• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    邦布造山型金矿床黄铁矿原位微量元素特征及其成矿意义数

    赵晓燕 杨竹森 张雄 裴英茹

    赵晓燕, 杨竹森, 张雄, 裴英茹, 2019. 邦布造山型金矿床黄铁矿原位微量元素特征及其成矿意义数. 地球科学, 44(6): 2052-2062. doi: 10.3799/dqkx.2018.361
    引用本文: 赵晓燕, 杨竹森, 张雄, 裴英茹, 2019. 邦布造山型金矿床黄铁矿原位微量元素特征及其成矿意义数. 地球科学, 44(6): 2052-2062. doi: 10.3799/dqkx.2018.361
    Zhao Xiaoyan, Yang Zhusen, Zhang Xiong, Pei Yingru, 2019. In Situ Trace Element Analysis of Pyrite from Bangbu Orogenic Gold Deposit and Its Metallogenic Significance. Earth Science, 44(6): 2052-2062. doi: 10.3799/dqkx.2018.361
    Citation: Zhao Xiaoyan, Yang Zhusen, Zhang Xiong, Pei Yingru, 2019. In Situ Trace Element Analysis of Pyrite from Bangbu Orogenic Gold Deposit and Its Metallogenic Significance. Earth Science, 44(6): 2052-2062. doi: 10.3799/dqkx.2018.361

    邦布造山型金矿床黄铁矿原位微量元素特征及其成矿意义数

    doi: 10.3799/dqkx.2018.361
    基金项目: 

    中国地质科学院基本科研业务费项目 KK1709

    深地资源勘查开采专项 2016YFC0600307

    国家自然科学基金项目 4170020919

    详细信息
      作者简介:

      赵晓燕(1989-), 女, 副研究员, 主要从事矿床学的研究

    • 中图分类号: P612

    In Situ Trace Element Analysis of Pyrite from Bangbu Orogenic Gold Deposit and Its Metallogenic Significance

    • 摘要: 邦布金矿床是目前在雅江缝合带研究程度最高且唯一正在开采的大型造山型金矿床.为理解邦布金矿床中金的来源及迁移沉淀机制,运用原位微区分析技术对邦布矿床中不同世代含金黄铁矿的微量元素组成进行测定.结果显示,亲铁元素Co、Ni主要以类质同象的形式进入到黄铁矿的晶格中替代Fe,As和Se呈类质同象形式替换S,Au是以纳米颗粒的形式均匀或不均匀的分布于不同产状的黄铁矿之中.邦布金矿床中的含金石英脉中三个不同世代的黄铁矿的Co/Ni比值均小于1,保存了围岩中黄铁矿的信息,显示出一种沉积或沉积改造成因.Au与As和Se具有明显的正相关关系,As和Se对Au的迁移及富集具有重要的作用.

       

    • 图  1  青藏高原造山型金成矿带简图(a)、邦布金矿矿区地质简图(b)及Ⅲ号矿体素描图(c)

      a图据侯增谦和王二七(2008)改编;b图据Pei et al.(2016);c图据Sun et al.(2016)

      Fig.  1.  Geological map of the orogenic Au belts in the Tibetan Plateau (a), Bangbu gold deposit (b) and map of Ⅲ orebody (c)

      图  2  邦布金矿蚀变及矿化期次

      a和b.朗杰学群千枚岩,发生了黄铁绢英岩化;c.早期钩状石英脉,随地层发生褶皱变形;d和e.含金石英脉,穿切千枚岩地层;f.后期陡立状石英脉,沿南北向张性裂隙贯入,穿切钩状石英脉和含金石英脉

      Fig.  2.  Photographs of alteration and mineralization in Bangbu deposit

      图  3  邦布金矿成矿阶段划分及不同世代黄铁矿照片

      a.石英-粗粒硫化物阶段;b.细粒硫化物脉穿切石英-粗粒硫化物脉;c.碳酸盐脉穿切石英硫化物脉;d.胶黄铁矿脉穿切碳酸盐脉;e.第1世代黄铁矿,形成于石英-粗粒硫化物阶段;f和g.第2世代黄铁矿,形成于金-细粒硫化物阶段;h.第3世代黄铁矿,形成于胶黄铁矿阶段

      Fig.  3.  Photographs of metallogenic stages and pyrite in different generations at Bangbu deposit

      图  4  邦布金矿床黄铁矿微量元素关系

      Fig.  4.  Correlation of selected major and trace elements in pyrite from the Bangbu gold deposit

      图  5  邦布金矿床黄铁矿Co-Ni成因图解

      底图据赵振华等(1987)

      Fig.  5.  Correlation of Co and Ni in pyrite from the Bangbu gold deposit

    • [1] Agangi, A., Hofmann, A., Wohlgemuth-Ueberwasser, C. C., 2013. Pyrite Zoning as a Record of Mineralization in the Ventersdorp Contact Reef, Witwatersrand Basin, South Africa. Economic Geology, 108(6): 1243-1272. https://doi.org/10.2113/econgeo.108.6.1243
      [2] Belissont, R., Boiron, M.C., Luais, B., et al., 2014.LA-ICP-MS Analyses of Minor and Trace Elements and Bulk Ge Isotopes in Zoned Ge-Rich Sphalerites from the Noailhac-Saint-Salvy Deposit (France):Insights into Incorporation Mechanisms and Ore Deposition Processes. Geochimica et Cosmochimica Acta, 126:518-540. https://doi.org/10.1016/j.gca.2013.10.052
      [3] Bralia, A., Sabatini, G., Troja, F., 1979.A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems.Mineralium Deposita, 14(3):353-374. http://www.sciencedirect.com/science/article/pii/S1053811905001527
      [4] Brill, B., 1989.Trace-Element Contents and Partitioning of Elements in Ore Minerals from the CSA Cu-Pb-Zn Deposit, Australia.Canadian Mineralogist, 27:263-274.
      [5] Chen, L.M., Song, X.Y., Danyushevsky, L.V., et al., 2015.A Laser Ablation ICP-MS Study of Platinum-Group and Chalcophile Elements in Base Metal Sulfide Minerals of the Jinchuan Ni-Cu Sulfide Deposit, NW China.Ore Geology Reviews, 65:955-967. https://doi.org/10.1016/j.oregeorev.2014.07.011
      [6] Cook, N.J., Chryssoulis, S.L., 1990.Concentrations of Invisible Gold in the Common Sulfides.The Canadian Mineralogist, 28(1):1-16.
      [7] Cook, N.J., Ciobanu, C.L., Danyushevsky, L.V., et al., 2011. Minor and Trace Elements in Bornite and Associated Cu-(Fe)-Sulfides:A LA-ICP-MS Study Bornite Mineral Chemistry. Geochimica et Cosmochimica Acta, 75 (21): 6473-6496. https://doi.org/10.1016/j.gca.2011.08.021
      [8] Cook, N. J., Ciobanu, C. L., Pring, A., et al., 2009. Trace and Minor Elements in Sphalerite: A LA-ICP-MS Study. Geochimica et Cosmochimica Acta, 73(16): 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
      [9] Franchini, M., McFarlane, C., Maydagán, L., et al., 2015. Trace Metals in Pyrite and Marcasite from the Agua Rica Porphyry-High Sulfidation Epithermal Deposit, Catamarca, Argentina:Textural Features and Metal Zoning at the Porphyry to Epithermal Transition.Ore Geology Reviews, 66: 366-387. https://doi.org/10.1016/j.oregeorev.2014.10.022
      [10] Gong, W., Jiang, X. D., 2017. Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science, 42(2):223-239(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201702005
      [11] Hou, Z. Q., Cook, N. J., 2009. Metallogenesis of the Tibetan Collisional Orogen: A Review and Introduction to the Special Issue. Ore Geology Reviews, 36(1-3): 2-24. https://doi.org/10.1016/j.oregeorev.2009.05.001
      [12] Hou, Z. Q., Wang, E. Q., 2008. Metallogenesis of the Indo-Asian Collisional Orogen:New Advances.Acta Geoscientica Sinica, 29(3): 275-292(in Chinese with English abstract).
      [13] Jiang, S.H., Nie, F.J., Hu, P., et al., 2009.Mayum:An Orogenic Gold Deposit in Tibet, China. Ore Geology Reviews, 36(1-3): 160-173. https://doi.org/10.1016/j.oregeorev.2009.03.006
      [14] Large, R.R., Bull, S.W., Maslennikov, V.V., 2011.A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits. Economic Geology, 106(3): 331-358. https://doi.org/10.2113/econgeo.106.3.331
      [15] Leng, C. B., 2017. Genesis of Hongshan Cu Polymetallic Large Deposit in the Zhongdian Area, NW Yunnan:Constraints from LA-ICP-MS Trace Elements of Pyrite and Pyrrhotite. Earth Science Frontiers, 24(6): 162-175(in Chinese with English abstract).
      [16] Lin, Y., Cook, N.J., Ciobanu, C.L., et al., 2011.Trace and Minor Elements in Sphalerite from Base Metal Deposits in South China: A LA-ICP-MS Study. Ore Geology Reviews, 39(4): 188-217. https://doi.org/10.1016/j.oregeorev.2011.03.001
      [17] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [18] Mikucki, E.J., Ridley, J.R., 1993.The Hydrothermal Fluid of Archæan Lode-Gold Deposits at Different Metamorphic Grades: Compositional Constraints from Ore and Wallrock Alteration Assemblages. Mineralium Deposita, 28 (6):469-481. https://doi.org/10.1007/bf02431603
      [19] Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135-148(in Chinese with English abstract).
      [20] Pals, D. W., Spry, P. G., Chryssoulis, S., 2003. Invisible Gold and Tellurium in Arsenic-Rich Pyrite from the Emperor Gold Deposit, Fiji:Implications for Gold Distribution and Deposition.Economic Geology, 98(3): 479-493. https://doi.org/10.2113/gsecongeo.98.3.479
      [21] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      [22] Pei, Y. R., Sun, Q. Z., Zheng, Y. C., et al., 2016. Genesis of the Bangbu Orogenic Gold Deposit, Tibet: Evidence from Fluid Inclusion, Stable Isotopes, and Ar-Ar Geochronology. Acta Geologica Sinica (English Edition), 90(2): 722-737. https://doi.org/10.1111/1755-6724.12700
      [23] Phillips, G.N., Evans, K.A., 2004.Role of CO2 in the Formation of Gold Deposits.Nature, 429:860-863. https://doi.org/10.1038/nature02644
      [24] Phillips, G.N., Powell, R., 2010.Formation of Gold Deposits: A Metamorphic Devolatilization Model.Journal of Metamorphic Geology, 28(6): 689-718. https://doi.org/10.1111/j.1525-1314.2010.00887.x
      [25] Reich, M., Kesler, S.E., Utsunomiya, S., et al., 2005.Solubility of Gold in Arsenian Pyrite.Geochimica et Cosmochim ica Acta, 69(11):2781-2796. https://doi.org/10.1016/j.gca.2005.01.011
      [26] Ridley, J. R., Diamond, L. W., 2000. Fluid Chemistry of Orogenic Lode Gold Deposits and Implications for Genetic Models.Reviews in Economic Geology, 13:141-162.
      [27] Sun, Q. Z., Zheng, Y. C., Hou, Z. Q., et al., 2013. Genesis of Bangbu Orogenic Gold Deposit in Tibet: Constraints from Fluid Inclusions and Isotopic Composition. Mineral Deposits, 32(2): 353-366(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201302011.htm
      [28] Sun, Q.Z., Zheng, Y.C., Li, W., et al., 2012.Study on the Occurrence State of Au in the Bangbu Orogenic Gold Deposit, Southern Tibet. Journal of East China Institute of Technology(Natural Science), 35(2): 136-142(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb201202006
      [29] Sun, X. M., Shi, G. Y., Xiong, D. X., et al., 2007. Platinum Group Elements Geochemistry and Re-Os Isotopic Compositions of Daping Gold Deposit in Ailaoshan Gold Belt, Yunnan Province, China and Their Metallogenic Implications. Acta Geologica Sinica, 81(3): 394-404(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200703011
      [30] Sun, X. M., Wei, H. X., Zhai, W., et al., 2016. Fluid Inclusion Geochemistry and Ar-Ar Geochronology of the Cenozoic Bangbu Orogenic Gold Deposit, Southern Tibet, China. Ore Geology Reviews, 74: 196-210. https://doi.org/10.1016/j.oregeorev.2015.11.021
      [31] Sun, X. M., Zhang, Y., Xiong, D. X., et al., 2009. Crust and Mantle Contributions to Gold-Forming Process at the Daping Deposit, Ailaoshan Gold Belt, Yunnan, China. Ore Geology Reviews, 36(1-3): 235-249. https://doi.org/10.1016/j.oregeorev.2009.05.002
      [32] Wei, H.X., Sun, X.M., Zhai, W., et al., 2010.He-Ar-S Isotopic Compositions of Ore-Forming Fluids in the Bangbu Large-Scale Gold Deposit in Southern Tibet, China.Acta Petrologica Sinica, 26(6): 1685-1691(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201006005
      [33] Ye, T., Li, N., 2015.The Application of Pyrite LA-ICP-MS Trace Element Analysis to Gold Deposits. Chinese Journal of Geology, 50(4):1178-1199(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201504010
      [34] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [35] Zhang, X., Deng, X.G., Yang, Z.S., et al., 2017.Genesis of the Gold Deposit in the Indus-Yarlung Tsangpo Suture Zone, Southern Tibet: Evidence from Geological and Geochemical Data. Acta Geologica Sinica(English Edition), 91(3): 947-970. https://doi.org/10.1111/1755-6724.13318
      [36] Zhao, X.Y., Yang, Z.S., Hou, Z.Q., et al., 2019.The Structural Deformation Characteristics and the Control of Gold Mineralization of the Upper Triassic Flysch (Langjiexue Group) in Tibetan Plateau. Geological Journal, 54(3): 1331-1342. https://doi.org/10.1002/gj.3230
      [37] Zhao, Z.H., Zhao, H.L., Yang, W.H., et al., 1987.Trace Element Geochemical Characteristics of Cambrian-Ordovician Boundary Strata in the Duibian and Wushan Profiles.Geochimica, 16(2):99-112(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000258178
      [38] Zhou, F., Sun, X. M., Zhai, W., et al., 2011. Geochemistry of Ore-Forming Fluid and Metallogenic Mechanism for Zhemulang Gold Deposit in Southern Tibet, China. Acta Petrologica Sinica, 27(9): 2775-2785(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201109026.htm
      [39] Zhou, T.F., Zhang, L.J., Yuan, F., et al., 2010.LA-ICP-MS in Situ Trace Element Analysis of Pyrite from the Xinqiao Cu-Au-S Deposit in Tongling, Anhui, and Its Constraints on the Ore Genesis. Earth Science Frontiers, 17 (2):306-319(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201002026
      [40] Zhu, X.Q., Guo, X.W., Zhang, X.H., et al., 2018.Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau. Earth Science, 43 (6):1903-1920(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201806009
      [41] 宫伟, 姜效典, 2017.哀牢山-红河断裂带哀牢山-大象山段渐新世-早中新世热史演化及成因.地球科学, 42(2): 223-239. http://earth-science.net/WebPage/Article.aspx?id=3430
      [42] 侯增谦, 王二七, 2008.印度-亚洲大陆碰撞成矿作用主要研究进展.地球学报, 29(3):275-292. doi: 10.3321/j.issn:1006-3021.2008.03.003
      [43] 冷成彪, 2017.滇西北红山铜多金属矿床的成因类型:黄铁矿和磁黄铁矿LA-ICP-MS微量元素制约.地学前缘, 24 (6):162-175. http://d.old.wanfangdata.com.cn/Periodical/dxqy201706014
      [44] 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013
      [45] 孙清钟, 郑远川, 侯增谦, 等, 2013.西藏邦布石英脉型金矿床的成因:流体包裹体及氢-氧同位素证据.矿床地质, 32 (2):353-366. doi: 10.3969/j.issn.0258-7106.2013.02.010
      [46] 孙清钟, 郑远川, 李为, 等, 2012.西藏邦布造山型金矿金的赋存状态研究.东华理工大学学报(自然科学版), 35(2): 136-142. doi: 10.3969/j.issn.1674-3504.2012.02.006
      [47] 孙晓明, 石贵勇, 熊德信, 等, 2007.云南哀牢山金矿带大坪金矿铂族元素(PGE)和Re-Os同位素地球化学及其矿床成因意义.地质学报, 81(3):394-404. doi: 10.3321/j.issn:0001-5717.2007.03.011
      [48] 韦慧晓, 孙晓明, 翟伟, 等, 2010.藏南邦布大型金矿成矿流体He-Ar-S同位素组成及其成矿意义.岩石学报, 26(6): 1685-1691. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006005
      [49] 叶甜, 李诺, 2015.黄铁矿原位LA-ICP-MS微量元素分析在金矿床中应用.地质科学, 50(4):1178-1199. doi: 10.3969/j.issn.0563-5020.2015.04.010
      [50] 赵振华, 赵惠兰, 杨蔚华, 等, 1987.碓边和武山寒武-奥陶系界线剖面微量元素地球化学特征.地球化学, 16(2): 99-112. doi: 10.3321/j.issn:0379-1726.1987.02.001
      [51] 周峰, 孙晓明, 翟伟, 等, 2011.藏南折木朗造山型金矿成矿流体地球化学和成矿机制.岩石学报, 27(9):2775-2785. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201109025
      [52] 周涛发, 张乐骏, 袁峰, 等, 2010.安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约.地学前缘, 17(2):306-319. http://d.old.wanfangdata.com.cn/Periodical/dxqy201002026
      [53] 朱晓青, 郭兴伟, 张训华, 等, 2018.青藏高原中-南部新生代构造演化的热年代学制约.地球科学, 43(6): 1903-1920. http://earth-science.net/WebPage/Article.aspx?id=3854
    • dqkx-44-6-2052-Table.pdf
    • 加载中
    图(5)
    计量
    • 文章访问数:  4036
    • HTML全文浏览量:  1493
    • PDF下载量:  62
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-08-13
    • 刊出日期:  2019-06-15

    目录

      /

      返回文章
      返回