• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏冈底斯成矿带西段矿床类型、成矿作用和找矿方向

    黄瀚霄 张林奎 刘洪 李光明 黄勇 兰双双 吕梦鸿

    黄瀚霄, 张林奎, 刘洪, 李光明, 黄勇, 兰双双, 吕梦鸿, 2019. 西藏冈底斯成矿带西段矿床类型、成矿作用和找矿方向. 地球科学, 44(6): 1876-1887. doi: 10.3799/dqkx.2018.364
    引用本文: 黄瀚霄, 张林奎, 刘洪, 李光明, 黄勇, 兰双双, 吕梦鸿, 2019. 西藏冈底斯成矿带西段矿床类型、成矿作用和找矿方向. 地球科学, 44(6): 1876-1887. doi: 10.3799/dqkx.2018.364
    Huang Hanxiao, Zhang Linkui, Liu Hong, Li Guangming, Huang Yong, Lan Shuangshuang, Lü Menghong, 2019. Major Types, Mineralization and Potential Prospecting Areas in Western Section of the Gangdise Metallogenic Belt, Tibet. Earth Science, 44(6): 1876-1887. doi: 10.3799/dqkx.2018.364
    Citation: Huang Hanxiao, Zhang Linkui, Liu Hong, Li Guangming, Huang Yong, Lan Shuangshuang, Lü Menghong, 2019. Major Types, Mineralization and Potential Prospecting Areas in Western Section of the Gangdise Metallogenic Belt, Tibet. Earth Science, 44(6): 1876-1887. doi: 10.3799/dqkx.2018.364

    西藏冈底斯成矿带西段矿床类型、成矿作用和找矿方向

    doi: 10.3799/dqkx.2018.364
    基金项目: 

    国家重点研发计划 SQ2018YFC060162

    国家重点研发计划 2016YFC0600308

    中国地质调查项目 DD20160015

    中国地质调查项目 DD20190542

    中国地质调查项目 DD20190147

    中国科学院战略性先导科技专项 XDA20070304

    详细信息
      作者简介:

      黄瀚霄(1982-), 男, 高级工程师, 从事青藏高原地质矿产、地球化学研究

      通讯作者:

      李光明(1965-), 研究员

    • 中图分类号: P612;P617

    Major Types, Mineralization and Potential Prospecting Areas in Western Section of the Gangdise Metallogenic Belt, Tibet

    • 摘要: 在前人已有成果基础上, 通过大量的野外地质调查与室内综合研究, 初步论述了冈底斯成矿带西段的金属矿床类型、时空分布特征和成矿作用, 探讨了下一步找矿方向.研究结果表明, 冈底斯成矿带西段金属矿床(点)类型主要有矽卡岩型、斑岩型和浅成低温热液型, 矿床在空间分布上具有东西成带, 相对集中的特征, 成矿时代集中于中、新生代.依据矿床成因及成矿动力学背景, 冈底斯成矿带西段有5期关键成矿作用, 分别为晚三叠世-晚白垩世与新特提斯洋北向俯冲有关的铜金多金属成矿作用、中侏罗世-早白垩世与中特提斯洋南向俯冲有关的铁铜金多金属成矿作用、早白垩世末-晚白垩世末与羌塘-拉萨地块碰撞有关的铜金钼成矿作用、晚白垩世末-始新世与印度-亚洲大陆碰撞有关的铜铅锌银多金属成矿作用、渐新世末-中新世与印度-亚洲大陆后碰撞伸展有关的铜金钼多金属成矿作用.冈底斯成矿带西段优势矿种是铜、铁、铅锌、金银等, 主攻矿床类型为矽卡岩型矿床、浅成低温热液型矿床和斑岩型矿床等.

       

    • 图  1  冈底斯成矿带西段矿产地质略图

      1.新近纪侵入岩;2.古近纪侵入岩;3.白垩纪侵入岩;4.侏罗纪侵入岩;5.三叠纪侵入岩;6.古近系林子宗群火山岩;7.蛇绿岩混杂带;8.铁矿床;9.铅锌矿床;10.铜矿床;11.铜金矿床;12.金矿床;13.矿床名称及成岩/成矿时代;图b中, ABT.昂龙岗日-班戈-腾冲岩浆弧带;SSJ.狮泉河-嘉黎蛇绿混杂岩带;CS.措勤-申扎岩浆弧带;LC.隆格尔-措麦断裂带;LG.隆格尔-工布江达复合岛弧带;LM.洛巴堆-米拉山断裂带;LGX.冈底斯火山岩浆弧带;DLJ.打加南-拉马野加-江当乡断裂;SGT.日喀则弧前盆地;图a中, ABT.昂龙岗日-班戈-腾冲岩浆弧带;SSJ.狮泉河-嘉黎蛇绿混杂岩带;CS.措勤-申扎岩浆弧带;LC.隆格尔-措麦断裂带;LG.隆格尔-工布江达复合岛弧带;LM.洛巴堆-米拉山断裂带;LGX.冈底斯火山岩浆弧带;DLJ.打加南-拉马野加-江当乡断裂;SGT.日喀则弧前盆地

      Fig.  1.  Mineral resources geological map of the western section of the Gangdise metallogenic belt

      图  2  冈底斯成矿带西段地质构造与成矿演化

      1.鲁尔玛斑岩型铜矿床;2.雄村-洞嘎斑岩-浅成低温热液型铜金成矿系统;3.桑日群中浅成低温热液型铜金多金属矿床;4.尼雄等矽卡岩型铁矿床;5.住浪等则弄群中的浅成低温热液型铜金多金属矿床;6.天宫尼勒矽卡岩型金矿床;7.拨拉杂铜金矽卡岩-斑岩型铜金钼成矿系统;8.布东拉浅成低温热液型金矿床;9.斯弄多等浅成低温热液型铅锌(银)矿床;10.查个勒等矽卡岩型铅锌矿床;11.达若斑岩型铜矿床;12.吉如等斑岩型铜金矿床;13.罗布真-红山斑岩-浅成低温热液型铜金成矿系统;14.朱诺等斑岩型铜金矿床

      Fig.  2.  Summary of the geotectonic and metallogenic evolution of western Gangdise metallogenic belt

      表  1  冈底斯成矿带西段代表性矿床成岩成矿时代

      Table  1.   Diagenetic and metallogenic epoch of representative ore deposits in the western Gangdese metallogenic belt

      矿区 矿床类型 岩石/矿石 测试对象 测试方法 年龄(Ma) 资料来源
      雄村铜金矿床 斑岩型 凝灰岩 锆石 SHRIMP 176 ± 5 Tang et al., 2015
      石英闪长玢岩 锆石 SHRIMP 173 ± 3
      铜金矿石 辉钼矿 Re-Os 173.2 ± 2.7
      朱诺铜金矿床 斑岩型 花岗斑岩 锆石 SHRIMP 15.6 ± 0.6 Zheng et al., 2007
      矿石 辉钼矿 Re-Os 13.72 ± 0.62
      斯弄多铅锌银多金属矿床 浅成低温热液型 流纹斑岩 锆石 LA-ICP-MS 64.18 ± 0.73 丁帅等, 2017
      花岗斑岩 锆石 LA-ICP-MS 68.2 ± 0.32
      查个勒铅锌矿床 矽卡岩型 矿石 辉钼矿 Re-Os 61.49 ± 0.60 高顺宝, 2015
      花岗斑岩 锆石 LA-ICP-MS 63.18 ± 0.77
      帮布勒铁铅锌矿床* 矽卡岩型 石英斑岩 锆石 LA-ICP-MS 76.34 ± 0.83 黄鹏程等, 2015
      纳如松多铅锌矿床 浅成低温热液型 矿石 绢云母 Ar-Ar 57.81 ± 0.66 纪现华等, 2014
      石英正长斑岩 锆石 SHRIMP 62.54 ± 0.77
      尼雄铁矿床 矽卡岩型 矿石 金云母 Ar-Ar 112.3 于玉帅等, 2012
      花岗闪长岩 锆石 LA-ICP-MS 113.6 ± 1.6
      二长花岗岩 锆石 LA-ICP-MS 112.6 ± 1.6
      隆格尔铁矿床* 矽卡岩型 二长花岗岩 锆石 LA-ICP-MS 115.5 ± 2.1 费凡等, 2015
      鲁尔玛铜矿床 斑岩型 石英二长斑岩 锆石 LA-ICP-MS 212 ± 1 刘洪等, 待发表
      矿石 辉钼矿 Re-Os 212 ± 3
      罗布真金银多金属矿床 浅成低温热液型 矿石 石英 Rb-Sr 21.1 ± 1.8 黄瀚霄等, 待发表
      达若铜矿床* 斑岩型 英安斑岩 锆石 LA-ICP-MS 63 李红梁等, 待发表
      日阿铜金矿床 矽卡岩型 矿石 金云母 Ar-Ar 87.69 ± 0.64 辛洪波和曲晓明, 2006
      黑云母花岗岩锆石 LA-ICP-MS 89.9 ± 1.6
      夏垅铅锌银矿床 引爆角砾岩型 矿石 绢云母 Ar-Ar 23.56 ± 0.22 赵晓燕等, 2013
      龙根铅锌矿床* 矽卡岩型 二长花岗斑岩 锆石 LA-ICP-MS 61.4 ± 1.2 段志明等, 2014
      江拉昂宗铜多金属矿床 矽卡岩型 角闪花岗岩 锆石 LA-ICP-MS 86 ± 1 Liu et al., 2018
      矿石 绢云母 Ar-Ar 85 ± 1
      天宫尼勒金矿床* 矽卡岩型 花岗闪长岩 锆石 LA-ICP-MS 102.6 ± 1.8 黄瀚霄等, 2012
      拨拉杂铜钼矿床 斑岩+矽卡岩型 二长花岗斑岩 锆石 LA-ICP-MS 88.0 ± 1.6 黄瀚霄等, 2013; 余红霞等, 2011
      矿石 辉钼矿 Re-Os 88.8 ± 1.5
      哥布弄巴铁及多金属矿床 矽卡岩型 细粒二长花岗岩 锆石 LA-ICP-MS 59.1 ± 0.75 高顺宝, 2015
      矽卡岩 白云母 Ar-Ar 59.22 ± 0.61
      红山铜矿床 斑岩型 矿石 辉钼矿 Re-Os 23 黄瀚霄等, 待发表
      花岗斑岩 锆石 LA-ICP-MS 24 ± 1
      注:*.矿床缺少精确的成矿年龄, 本文用与成矿相关的花岗岩成岩年龄近似代表矿床成矿年龄.
      下载: 导出CSV
    • [1] Cao, S.H., Li, D.W., Yu, Z.Z., et al., 2007. Metallogenic and Geological Characteristics of the Nixiong Superlarge Magnetite Deposit in Gangdese, Tibet. Geotectonica et Metallogenia, 31(3):328-334(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200703009
      [2] Ding, S., Chen, Y.C., Tang, J.X., et al., 2017. Relationship between Linzizong Volcanic Rocks and Mineralization:A Case Study of Sinongduo Epithermal Ag-Pb-Zn De-posit. Mineral Deposits, 36(5):1074-1092(in Chinese with English abstract).
      [3] Du, B.F., Yang, C.Q., Chai, J.Y., et al., 2018. The Effect of Stream Sediment Survey for Prospecting in Chunzhe Ar-ea, Tibet. Geology in China, 45(3):604-616(in Chi-nese with English abstract).
      [4] Duan, Z.M., Li, G.M., Li, Y.X., et al., 2014. Geochronolo-gy and Geochemical Characteristics of Ore-Bearing Por-phyry in Longgen Lead-Zinc Deposit of Middle-Gang-dese Metallogenic Belt, Tibet. Mineral Deposits, 33(3):625-638(in Chinese with English abstract).
      [5] Fan, S.F., Xu, G.L., Zhang, J.D., et al., 2011. Mineralization Characteristics of Iron-Polymetallic Deposits in the Ali Area, Tibet. Hebei Geology, (2):37-41(in Chinese with English abstract).
      [6] Fei, F., Yang, Z.S., Liu, Y.C., et al., 2015. Petrogenetic Ep-och of the Rock Mass in the Lunggar Iron Deposit of Co-qen County, Tibet. Acta Petrologica et Mineralogica, 34(4):568-580(in Chinese with English abstract).
      [7] Gao, S. B., 2015. Copper-Iron Polymetal Metallogenesis and Exploration Direction in the Western of Gangdise Metal-logenic Belt, Tibet(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [8] Gou, Z.B., Liu, H., Li, J., et al., 2018. The Petrogenesis and Tectonic Significance of Early Cretaceous Volcanic Rocks in Nixiong Area from the Central and Northern Lhasa Terrane. Earth Science, 43(8):2780-2794(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201808018
      [9] Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006b. Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅱ. Mineralization in Late-Collisional Transformation Setting. Mineral De-posits, 25(5):521-543(in Chinese with English abstract).
      [10] Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006a. Metallogen-esis in Tibetan Collisional Orogenic Belt:Ⅰ. Mineraliza-tion in Main Collisional Orogenic Setting. Mineral De-posits, 25(4):337-358(in Chinese with English abstract).
      [11] Hou, Z. Q., Zhang, H. R., Pan, X. F., et al., 2011. Porphyry Cu(-Mo-Au) Deposits Related to Melting of Thickened Mafic Lower Crust:Examples from the Eastern Tethyan Metallo-genic Domain. Ore Geology Reviews, 39(1-2):21-45. https://doi.org/10.1016/j.oregeorev.2010.09.002
      [12] Huang, H.X., Li, G.M., Chen, H.A., et al., 2013. Molybde-nite Re-Os Isotope Age and Metallogenic Significance of Sebuta Copper Molybdenum Deposit in Tibet. Acta Geo-logica Sinica, 87(2):240-244(in Chinese with English abstract).
      [13] Huang, H.X., Li, G.M., Liu, B., et al., 2012. Zircon U-Pb Geochronology and Geochemistry of the Tiangongnile Skarn-Type Cu-Au Deposit in Zhongba County, Tibet:Their Genetic and Tectonic Setting Significance. Acta Geoscientica Sinica, 33(4):424-434(in Chinese with English abstract).
      [14] Huang, P.C., Zheng, Y.Y., Gao, S.B., et al., 2015. Geochemi-cal Characteristics and Prospecting Significance of Bang-bule Pb-Zn-Cu-Fe Deposit, Tibet. Acta Mineralogica Si-nica, 35(Suppl.1):394(in Chinese with English abstract).
      [15] Huang, Y., Li, G. M., Ding, J., et al., 2017. Origin of the Newly Discovered Zhunuo Porphyry Cu-Mo-Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau, SW China. Acta Geologica Sinica (English Edition), 91(1):109-134. https://doi.org/10.1111/1755-6724.13066
      [16] Huang, Y., Tang, J.X., Lang, X.H., et al., 2011. Geochemi-cal Characteristics of Intrusive and Volcanic Rocks in No.Ⅱ Ore Body of Xiongcun Copper-Gold Deposit, Ti-bet:Constraints on Rock Genesis and Tectonic Setting.Mineral Deposits, 30(2):361-373(in Chinese with Eng-lish abstract).
      [17] Ji, X.H., Meng, X.J., Yang, Z.S., et al., 2014. The Ar-Ar Geochronology of Sericite from the Cryptoexplosive Breccia Type Pb-Zn Deposit in Narusongduo, Tibet and Its Geological Significance. Geology and Exploration, 50(2):281-290(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201402008
      [18] Li, Y.C., Huang, H.X., Liu, H., et al., 2017. Gold Mineral-ization in the Bangong Lake-Nujiang Metallogenic Zone, Xizang. Sedimentary Geology and Tethyan Geology, 37(2):1-13(in Chinese with English abstract).
      [19] Liu, H., Li, G. M., Huang, H. X., et al., 2018. Petrogenesis of Late Cretaceous Jiangla' angzong I-Type Granite in Central Lhasa Terrane, Tibet, China:Constraints from Whole-Rock Geochemistry, Zircon U-Pb Geochronolo-gy, and Sr-Nd-Pb-Hf Isotopes. Acta Geologica Sinica(English Edition), 92(4):1396-1414. https://doi.org/10.1111/1755-6724.13634
      [20] Liu, Y. C., Ji, X. H., Hou, Z. Q., et al., 2015. The Establish-ment of an Independent Pb-Zn Mineralization System Related to Magmatism:A Case Study of the Narusongduo Pb-Zn Deposit in Tibet. Acta Petrologica et Miner-alogica, 34(4):539-556(in Chinese with English ab-stract).
      [21] Mo, X.X., Zhao, Z.D., Zhu, D.C., et al., 2009. On the Litho-sphere of Indo-Asia Collision Zone in Southern Tibet:Petrological and Geochemical Constraints. Earth Sci-ence, 34(1):17-27(in Chinese with English abstract).
      [22] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-Tem-poral Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533(in Chinese with English abstract).
      [23] Qu, X. M., Xin, H. B., Xu, W. Y., 2007. Petrogenesis of the Ore-Hosting Volcanic Rocks and Their Contribution to Mineralization in Xiongcun Superlarge Cu-Au Deposit, Tibet.Acta Geologica Sinica, 81(7):964-971(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200707012
      [24] Sun, X., Zheng, Y. Y., Li, M., et al., 2017. Genesis of Luobuzhen Pb-Zn Veins:Implications for Porphyry Cu Systems and Exploration Targeting at Luobuzhen-Dong-shibu in Western Gangdese Belt, Southern Tibet. Ore Geology Reviews, 82:252-267. https://doi.org/10.1016/j.oregeorev.2016.11.016
      [25] Tang, J.X., Ding, S., Meng, Z., et al., 2016. The First Dis-covery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanics, Tibet:A Case Study of the Sinong-duo Ag Polymetallic Deposit. Acta Geoscientica Sinica, 37(4):461-470(in Chinese with English abstract).
      [26] Tang, J. X., Lang, X. H., Xie, F. W., et al., 2015. Geological Characteristics and Genesis of the Jurassic No. I Porphy-ry Cu-Au Deposit in the Xiongcun District, Gangdese Porphyry Copper Belt, Tibet. Ore Geology Reviews, 70:438-456.
      [27] Tang, J.X., Wang, Q., Yang, C., et al., 2014. Two Porphyry-Epithermal Deposit Metallogenic Subseries in Tibetan Plateau:Practice of "Absence Prospecting" Deposit Metallogenic Series. Mineral Deposits, 33(6):1151-1170(in Chinese with English abstract).
      [28] Tang, J.X., Wang, Q., Yang, H.H., et al., 2017. Mineraliza-tion, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Ti-bet. Acta Geoscientica Sinica, 38(5):571-613(in Chi-nese with English abstract).
      [29] Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Ori-gin of Postcollisional Magmas and Formation of Porphy-ry Cu Deposits in Southern Tibet. Earth-Science Re-views, 181:122-143. doi: 10.1016/j.earscirev.2018.02.019
      [30] Xin, H. B., Qu, X. M., 2006. Geological Characteristics and Ore-Forming Epoch of Ri'a Copper Deposit Related to Bimodal Rock Series in Coqen County, Western Tibet.Mineral Deposits, 25(4):477-482(in Chinese with Eng-lish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200604012
      [31] Xing, J. B., Ge, L. S., Zou, Y. L., et al., 2003. Geological Geochemical Character of Dongga Gold Deposit in Xi-etongmen County, Tibet. Gold Geology, 9(2):28-32(in Chinese with English abstract).
      [32] Yu, H.X., Chen, J.L., Xu, J.F., et al., 2011. Geochemistry and Origin of Late Cretaceous (~90 Ma) Ore-Bearing Porphyry of Balazha in Mid-Northern Lhasa Terrane, Tibet. Acta Petrologica Sinica, 27(7):2011-2022(in Chinese with English abstract).
      [33] Yu, T., 2018. Geological Characteristics and Prospecting In-dicator of Zexue Stratabound Hydrothermal Skarn Type Pb-Zn Deposit in Xietongmen County, Tibet. Modern Mining, 34(1):28-32(in Chinese with English abstract).
      [34] Yu, Y.S., Yang, Z.S., Liu, Y.C., et al., 2012. Mineralogical Characteristics and 40Ar-39Ar Dating of Phlogopite from the Gunjiu Iron Deposit in the Nixiong Ore Field, Co-qen, Tibet. Acta Petrologica et Mineralogica, 31(5):681-690(in Chinese with English abstract).
      [35] Zhang, L. X., Wang, Q., Zhu, D. C., et al., 2013. Mapping the Lhasa Terrane through Zircon Hf Isotopes:Con-straints on the Nature of the Crust and Metallogenic Po-tential. Acta Petrologica Sinica, 29(11):3681-3688(in Chinese with English abstract).
      [36] Zhang, X.Q., Zhu, D.C., Zhao, Z.D., et al., 2010. Petrogene-sis of the Nixiong Pluton in Coqen, Tibet and Its Poten-tial Significance for the Nixiong Fe-Rich Mineralization.Acta Petrologica Sinica, 26(6):1793-1804(in Chinese with English abstract).
      [37] Zhao, X. Y., Yang, Z. S., Liu, Y. C., et al., 2013.40Ar/39Ar Dating of Sericite from Xialong Pb-Zn-Ag Deposit and Its Geological Significance. Mineral Deposits, 32(5):963-971(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201305008
      [38] Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007. Geochro-nologic Constraints on Magmatic Intrusions and Mineral-ization of the Zhunuo Porphyry Copper Deposit in Gang-dese, Tibet. Chinese Science Bulletin, 52(22):3139-3147. https://doi.org/10.1007/s11434-007-0406-7
      [39] Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245:7-17. doi: 10.1016/j.lithos.2015.06.023
      [40] Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009. Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Terrane, Tibet. Chemical Geology, 268(3-4):298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008
      [41] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      [42] Zhu, D. C., Wang, Q., Zhao, Z. D., 2017. Constraining Quan-titatively the Timing and Process of Continent-Continent Collision Using Magmatic Record:Method and Exam-ples. Science China:Earth Sciences, 60(6):1040-1056. doi: 10.1007/s11430-016-9041-x
      [43] 曹圣华, 李德威, 余忠珍, 等, 2007.西藏冈底斯尼雄超大型富铁矿的成矿地质特征.大地构造与成矿学, 31(3):328-334. doi: 10.3969/j.issn.1001-1552.2007.03.009
      [44] 丁帅, 陈毓川, 唐菊兴, 等, 2017.林子宗群火山岩与成矿关系:以斯弄多浅成低温热液型矿床为例.矿床地质, 36(5):1074-1092. http://d.old.wanfangdata.com.cn/Periodical/kcdz201705004
      [45] 杜保峰, 杨长青, 柴建玉, 等, 2018.水系沉积物测量在西藏春哲地区找矿效果.中国地质, 45(3):604-616. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201803014
      [46] 段志明, 李光明, 李应栩, 等, 2014.中冈底斯成矿带龙根铅锌矿床含矿斑岩年代学与地球化学特征.矿床地质, 33(3):625-638. doi: 10.3969/j.issn.0258-7106.2014.03.012
      [47] 范三伏, 徐桂林, 张计东, 等, 2011.西藏阿里地区哥布弄巴铁及多金属矿床成矿地质特征.河北地质, (2):37-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdzkcxx201102010
      [48] 费凡, 杨竹森, 刘英超, 等, 2015.西藏措勤隆格尔铁矿岩体成岩时代及其地质意义.岩石矿物学杂志, 34(4):568-580. doi: 10.3969/j.issn.1000-6524.2015.04.010
      [49] 高顺宝, 2015.西藏冈底斯西段铜铁多金属成矿作用与找矿方向(博士学位论文).武汉: 中国地质大学.
      [50] 苟正彬, 刘函, 李俊, 等, 2018.拉萨地块中北部尼雄地区早白垩世火山岩的成因及构造意义.地球科学, 43(8):2780-2794. http://earth-science.net/WebPage/Article.aspx?id=3912
      [51] 侯增谦, 潘桂棠, 王安建, 等, 2006b.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      [52] 侯增谦, 杨竹森, 徐文艺, 等, 2006a.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      [53] 黄瀚霄, 李光明, 陈华安, 等, 2013.西藏色布塔铜钼矿床中辉钼矿Re-Os定年及其成矿意义.地质学报, 87(2):240-244. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201302008
      [54] 黄瀚霄, 李光明, 刘波, 等, 2012.西藏仲巴县天宫尼勒矽卡岩型铜金矿床锆石U-Pb年代学和岩石地球化学特征:对成因及其成矿构造背景的指示.地球学报, 33(4):424-434. doi: 10.3975/cagsb.2012.04.04
      [55] 黄鹏程, 郑有业, 高顺宝, 等, 2015.西藏帮布勒铅锌铜铁矿床地球化学特征及找矿意义.矿物学报, 35(增刊1):394. http://d.old.wanfangdata.com.cn/Conference/9132741
      [56] 黄勇, 唐菊兴, 郎兴海, 等, 2011.雄村铜金矿床Ⅱ号矿体侵入岩-火山岩的地球化学特征:对岩石成因及构造背景的约束.矿床地质, 30(2):361-373. doi: 10.3969/j.issn.0258-7106.2011.02.016
      [57] 纪现华, 孟祥金, 杨竹森, 等, 2014.西藏纳如松多隐爆角砾岩型铅锌矿床绢云母Ar-Ar定年及其地质意义.地质与勘探, 50(2):281-290. http://d.old.wanfangdata.com.cn/Periodical/dzykt201402008
      [58] 李永灿, 黄瀚霄, 刘洪, 等, 2017.班公湖-怒江成矿带金成矿规律及成矿作用初讨.沉积与特提斯地质, 37(2):1-13. doi: 10.3969/j.issn.1009-3850.2017.02.001
      [59] 刘英超, 纪现华, 侯增谦, 等, 2015.一个与岩浆作用有关的独立铅锌成矿系统的建立:以西藏纳如松多铅锌矿床为例.岩石矿物学杂志, 34(4):539-556. doi: 10.3969/j.issn.1000-6524.2015.04.008
      [60] 莫宣学, 赵志丹, 朱弟成, 等, 2009.西藏南部印度-亚洲碰撞带岩石圈:岩石学-地球化学约束.地球科学, 34(1):17-27. doi: 10.3321/j.issn:1000-2383.2009.01.003
      [61] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      [62] 曲晓明, 辛洪波, 徐文艺, 2007.西藏雄村特大型铜金矿床容矿火山岩的成因及其对成矿的贡献.地质学报, 81(7):964-971. doi: 10.3321/j.issn:0001-5717.2007.07.012
      [63] 唐菊兴, 丁帅, 孟展, 等, 2016.西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床:以斯弄多银多金属矿为例.地球学报, 37(4):461-470. doi: 10.3975/cagsb.2016.04.08
      [64] 唐菊兴, 王勤, 杨超, 等, 2014.青藏高原两个斑岩-浅成低温热液矿床成矿亚系列及其"缺位找矿"之实践.矿床地质, 33(6):1151-1170. doi: 10.3969/j.issn.0258-7106.2014.06.002
      [65] 唐菊兴, 王勤, 杨欢欢, 等, 2017.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力.地球学报, 38(5):571-613. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705002
      [66] 辛洪波, 曲晓明, 2006.藏西措勤县日阿与斑(玢)岩有关的铜矿床的矿床地质特征与成矿时代.矿床地质, 25(4):477-482. doi: 10.3969/j.issn.0258-7106.2006.04.012
      [67] 邢俊兵, 葛良胜, 邹依林, 等, 2003.西藏谢通门县洞嘎金矿床地质地球化学特征.黄金地质, 9(2):28-32. http://d.old.wanfangdata.com.cn/Periodical/hjdz200302004
      [68] 于涛, 2018.西藏谢通门县则学层控热液矽卡岩型铅锌矿地质特征及找矿标志.现代矿业, 34(1):28-32. doi: 10.3969/j.issn.1674-6082.2018.01.005
      [69] 余红霞, 陈建林, 许继峰, 等, 2011.拉萨地块中北部晚白垩世(约90 Ma)拔拉扎含矿斑岩地球化学特征及其成因.岩石学报, 27(7):2011-2022. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201107010
      [70] 于玉帅, 杨竹森, 刘英超, 等, 2012.西藏措勤尼雄矿田滚纠铁矿金云母矿物学特征及40Ar-39Ar年代学.岩石矿物学杂志, 31(5):681-690. doi: 10.3969/j.issn.1000-6524.2012.05.006
      [71] 张立雪, 王青, 朱弟成, 等, 2013.拉萨地体锆石Hf同位素填图:对地壳性质和成矿潜力的约束.岩石学报, 29(11):3681-3688. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311003
      [72] 张晓倩, 朱弟成, 赵志丹, 等, 2010.西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义.岩石学报, 26(6):1793-1804. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006014
      [73] 赵晓燕, 杨竹森, 刘英超, 等, 2013.西藏夏垅铅锌银矿床绢云母40Ar/39Ar年龄及其地质意义.矿床地质, 32(5):963-971. doi: 10.3969/j.issn.0258-7106.2013.05.008
    • dqkx-44-6-1876-Table.pdf
    • 加载中
    图(2) / 表(1)
    计量
    • 文章访问数:  4991
    • HTML全文浏览量:  1383
    • PDF下载量:  111
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-08-17
    • 刊出日期:  2019-06-15

    目录

      /

      返回文章
      返回