Application of Multi-Scale Integrated Geophysical Method in Prospecting Prediction of Zhaxikang Pb-Zn-Sb-Au Polymetallic Deposit
-
摘要: 青藏高原后碰撞阶段发生了大规模地壳尺度的伸展作用, 并在特提斯喜马拉雅带内发育了淡色花岗岩、南北及东西向断裂等构造-热事件, 形成了一系列的铅锌锑金多金属矿床.扎西康铅锌锑金多金属矿是带内已发现唯一的超大型多金属矿床.应用多尺度的综合地球物理方法开展扎西康矿区的找矿预测, 为特提斯喜马拉雅铅锌锑金成矿带内的矿床勘查提供借鉴.首先, 通过穿越错那洞穹窿、藏南拆离系(STDS)及扎西康典型矿床的南北向MT剖面(长72 km, 基准点距1 km), 初步建立了扎西康矿床深部构造-热事件的空间关系, 结合区域构造-热事件的时间关系, 提出了构造-热耦合成矿作用模型, 为扎西康的地球物理勘探提供基础.其次, 通过1:5万区域重力(线距500 m, 点距400 m)和MT剖面(点距500 m)浅部信息的联合解译, 对扎西康整装勘查区尺度的导矿构造开展研究.最终, 通过激电中梯扫面测量(线距100 m, 点距40 m)、AMT剖面(点距50 m)及重力剖面(点距20 m)的联合解译, 对扎西康的含矿断裂开展研究, 定位深部隐伏矿体.
-
关键词:
- 后碰撞伸展期 /
- 特提斯喜马拉雅成矿带 /
- 构造-热耦合成矿模式 /
- 部分熔融体 /
- 藏南拆离系 /
- 淡色花岗岩 /
- 地球物理
Abstract: A crustal scale extension occurred in the post-collisional stage of the Tibetan Plateau, and tectonic-thermal events closely related to stretching, such as leucogranites, north-south and east-west faults, were developed in the Tethyan Himalayan and developed series of Pb-Zn-Sb-Au polymetallic deposits. The Zhaxikang Pb-Zn-Sb-Au polymetallic deposit is the only superlarge polymetallic deposit in the belt. This paper applies a multi-scale integrated geophysical method to Zhaxikang's prospecting prediction and can provide reference for the exploration of deposits in the Tethys Himalayan Pb-Zn-Sb-Au metallogenic belt. Firstly, the spatial relationship of tectonic-thermal events was initially established by the north-south MT section (72 km long and 1 km from the reference point) crossing the Cuonadong dome and the South Tibet detachment system (STDS). Combined with the time relationship of regional tectonic-thermal events, a possible tectonic-thermal coupling mineralization was proposed, which provides a basis for the geophysical exploration of Zhaxikang. Secondly, through the joint interpretation of 400 km2, 1:50 000 regional gravity (line distance 500 m, dot distance 400 m) and MT(dot distance 400 m) shallow information, the fault system of the Zhaxiang assembly area was established. Finally, the Zhaxikang polymetallic ore body was delineated by the joint interpretation of the 9 km2 IP measurement (line distance 100 m, dot distance 40 m) and the AMT profile(dot distance 50 m) and gravity(dot distance 20 m). -
图 1 特提斯喜马拉雅后碰撞阶段构造-热事件时空分布
a.特提斯喜马拉雅地质矿产简图,反映了主要的构造-热事件(图据张进江等,2011修改;数据源自郑有业等, 2007, 2014;孟祥金等,2008;张建芳,2010);b.特提斯喜马拉雅后碰撞阶段构造-热事件时间序列示意图(数据源自Searle et al., 1997;Yin et al., 1999;Blisniuk et al., 2001;Lee and Whitehouse, 2007;Aikman et al., 2008;Williams et al., 2001;Liu et al., 2014)
Fig. 1. Temporal and spatial distribution of tectonic-thermal events in the Tethys Himalayan post-collision phase
图 4 (a) 扎西康矿集区地质简图;(b)铅锌矿体典型剖面
Fig. 4. (a) Geology map of Zhaxikang deposit, (b) Pb-Zn sectional view of body
-
[1] Aikman, A. B., Harrison, T. M., Lin, D., 2008. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethy-an Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1-2):14-23. https://doi.org/10.1016/j.epsl.2008.06.038 [2] Aoya, M., Wallis, S.R., Terada, K., et al., 2005.North-South Extension in the Tibetan Crust Triggered by Granite Emplacement. Geology, 33(11):853-856. https://doi.org/10.1130/g21806.1 [3] Beck, R. A., Burbank, D. W., Sercombe, W. J., et al., 1995.Stratigraphic Evidence for an Early Collision between Northwest India and Asia.Nature, 373:55-58. doi: 10.1038/373055a0 [4] Blisniuk, P.M., Hacker, B.R., Glodny, J., et al., 2001.Normal Faulting in Central Tibet since at Least 13.5 Ma Ago.Nature, 412(6847):628-632. doi: 10.1038/35088045 [5] Brown, L. D., Zhao, W., Nelson, K. D., et al., 1996. Bright Spots, Structure, and Magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling. Science, 274(5293):1688-1690. doi: 10.1126/science.274.5293.1688 [6] Burchfiel, B. C., Chen, Z. L., Hodges, K. V., et al., 1992. The South Tibetan Detachment System, Himalayan Orogen:Extension Contemporaneous with and Parallel to Short-ening in a Collisional Mountain Belt.The Geological So-ciety of America, 269:1-41. doi: 10.1130/SPE269 [7] Burg, J.P., Guiraud, M., Chen, G.M., et al., 1984.Himalayan Metamorphism and Deformations in the North Himala-yan Belt (Southern Tibet, China). Earth and Planetary Science Letters, 69(2):391-400. doi: 10.1016/0012-821X(84)90197-3 [8] Chen, C. Y., Wang, S. J., Wang, G. R., et al., 1996. Cenozoic Extensional Tectonic System Control of the Under-ground Water in Ordovician Limestone in East Weibei, Shaanxi Province.Journal of Geomechanics, 2(4):21-30(in Chinese with English abstract). [9] Chen, Z. L., Liu, Y. P., 1996. The South Tibetan Detachment System. Tethyan Geology, (20):32-51(in Chinese with English abstract). doi: 10.1016-j.jsg.2007.08.007/ [10] Coleman, M., Hodges, K., 1995.Evidence for Tibetan Plateau Uplift before 14 Ma Ago from a New Minimum Age for East-West Extension. Nature, 374:49-52. https://doi.org/10.1038/374049a0 [11] Constable, S.C., Parker, R.L., Constable, C.G., 1987.Occam's Inversion:A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data. Geophys-ics, 52(3):289-300. https://doi.org/10.1190/1.1442303 [12] Cox, S. F., 1995. Faulting Processes at High Fluid Pressures:An Example of Fault Valve Behavior from the Wattle Gully Fault, Victoria, Australia. Journal of Geophysical Research:Solid Earth, 100(B7):12841-12859. https://doi.org/10.1029/95jb00915 [13] Cox, S. F., 2007. Structural and Isotopic Constraints on Fluid Flow Regimes and Fluid Pathways during Upper Crustal Deformation:An Example from the Taemas Area of the Lachlan Orogen, SE Australia. Journal of Geophysical Research, 112(B8):B08208. [14] Eisenlohr, B.N., Groves, D., Partington, G.A., 1989.Crustal-Scale Shear Zones and Their Significance to Archaean-Gold Mineralization in Western Australia. Mineralium Deposita, 24(1):1-8. [15] Fu, J.G., Li, G.M., Wang, G.H., et al., 2017.First Field Identi-fication of the Cuonadong Dome in Southern Tibet:Im-plications for EW Extension of the North Himalayan Gneiss Dome. International Journal of Earth Sciences, 106(5):1581-1596. https://doi.org/10.1007/s00531-016-1368-2 [16] Guillot, S., Le Fort, P., 1995.Geochemical Constraints on the Bimodal Origin of High Himalayan Leucogranites. Lith-os, 35(3-4):221-234. https://doi.org/10.1016/0024-4937(94)00052-4 [17] Harris, N., Massey, J., 1994. Decompression and Anatexis of Himalayan Metapelites. Tectonics, 13(6):1537-1546. https://doi.org/10.1029/94tc01611 [18] Hauck, M.L., Nelson, K.D., Brown, L.D., et al., 1998.Crustal Structure of the Himalayan Orogen at ~ 90° East Longi-tude from Project INDEPTH Deep Reflection Profiles. Tectonics, 17(4):481-500. https://doi.org/10.1029/98tc01314 [19] Hodges, K.V., 2000.Tectonics of the Himalaya and Southern Tibet from Two Perspectives. Geological Society of America Bulletin, 112(3):324-350. doi: 10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2 [20] Hodges, K.V., Parrish, R.R., Housh, T.B., et al., 1992.Simul-taneous Miocene Extension and Shortening in the Hima-layan Orogen. Science, 258(5087):1466-1470. https://doi.org/10.1126/science.258.5087.1466 [21] Hou, Z.Q., 2010.Metallogenesis of Continental Collision.Acta Geologica Sinica, 84(1):30-58(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304026 [22] Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006c.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineraliza-tion in Post-Collisional Extension Setting. Mineral De-posits, 25(6):629-651(in Chinese with English abstract). [23] Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006b.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅱ. Mineraliza-tion in Late-Collisional Transformation Setting.Mineral Deposits, 25(5):521-543(in Chinese with English ab-stract). [24] Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006a.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅰ.Mineralizatio-nin Main Collisional Orogenic Setting.Mineral Deposits, 25(4):337-358(in Chinese with English abstract). [25] Hou, Z.Z., Yang, W.C., Liu, J.Q., 1998.Multiscale Inversion of the Density Contrast within the Crust of China. Chi-nese Journal of Geophysics, 41(5):642-651(in Chinese with English abstract). [26] Jiao, Y.J., Liang, S.X., Guo, J., et al., 2015.Comparative Re-search on the Combinational Test of Geophysical Meth-ods in the Zhaxikang Lead-Zinc Ore Concentration Area, Tibet.Geophysical and Geochemical Exploration, 39(2):245-252(in Chinese with English abstract). [27] Jiao, Y.J., Liang, S.X., Guo, J., 2017.Research on the Predic-tion of Tibet Sangrize Black Rock Series Positioning Structure Hydrothermal Type Pb, Zn Ore. Progress in Geophysics, 32(2):634-639(in Chinese with English ab-stract). [28] Kapp, P., Guynn, J.H., 2004.Indian Punch Rifts Tibet.Geolo-gy, 32(11):993-996. https://doi.org/10.1130/g20689.1 [29] Laigle, M., Hirn, A., Sachpazi, M., et al., 2000.North Aegean Crustal Deformation:An Active Fault Imaged to 10 km Depth by Reflection Seismic Data. Geology, 28(1):71-74. doi: 10.1130/0091-7613(2000)28<71:NACDAA>2.0.CO;2 [30] Lee, J., Whitehouse, M.J., 2007.Onset of Mid-Crustal Exten-sional Flow in Southern Tibet:Evidence from U/Pb Zir-con Ages. Geology, 35(1):45-48. https://doi.org/10.1130/g22842a.1 [31] Li, Y.X., Li, G.M., Dong, S.L., et al., 2015.Preliminary Study on Fluid Evolution in the Ore Forming Process of the Zhaxikang Polymetallic Deposit, Tibet, China. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3):571-582.(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201503017 [32] Liang, W., 2014.Metallogenesis of Au-Sb-Pb-Zn mineraliza-tion in Tethys Himalaya Belt, South Tibet, China(Disser-tation). China University of Geosciences, Beijing(in Chi-nese with English abstract). [33] Liang, W., Yang, Z, S., Zheng, Y.C., 2015.The Zhaxikang Pb-Zn Polymetallic Deposit:Ar-Ar Age of Sericite and Its Metallogenic Significance.Acta Geologica Sinica, 89(3):560-568(in Chinese with English abstract). [34] Liu, T.Y., Yang, Y.S., Li, Y.Y., et al., 2007.The Order-De-pression Solution for Large-Scale Integral Equation and Its Application in the Reduction of Gravity Data to a Horizontal Plane. Chinese Journal of Geophysics, 50(1):290-296(in Chinese with English abstract). [35] Liu, W. C., Wang, Y., Zhang, X. X., et al., 2004. The Rock Types and Isotope Dating of the Kangmar Gneissic Dome in Southern Tibet.Earth Science Frontiers, 11(4):491-501 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200404015 [36] Liu, Z., Zhou, Q., Lai, Y., et al., 2015.Petrogenesis of the Ear-ly Cretaceous Laguila Bimodal Intrusive Rocks from the Tethyan Himalaya:Implications for the Break-up of East-ern Gondwana. Lithos, 236-237:190-202. https://doi.org/10.1016/j.lithos.2015.09.006 [37] Liu, Z.C., Wu, F.Y., Ji, W.Q., et al., 2014.Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Con-straints on the Channel Flow Model. Lithos, 208-209:118-136. https://doi.org/10.1016/j.lithos.2014.08.022 [38] McCaig, A. M., Wickham, S. M., Taylor, H. P., 1990. Deep Fluid Circulation in Alpine Shear Zones, Pyrenees, France:Field and Oxygen Isotope Studies.Contributions to Mineralogy and Petrology, 106(1):41-60. https://doi.org/10.1007/bf00306407 [39] Meng, X.J., Yang, Z.S., Qi, X.X., et al., 2008.Silicon-Oxygen-Hydrogen Isotopic Compositions of Zaxikang Antimony Polymetallic Deposit in Southern Tibet and Its Respons-es to the Ore-Controlling Structure.Acta Petrologica Si-nica, 24(7):1649-1655(in Chinese with English ab-stract). [40] Micklethwaite, S., Cox, S. F., 2004. Fault-Segment Rupture, Aftershock-Zone Fluid Flow, and Mineralization.Geolo-gy, 32(9):813-816. https://doi.org/10.1130/g20559.1 [41] Murphy, M. A., Mark Harrison, T., 1999. Relationship be-tween Leucogranites and the Qomolangma Detachment in the Rongbuk Valley, South Tibet. Geology, 27(9):831-834. doi: 10.1130/0091-7613(1999)027<0831:RBLATQ>2.3.CO;2 [42] Nelson, K. D., Zhao, W., Brown, L. D., et al., 1996. Partially Molten Middle Crust beneath Southern Tibet:Synthesis of Project INDEPTH Results.Science, 274(5293):1684-1688. https://doi.org/10.1126/science.274.5293.1684 [43] Rodi, W.L., MacKie, R.L., 2001.Nonlinear Conjugate Gradi-ents Algorithm for 2-D Magnetotelluric Inversion. Geo-physics, 66(1):174-187. [44] Searle, M.P., Khan, M.A., Fraser, J.E., et al., 1999.The Tectonic Evolution of the Kohistan-Karakoram Collision Belt along the Karakoram Highway Transect, North Pak-istan. Tectonics, 18(6):929-949. https://doi.org/10.1029/1999tc900042 [45] Searle, M.P., Parrish, R.R., Hodges, K.V., et al., 1997.Shisha Pangma Leucogranite, South Tibetan Himalaya:Field Relations, Geochemistry, Age, Origin, and Emplacement.The Journal of Geology, 105(3):295-318. https://doi.org/10.1086/515924 [46] Smith, J.T., Booker, J.R., 1991.Rapid Inversion of Two-and Three-Dimensional Magnetotelluric Data. Journal of Geophysical Research:Solid Earth, 96(B3):3905-3922. doi: 10.1029/90JB02416 [47] Sun, X., Zheng, Y.Y., Pirajno, F., et al., 2018.Geology, S-Pb Isotopes, and 40Ar/39Ar Geochronology of the Zhaxikang Sb-Pb-Zn-Ag Deposit in Southern Tibet:Implications for Multiple Mineralization Events at Zhaxikang. Minerali-um Deposita, 53(3):435-458. https://doi.org/10.1007/s00126-017-0752-6 [48] Visonà, D., Carosi, R., Montomoli, C., et al., 2012. Miocene Andalusite Leucogranite in Central-East Himalaya (Ever-est-Masang Kang Area):Low-Pressure Melting during Heating. Lithos, 144-145:194-208. https://doi.org/10.1016/j.lithos.2012.04.012 [49] Wang, J. Y., 1992. Problem about Static Correction in Mag-netotellurics. Geological Science and Technology Infor-mation, 11(1):69-76(in Chinese with English abstract). [50] Wei, W.B., Unsworth, M., Jones, A., et al., 2001.Detection of Widespread Fluids in the Tibetan Crust by Magnetotellu-ric Studies. Science, 292(5517):716-719. https://doi.org/10.1126/science.1010580 [51] Williams, H., Turner, S., Kelley, S., et al., 2001. Age and Composition of Dikes in Southern Tibet:New Con-straints on the Timing of East-West Extension and Its Relationship to Postcollisional Volcanism. Geology, 29(4):339-342. doi: 10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2 [52] Xu, Z.Q., Yang, J.S., Jiang, M., et al., 1999.Continental Sub-duction and Uplifting of the Orogenic Belts at the Mar-gin of the Qinghai-Tibet Plateau. Earth Science Fron-tiers, 6(3):139-151(in Chinese with English abstract). [53] Yao, C. L., Hao, T. Y., Guan, Z. N., et al., 2003. High-Speed Computation and Efficient Storage in 3-D Gravity and Magnetic Inversion Based on Genetic Algorithms. Chi-nese Journal of Geophysics, 46(2):252-258(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200302020 [54] Yin, A., 2001. Geologic Evolution of the Himalayan-Tibetan Orogen in the Context of Phanerozoic Continental Growth of Asia.Acta Geoscientia Sinica, 22(3):193-230(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200103001 [55] Yin, A., 2006.Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation.Earth-Science Reviews, 76(1-2):1-131. https://doi.org/10.1016/j.earscirev.2005.05.004 [56] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Hi-malayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [57] Yin, A., Kapp, P. A., Murphy, M. A., et al., 1999. Significant Late Neogene East-West Extension in Northern Tibet.Geology, 27(9):787-790. doi: 10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2 [58] Yin, A., Taylor, M. H., 2011. Mechanics of V-Shaped Conju-gate Strike-Slip Faults and the Corresponding Continu-um Mode of Continental Deformation.Geological Society of America Bulletin, 123(9-10):1798-1821. https://doi.org/10.1130/b30159.1 [59] Zhang, J.F., 2010.The Genesis Study of Zhaxikang Lead Zinc Antimony Silver Deposit, North Himalayan(Disserta-tion). China University of Geosciences, Wuhan(in Chi-nese with English abstract). [60] Zhang, J. J., 2007. A Review on the Extensional Structures in the Northern Himalaya and Southern Tibet. Geological Bulletin of China, 26(6):639-649(in Chinese with Eng-lish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200706003 [61] Zhang, J.J., Yang, X.Y., Qi, G.W., et al., 2011.Geochronolo-gy of the Malashan Dome and Its Application in Forma-tion of the Southern Tibet Detachment System (STDS) and Northern Himalayan Gneiss Domes (NHGD). Acta Petrologica Sinica, 27(12):3535-3544(in Chinese with English abstract). [62] Zheng, Y. Y., Duo, J., Ma, G. T., et al., 2007. Mineralization Characteristics, Discovery and Age Restriction of Chala-pu Hardrock Gold Deposit, Southern Tibet. Earth Sci-ence, 32(2):185-193(in Chinese with English abstract). [63] Zheng, Y. Y., Liu, M. Y., Sun, X., et al., 2012. Type, Discov-ery Process and Significance of Zhaxikang Antimony Polymetallic Ore Deposit, Tibet. Earth Science, 37(5):1003-1014(in Chinese with English abstract). [64] Zheng, Y.Y., Sun, X., Tian, L.M., et al., 2014.Mineralization, Deposit Type and Metallogenic Age of the Gold Antimo-ny Polymetallic Belt in the Eastern Part of North Himala-yan. Geotectonica et Metallogenia, 38(1):108-118 (in Chinese with English abstract). [65] Zhou, Q., Li, W.C., Qing, C.S., et al., 2017. Origin and Tec-tonic Implications of the Zhaxikang Pb-Zn-Sb-Ag Depos-it in Northern Himalaya:Evidence from Structures, Re-Os-Pb-S Isotopes, and Fluid Inclusions. Mineralium Deposita, 2:1-16. [66] Zhu, D.C., Chung, S.L., Mo, X.X., et al., 2009.The 132 Ma Comei-Bunbury Large Igneous Province:Remnants Iden-tified in Present-Day Southeastern Tibet and Southwest-ern Australia.Geology, 37(7):583-586. https://doi.org/10.1130/g30001a.1 [67] 陈昌彦, 王思敬, 王贵荣, 等, 1996.陕西渭北东部区新生代伸展构造网络系统对奥灰水的控制作用.地质力学学报, 2(4):21-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600065233 [68] 陈智梁, 刘宇平, 1996.藏南拆离系.特提斯地质, (20):32-51. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200609013 [69] 侯增谦, 2010.大陆碰撞成矿论.地质学报, 84(1):30-58. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201001002 [70] 侯增谦, 杨竹森, 徐文艺, 等, 2006a.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [71] 侯增谦, 潘桂棠, 王安建, 等, 2006b.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200605000.htm [72] 侯增谦, 曲晓明, 杨竹森, 等, 2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [73] 侯遵泽, 杨文采, 刘家琦, 1998.中国大陆地壳密度差异多尺度反演.地球物理学报, 41(5):642-651. doi: 10.3321/j.issn:0001-5733.1998.05.007 [74] 焦彦杰, 梁生贤, 郭镜, 2017.西藏桑日则黑色岩系构造热液型铅锌矿定位预测研究.地球物理学进展, 32(2):634-639. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201702025 [75] 焦彦杰, 梁生贤, 郭镜, 等, 2015.西藏扎西康铅锌矿集区的物探方法组合试验.物探与化探, 39(2):245-252. http://d.old.wanfangdata.com.cn/Periodical/wtyht201502006 [76] 李应栩, 李光明, 董随亮, 等, 2015.西藏扎西康多金属矿床成矿过程中的流体性质演化初探.矿物岩石地球化学通报, 34(3):571-582. doi: 10.3969/j.issn.1007-2802.2015.03.014 [77] 梁维, 2014.特提斯喜马拉雅金锑铅锌成矿带成矿作用研究(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017246484.htm [78] 梁维, 杨竹森, 郑远川, 2015.藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义.地质学报, 89(3):560-568. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503009 [79] 刘天佑, 杨宇山, 李媛媛, 等, 2007.大型积分方程降阶解法与重力资料曲面延拓.地球物理学报, 50(1):290-296. doi: 10.3321/j.issn:0001-5733.2007.01.036 [80] 刘文灿, 王瑜, 张祥信, 等, 2004.西藏南部康马岩体岩石类型及其同位素测年.地学前缘, 11(4):491-501. doi: 10.3321/j.issn:1005-2321.2004.04.015 [81] 孟祥金, 杨竹森, 戚学祥, 等, 2008.藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应.岩石学报, 24(7):1649-1655. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807021 [82] 王家映, 1992.关于大地电磁的静校正问题.地质科技情报, 11(1):69-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000361759 [83] 许志琴, 杨经绥, 姜枚, 等, 1999.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘, 6(3):139-151. doi: 10.3321/j.issn:1005-2321.1999.03.014 [84] 姚长利, 郝天珧, 管志宁, 等, 2003.重磁遗传算法三维反演中高速计算及有效存储方法技术.地球物理学报, 46(2):252-258. doi: 10.3321/j.issn:0001-5733.2003.02.020 [85] 尹安, 2001.喜马拉雅-青藏高原造山带地质演化-显生宙亚洲大陆生长.地球学报, 22(3):193-230. doi: 10.3321/j.issn:1006-3021.2001.03.001 [86] 张建芳, 2010.北喜马拉雅扎西康铅锌锑银矿床成因研究(硕士学位论文).武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-2010250581.htm [87] 张进江, 2007.北喜马拉雅及藏南伸展构造综述.地质通报, 26(6):639-649. doi: 10.3969/j.issn.1671-2552.2007.06.003 [88] 张进江, 杨雄英, 戚国伟, 等, 2011.马拉山穹窿的活动时限及其在藏南拆离系:北喜马拉雅片麻岩穹窿形成机制的应用.岩石学报, 27(12):3535-3544. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112003 [89] 郑有业, 多吉, 马国桃, 等, 2007.藏南查拉普岩金矿床特征、发现及时代约束.地球科学, 32(2):185-193. doi: 10.3321/j.issn:1000-2383.2007.02.005 [90] 郑有业, 刘敏院, 孙祥, 等, 2012.西藏扎西康锑多金属矿床类型、发现过程及意义.地球科学, 37(5):1003-1014. http://www.earth-science.net/WebPage/Article.aspx?id=2305 [91] 郑有业, 孙祥, 田立明, 等, 2014.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代.大地构造与成矿学, 38(1):108-118. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201401011 -
dqkx-44-6-2129-Table.pdf