003.05.029
      [22] 李霞, 文章, 梁杏等, 2017.基于解析法和数值法的非稳定流抽水试验参数反演.地球科学, 42(5):743-750. doi: 10.3799/dqkx.2017.062
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  2686
    • HTML全文浏览量:  1219
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-09
    • 刊出日期:  2020-02-15

    目录

      /

      返回文章
      返回