Geochemical Characteristics of Clinopyroxenes from Cenozoic Alkalic Basalts and Mantle Xenoliths in Changle, Shandong Province and Its Significance
-
摘要: 山东昌乐位于华北克拉通东部,郯庐断裂带中段,广泛出露挟裹幔源捕虏体的新生代碱性玄武岩.为深入了解华北克拉通演化,依据岩相学特征、矿物化学成分特征,把昌乐碱性玄武岩中单斜辉石主要分为三大类:第1类为幔源捕虏体中原生单斜辉石,其主、微量元素含量呈现趋势不一致的解耦现象,且LREE、HREE各异特征表明其经历了多期、不同程度的地幔富集交代和部分熔融作用(低于10%的尖晶石相部分熔融),交代熔体包括地幔富碱(K)富Al硅酸盐熔/流体,可能有碳酸盐熔体的贡献;第2类为幔源捕虏体中筛状单斜辉石,是部分熔融和熔体交代作用的共同产物,从无筛孔部位到筛孔周围远离筛孔部位和紧挨着筛孔部位,呈现出受熔体作用逐渐加强趋势,离筛孔较远部位记录了玄武质熔浆作用之前的一次富碱(K)富Al熔体交代的特征,而紧挨着筛孔的部位受晚期玄武质熔浆作用的影响最强;第3类为幔源捕虏体中反应边单斜辉石及玄武岩中斑晶单斜辉石,两者的化学成分及形成条件相似,显示HFSE正异常,LILE负异常,受OIB特征寄主玄武岩浆强烈的影响.昌乐新生代碱性玄武岩地幔捕虏体中单斜辉石显示经历多期"熔体作用"和不同程度的部分熔融特征,是研究区岩石圈地幔不均一性的体现.Abstract: Changle is located both in the eastern section of the North China craton (NCC) and the middle part of Tancheng-Lujiang (Tan-Lu) fault zone that is characterized with widespread Cenozoic alkaline basalts wrapping a number of mantle xenoliths inside. For the better understanding of the evolution mechanism of the North China craton, three major types of clinopyroxenes are recognized on the basis of the petrography, mineralogy and mineral geochemical characteristics in this study. The first type is the protosomatic clinopyroxene occurred in mantle-derived xenoliths.The content of major and trace elements in this kind of clinopyroxenes show decoupling phenomenon with inconsistent tendencies. Moreover, the LREE and HREE characteristics of the protosomatic clinopyroxenes show that they had experienced multi-stage mantle metasomatism and different degrees of partial melting (no more than 10% partial melting in the spinel phase) and the metasomatic melts include mantle-derived alkali (K) and Al-enriched silicate melts/fluids, possibly contain the carbonate melts. The second kind is cribriform clinopyroxene in mantle-derived xenoliths known as the co-product of partial melting and melt metasomatism. The effect of partial melting exhibits a gradually strengthening from the non-meshing part to the areas far away from sieve mesh, then the areas around the sieve mesh. The areas far away from the sieve mesh record characteristics of a prior metasomatism of alkali (K) and Al-enriched melt before the basaltic magmatism while the areas around the sieve mesh show the strongest effect of late stage basaltic melts. The third type is the the clinopyroxenes in the corona of the protosomatic clinopyroxene or sieve-textured clinopyroxene in mantle-derived xenoliths and the clinopyroxene phenocrystsin alkaline basalts that share the similar geochemical compositions and P-T conditions that reveal a HFSE positive anomaly and a LILE negative anomaly that are strongly influenced by the OIB characteristic host basalt. The characteristics of multiple-stage "melt-effect" and different degrees of partial melting of the clinopyroxenes in the Changle Cenozoic alkaline basalt are the performance of the embodiment of lithospheric mantle heterogeneity in the study area.
-
Key words:
- Cenozoic alkaline basalts /
- clinopyroxene /
- mantle xenolith /
- geochemistry
-
图 3 方山单斜辉石中Al2O3-MgO(a),Na2O-MgO(b),AlⅣ-AlⅥ(c)图解
世界范围未交代橄榄岩引自Yaxley et al.(1998)
Fig. 3. Al2O3-MgO (a), Na2O-MgO (b), AlⅣ-AlⅥ (c) for the clinopyroxenes in the Fangshan alkali basalts
图 4 昌乐方山碱性玄武岩与幔源捕虏体中单斜辉石的球粒陨石标准化稀土元素配分模式和原始地幔标准化蛛网图
球粒陨石数据和原始地幔数据来自于Sun and McDonough (1989);阴影部分为昌乐幔源捕虏体中原生单斜辉石微量元素含量范围、虚线为筛状单斜辉石微量元素配分曲线,数据均取自Su et al.(2014).黑线表示原始Cpx,数据取自Sano and Kimura(2007)
Fig. 4. REE patterns normalized to CI chondrite and multi-trace element patterns normalized to primitive mantle for the clinopyroxenes in the Fangshan alkali basalt and mantle xenoliths, Changle
图 5 方山地幔岩中单斜辉石部分熔融模拟
原始地幔数据引自McDonough and Sun(1995),图参考Zheng et al.(2001),计算据Norman(1998)
Fig. 5. Results of modelling of partial melting fractions using clinopyroxene compositions for Fangshan mantle xenoliths
图 7 昌乐方山地幔捕虏体中单斜辉石(La/Yb)N-Ti/Eu图解
DM和PM分别代表亏损地幔和普通地幔的单斜辉石;1.硅酸盐交代趋势,2.碳酸盐交代趋势,3.部分熔融的趋势, 图据Coltorti et al.(1999);原始地幔标准化值引自Sun and McDonough(1989)
Fig. 7. (La/Yb)N-Ti/Eu diagram for clinopyroxenes from the Fangshan mantle xenoliths, Changle
图 8 昌乐方山新碱性玄武岩与地幔岩单斜辉石(Sm/Yb)N-(Ce/Nd)N图解
据Rivalenti et al.(1996), 原始地幔数据引自Hofmann(1998)
Fig. 8. (Sm/Yb)N-(Ce/Nd)N diagram for clinopyroxenes from the Fangshan alkali basalt and mantle xenoliths, Changle
-
[1] Ackerman, L., Špaek, P., Magna, T., et al., 2013.Alkaline and Carbonate-Rich Melt Metasomatism and Melting of Subcontinental Lithospheric Mantle:Evidence from Mantle Xenoliths, NE Bavaria, Bohemian Massif.Journal of Petrology, 54(12):2597-2633. https://doi.org/10.1093/petrology/egt059 [2] Aoki, K.I., Kushiro, I., 1968.Some Clinopyroxenes from Ultramafic Inclusions in Dreiser Weiher, Eifel.Contributions to Mineralogy and Petrology, 18(4):326-337. https://doi.org/10.1007/bf00399694 [3] Beard, A.D., Downes, H., Mason, P.R.D., et al., 2007.Depletion and Enrichment Processes in the Lithospheric Mantle beneath the Kola Peninsula (Russia):Evidence from Spinel Lherzolite and Wehrlite Xenoliths.Lithos, 94(1-4):1-24. https://doi.org/10.1016/j.lithos.2006.02.002 [4] Chen, X.M., Chen, L.H., Xu, X.S., 2009.Study on the Genesis of Clinopyroxene Megacrysts in the Cenozoic Alkali Basalt at Changle, Shandong Province.Acta Petrologica Sinica, 25(5):1105-1116(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200905006 [5] Coltorti, M., Bonadiman, C., Hinton, R.W., et al., 1999.Carbonatite Metasomatism of the Oceanic Upper Mantle:Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean.Journal of Petrology, 40(1):133-165. https://doi.org/10.1093/petroj/40.1.133 [6] Deng, L.X., Liu, Y.S., Zong, K.Q., et al., 2017.Trace Element and Sr Isotope Records of Multi-Episode Carbonatite Metasomatism on the Eastern Margin of the North China Craton.Geochemistry, Geophysics, Geosystems, 18(1):220-237. https://doi.org/10.1002/2016gc006618 [7] Dong, Z.L., Chen, X.M., Hu, W.X., et al., 2007.Coronas of Corundum Megacrysts in the Neogene Changle Basalt and Its Forming Model.Acta Petrologica Sinica, 23(4):805-816(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200704011 [8] Greig, A., Sie, S.H., Nicholls, I.A., 1993.Trace Element Zoning in Clinopyroxenes from Spinel Peridotite Xenoliths.Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 75(1-4):411-414. https://doi.org/10.1016/0168-583x(93)95686-y [9] Griffin, W.L., O'Reilly, S.Y., Ryan, C.G., 1992.Composition and Thermal Structure of the Lithosphere beneath South Africa, Siberia and China:Proton Microprobe Studies.Proceeding of International Symposium on Cenozoic Volcanic Rocks and Deep-Seated Xenoliths of China and Its Environs.Science Press, Beijing. [10] Guzmics, T., Kodolányi, J., Kovács, I., et al., 2008.Primary Carbonatite Melt Inclusions in Apatite and in K-Feldspar of Clinopyroxene-Rich Mantle Xenoliths Hosted in Lamprophyre Dikes (Hungary).Mineralogy and Petrology, 94(3-4):225-242. https://doi.org/10.1007/s00710-008-0014-5 [11] Han, L., Zhang, L.F., 2015.The Behavior of K and Na in Deep Subducted Slab.Acta Petrologica et Mineralogica, 34(5):755-766(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201505012 [12] He, H.Y., Deng, C.L., Pan, Y.X., et al., 2011.New 40Ar/39Ar Dating Results from the Shanwang Basin, Eastern China:Constraints on the Age of the Shanwang Formation and Associated Biota.Physics of the Earth and Planetary Interiors, 187(1-2):66-75. https://doi.org/10.1016/j.pepi.2011.05.002 [13] Hofmann, A.W., 1988.Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust.Earth and Planetary Science Letters, 90(3):297-314. https://doi.org/10.1016/0012-821x(88)90132-x [14] Hu, S.L., Luo, D., Chen, L.H., 2017.Genesis of Sieve-Textured Rim of Spinel in Mantle Xenoliths.Acta Petrologica Sinica, 33(1):69-80(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201701006 [15] Ionov, D.A., Prikhodko, V.S., Bodinier, J.L., et al., 2005.Lithospheric Mantle beneath the South-Eastern Siberian Craton:Petrology of Peridotite Xenoliths in Basalts from the Tokinsky Stanovik.Contributions to Mineralogy and Petrology, 149(6):647-665. https://doi.org/10.1007/s00410-005-0672-9 [16] Jiang, Y., Liang, X.R., Liang, X.Q., et al., 2017.Formation Mechanism of East Asia Continental Margin Extensional Belt:Evidence from Geochemistry Study of Hainan Mantle Xenoliths.Geotectonica et Metallogenia, 41(1):157-182(in Chinese with English abstract). [17] Kogiso, T., Tatsumi, Y., Nakano, S., 1997.Trace Element Transport during Crust:1.Experiments and Implications Dehydration Processes in the Subducted Oceanic for the Origin of Ocean Island Basalts.Earth and Planetary Science Letters, 148:193-205. doi: 10.1016/S0012-821X(97)00018-6 [18] Kong, F.M., Li, X.P., Zhao, L.Q., et al., 2017.Petrography and Mineral Chemistry of Corundum and Spinel Menocryst in the Cenozoic Basalt at Changle, Shandong Province.Geological Review, 63(2):441-457(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201702014 [19] Li, J.P., Kornprobst, J., Vielzeuf, D., 1996.Chemical Behaviour of Solid Phase during Partial Melting and Facies Transition (Spinel→Plagioclase) of Mantle Peridotite-Ⅰ.Experimental Study.Geochimica, 25(1):39-52(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600048543 [20] Li, S.G., Yang, W., Ke, S., et al., 2017.Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China.National Science Review, 4(1):111-120. https://doi.org/10.1093/nsr/nww070 [21] Liu, Y.R., Lü, X.B., Mei, W., et al., 2012.Mineralogy of Clinopyroxene from Pobei Mafic-Ultramafic Complex in Beishan Area, Xinjiang, and Its Geological Significance.Acta Petrologica et Mineralogica, 31(2):212-224(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201202009 [22] Lu, S.M., Pei, F.P., Zhou, Q.J., et al., 2012.Origin of Late Mesozoic Alkaline Basalts and Nature of Lithospheric Mantle in Liaoyuan Area, Jilin Province.Earth Science, 37(3):475-488(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201203008 [23] McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://doi.org/ 10.1016/0009-2541(94)00140-4 [24] Meen, J.K., 1987.Mantle Metasomatism and Carbonatites: An Experimental Study of a Complex Relationship.In: Meen, J.K., ed., Geological Society of America Special Papers.Geological Society of America, 215: 91-100. [25] Menzies, M.A., Fan, W.M., Zhang, M., 1993.Palaeozoic and Cenozoic Lithoprobes and the Loss of >120 km of Archaean Lithosphere, Sino-Korean Craton, China.Geological Society, London, Special Publications, 76(1):71-81. https://doi.org/10.1144/gsl.sp.1993.076.01.04 [26] Navon, O., Stolper, E., 1987.Geochemical Consequences of Melt Percolation:The Upper Mantle as a Chromatographic Column.The Journal of Geology, 95(3):285-307. https://doi.org/10.1086/629131 [27] Norman, M.D., 1998.Melting and Metasomatism in the Continental Lithosphere:Laser Ablation ICPMS Analysis of Minerals in Spinel Lherzolites from Eastern Australia.Contributions to Mineralogy and Petrology, 130(3-4):240-255. https://doi.org/10.1007/s004100050363 [28] Rivalenti, G., Vannucci, R., Rampone, E., et al., 1996.Peridotite Clinopyroxene Chemistry Reflects Mantle Processes rather than Continental versus Oceanic Settings.Earth and Planetary Science Letters, 139(3-4):423-437. https://doi.org/10.1016/0012-821x(96)00019-2 [29] Rollinson, H.R., 1993.Using Geochemical Data:Evaluation, Presentation, Interpretation.Routledge, New York, 104-119. [30] Rudnick, R.L., Gao, S., Ling, W.L., et al., 2004.Petrology and Geochemistry of Spinel Peridotite Xenoliths from Hannuoba and Qixia, North China Craton.Lithos, 77(1-4):609-637. https://doi.org/10.1016/j.lithos.2004.03.033 [31] Saal, A.E., Takazawa, E., Frey, F.A., et al., 2001.Re-Os Isotopes in the Horoman Peridotite:Evidence for Refertilization? Journal of Petrology, 42(1):25-37. https://doi.org/10.1093/petrology/42.1.25 [32] Safonov, O.G., Bindi, L., Vinograd, V.L., 2011.Potassium-Bearing Clinopyroxene:A Review of Experimental, Crystal Chemical and Thermodynamic Data with Petrological Applications.Mineralogical Magazine, 75(4):2467-2484. doi: 10.1180/minmag.2011.075.4.2467 [33] Salters, V.J.M., Stracke, A., 2004.Composition of the Depleted Mantle.Geochemistry, Geophysics, Geosystems, 5(5):Q05004. https://doi.org/10.1029/2003gc000597 [34] Sano, S., Kimura, J.I., 2007.Clinopyroxene REE Geochemistry of the Red Hills Peridotite, New Zealand:Interpretation of Magmatic Processes in the Upper Mantle and in the Moho Transition Zone.Journal of Petrology, 48(1):113-139. http://www.researchgate.net/publication/30997560_Clinopyroxene_REE_Geochemistry_of_the_Red_Hills_Peridotite_New_Zealand_Interpretation_of_Magmatic_Processes_in_the_Upper_Mantle_and_in_the_Moho_Transition_Zone [35] Scott, J.M., Hodgkinson, A., Palin, J.M., et al., 2014a.Ancient Melt Depletion Overprinted by Young Carbonatitic Metasomatism in the New Zealand Lithospheric Mantle.Contributions to Mineralogy and Petrology, 167:963. https://doi.org/10.1007/s00410-014-0963-0 [36] Scott, J.M., Waight, T.E., van der Meer, Q.H.A., et al., 2014b.Metasomatized Ancient Lithospheric Mantle beneath the Young Zealandia Microcontinent and Its Role in HIMU-Like Intraplate Magmatism.Geochemistry, Geophysics, Geosystems, 15(9):3477-3501. https://doi.org/10.1002/2014gc005300 [37] Seyler, M., Bonatti, E., 1994.Na, AlⅣ and AlⅥ in Clinopyroxenes of Subcontinental and Suboceanic Ridge Peridotites:A Clue to Different Melting Processes in the Mantle? Earth and Planetary Science Letters, 122(3-4):281-289. https://doi.org/10.1016/0012-821x(94)90002-7 [38] Shandong Provincial Buerau of Geology and Mineral Resources, 1982.Regional Geology of Shandong Province.Geological Publishing House, Beijing, 373-391 (in Chinese). [39] Stalder, R., Foley, S.F., Brey, G.P., et al., 1998.Mineral-Aqueous Fluid Partitioning of Trace Elements at 900-1 200 ℃ and 3.0-5.7 GPa:New Experimental Data for Garnet, Clinopyroxene, and Rutile, and Implications for Mantle Metasomatism.Geochimica et Cosmochimica Acta, 62(10):1781-1801. https://doi.org/10.1016/s0016-7037(98)00101-x [40] Su, B.X., Zhang, H.F., Sakyi, P.A., et al., 2011.The Origin of Spongy Texture in Minerals of Mantle Xenoliths from the Western Qinling, Central China.Contributions to Mineralogy and Petrology, 161(3):465-482. https://doi.org/10.1007/s00410-010-0543-x [41] Su, F., Xiao, Y., He, H.Y., et al., 2014.He and Ar Isotope Geochemistry of Pyroxene Megacrysts and Mantle Xenoliths in Cenozoic Basalt from the Changle-Linqu Area in Western Shandong.Chinese Science Bulletin, 59(4):396-411. https://doi.org/10.1007/s11434-013-0027-2 [42] Sun, J., Liu, C.Z., Wu, F.Y., 2012.Effects of Melt Refertilization on the Subcontinental Lithospheric Mantle.Geological Journal of China Universities, 18(1):52-61(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201201005 [43] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [44] Wang, C.G., Liang, Y., Xu, W.L., et al., 2013.Effect of Melt Composition on Basalt and Peridotite Interaction:Laboratory Dissolution Experiments with Applications to Mineral Compositional Variations in Mantle Xenoliths from the North China Craton.Contributions to Mineralogy and Petrology, 166(5):1469-1488. https://doi.org/10.1007/s00410-013-0938-6 [45] Wang, F.Z., Jin, L.Y., Xu, Y.R., 1987.The Study of Ultramafic Inclusions in Cenozoic Basalt in Shanwang, Linqu of Shandong.Earth Science, 12(3):249-256(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000259586 [46] Wang, R.X., Liu, Y.S., Zong, K.Q., et al., 2017.In-Situ Trace Elements and Sr Isotopes in Peridotite Xenoliths from Jining:Implications for Lithospheric Mantle Evolution.Earth Science, 42(4):511-526(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201704003.htm [47] Xia, Q.K., Cheng, H., Liu, J., 2017.The Distribution of the Early Cretaceous Hydrous Lithospheric Mantle in the North China Craton:Constraints from Water Content in Peridotites of Tietonggou.Earth Science, 42(6):853-861(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201706001.htm [48] Xiao, Y., Zhang, H.F., Fan, W.M., et al., 2010.Evolution of Lithospheric Mantle beneath the Tan-Lu Fault Zone, Eastern North China Craton:Evidence from Petrology and Geochemistry of Peridotite Xenoliths.Lithos, 117(1-4):229-246. https://doi.org/10.1016/j.lithos.2010.02.017 [49] Xu, Y.G., Yan, W., Sun, M., et al., 2001.Polybaric Melting of Melt Metasomatized Continental Mantle: Evidence from Mantle-Derived Xenoliths in Qilin, Guangdong Pronvice.Chinese Science Bulletin, 46(11):943-947 (in Chinese with English abstract). doi: 10.1007/BF02900472 [50] Xu, Z., Zhao, Z.F., Zheng, Y.F., 2012.Slab-Mantle Interaction for Thinning of Cratonic Lithospheric Mantle in North China:Geochemical Evidence from Cenozoic Continental Basalts in Central Shandong.Lithos, 146/147:202-217. https://doi.org/10.1016/j.lithos.2012.05.019 [51] Yan, J.Y., Li, X.P., Yan, Q.S., 2014.Geochemical Characteristics and Geological Implications of Clinopyroxenes in Cenozoic Basalts from the South China Sea.Geological Review, 60(4):824-838(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201404012 [52] Yang, Y.H., Zhang, H.F., Xie, L.W., et al., 2006.Petrogenesis of Typical Mesozoic and Cenozoic Volcanic Rocks from the North China Craton:New Evidence from Hf Isotopic Studies.Acta Petrologica Sinica, 22(6):1665-1671(in Chinese with English abstract). [53] Yaxley, G.M., Green, D.H., Kamenetsky, V., 1998.Carbonatite Metasomatism in the Southeastern Australian Lithosphere.Journal of Petrology, 39(11-12):1917-1930. https://doi.org/10.1093/petroj/39.11-12.1917 [54] Yu, C.M., Zheng, J.P., Griffin, W., 2006.Petrography and Geochemistry of Peridotite Xenoliths from Hannuoba and Significance for Lithospheric Mantle Evolution.Journal of China University of Geosciences, 17(1):25-33. https://doi.org/10.1016/S1002-0705(06)60003-4 [55] Zangana, N.A., Downes, H., Thirlwall, M.F., et al., 1999.Geochemical Variation in Peridotite Xenoliths and Their Constituent Clinopyroxenes from Ray Pic (French Massif Central):Implications for the Composition of the Shallow Lithospheric Mantle.Chemical Geology, 153(1-4):11-35. https://doi.org/10.1016/s0009-2541(98)00150-8 [56] Zhang, H.F., 2006.Peridotite-Melt Interaction:An Important Mechanism for the Compositional Transformation of Lithospheric Mantle.Earth Science Frontiers, 13(2):65-75(in Chinese with English abstract). [57] Zhang, H.F., Nakamura, E., Sun, M., et al., 2007.Transformation of Subcontinental Lithospheric Mantle through Peridotite-Melt Reaction:Evidence from a Highly Fertile Mantle Xenolith from the North China Craton.International Geology Review, 49(7):658-679. https://doi.org/10.2747/0020-6814.49.7.658 [58] Zhang, J., Zhang, H.F., Kita, N., et al., 2011.Secular Evolution of the Lithospheric Mantle beneath the Eastern North China Craton:Evidence from Peridotitic Xenoliths from Late Cretaceous Mafic Rocks in the Jiaodong Region, East-Central China.International Geology Review, 53(2):182-211. https://doi.org/10.1080/00206810903025090 [59] Zhao, L.Q., Li, X.P., Kong, F.M., et al., 2015.Reaction of Deep-Seated Xenolith and Melt in the Cenozonic Basalt at Changle, Shandong Prinvice.Geological Review, 61(5):1147-1167(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201505017 [60] Zheng, J.P., O'Reilly, S.Y., Griffin, W.L., et al., 2001.Relict Refractory Mantle beneath the Eastern North China Block:Significance for Lithosphere Evolution.Lithos, 57(1):43-66. https://doi.org/10.1016/s0024-4937(00)00073-6 [61] Zheng, Y.F., Zhao, Z.F., 2017.Introduction to the Structures and Processes of Subduction Zones.Journal of Asian Earth Sciences, 145:1-15. https://doi.org/10.1016/j.jseaes.2017.06.034 [62] Zhu, R.X., Chen, L., Wu, F.Y., et al., 2011.Timing, Scale and Mechanism of the Destruction of the North China Craton.Science China Earth Science, 41(5):583-592(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201106002.htm [63] Zong, K.Q., Liu, Y.S., 2018.Carbonate Metasomatism in the Lithospheric Mantle:Implications for Cratonic Destruction in North China.Science China Earth Sciences, 48(6):732-752(in Chinese). doi: 10.1007/s11430-017-9185-2 [64] 陈小明, 陈立辉, 徐夕生, 2009.山东昌乐新生代碱性玄武岩中的巨晶单斜辉石成因研究.岩石学报, 25(5):1105-1116. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200905006 [65] 董泽龙, 陈小明, 胡文瑄, 等, 2007.山东昌乐新近纪玄武岩中刚玉巨晶反应边的成因.岩石学报, 23(4):805-816. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200704011 [66] 韩磊, 张立飞, 2015.K和Na在深俯冲板块中的元素化学行为.岩石矿物学杂志, 34(5):755-766. doi: 10.3969/j.issn.1000-6524.2015.05.012 [67] 胡森林, 罗丹, 陈立辉, 2017.地幔橄榄岩捕掳体中尖晶石筛状边的成因.岩石学报, 33(1):69-80. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201701006 [68] 蒋英, 梁细荣, 梁新权, 等, 2017.海南岛陆缘扩张带形成及新生代岩石圈动力学机制:来自幔源包体的地球化学证据.大地构造与成矿学, 41(1):157-182. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201701013 [69] 孔凡梅, 李旭平, 赵令权, 等, 2017.昌乐地区新生代碱性玄武岩中刚玉、尖晶石巨晶岩目学、矿物化学特征.地质论评, 63(2):441-457. http://d.old.wanfangdata.com.cn/Periodical/dzlp201702014 [70] 李建平, Kornprobst, J., Vielzeuf, D., 1996.地幔橄榄岩部分熔融及相转变(尖晶石相→斜长石相)过程中的固相化学成分演化——Ⅰ.实验研究.地球化学, 25(1):39-52. doi: 10.3321/j.issn:0379-1726.1996.01.005 [71] 刘艳荣, 吕新彪, 梅微, 等, 2012.新疆北山地区坡北镁铁-超镁铁岩体单斜辉石的矿物学特征及其地质意义.岩石矿物学杂志, 31(2):212-224. doi: 10.3969/j.issn.1000-6524.2012.02.009 [72] 路思明, 裴福萍, 周群君, 等, 2012.吉林省辽源晚中生代碱性玄武岩成因及岩石圈地幔性质.地球科学, 37(3):475-488. http://earth-science.net/WebPage/Article.aspx?id=2251 [73] 山东省地质矿产局, 1982.山东省区域地质志.北京:地质出版社, 373-391. [74] 孙晶, 刘传周, 吴福元, 2012.熔体再富集作用对大陆岩石圈地幔的影响.高校地质学报, 18(1):52-61. doi: 10.3969/j.issn.1006-7493.2012.01.005 [75] 王方正, 金隆裕, 徐耀荣, 1987.山东临朐山旺新生代玄武岩中超镁铁岩包体的研究.地球科学, 12(3):249-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000259586 [76] 王瑞雪, 刘勇胜, 宗克清, 等, 2017.内蒙古集宁橄榄岩包体微区微量元素与Sr同位素特征及其岩石圈地幔演化的指示意义.地球科学, 42(4):511-526. http://earth-science.net/WebPage/Article.aspx?id=3561 [77] 夏群科, 程徽, 刘佳, 等, 2017.山东铁铜沟橄榄岩的水含量:华北克拉通早白垩世富水岩石圈的分布.地球科学, 42(6):853-861. http://earth-science.net/WebPage/Article.aspx?id=3583 [78] 徐义刚, 颜文, 孙敏, 等, 2001.大陆地幔变压熔融机制:广东麒麟幔源包体提供的证据.科学通报, 46(11):943-947. doi: 10.3321/j.issn:0023-074X.2001.11.015 [79] 闫纪元, 李旭平, 鄢全树, 2014.南海新生代玄武岩中单斜辉石地球化学特征及其地质意义.地质论评, 60(4):824-838. http://d.old.wanfangdata.com.cn/Periodical/dzlp201404012 [80] 杨岳衡, 张宏福, 谢烈文, 等, 2006.华北克拉通中、新生代典型火山岩的岩石成因:Hf同位素新证据.岩石学报, 22(6):1665-1671. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200606023 [81] 张宏福, 2006.橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式.地学前缘, 13(2):65-75. doi: 10.3321/j.issn:1005-2321.2006.02.005 [82] 赵令权, 李旭平, 孔凡梅, 等, 2015.昌乐方山新生代玄武岩中深源捕虏岩与熔体的相互作用.地质论评, 61(5):1147-1167. http://d.old.wanfangdata.com.cn/Periodical/dzlp201505017 [83] 朱日祥, 陈凌, 吴福元, 等, 2011.华北克拉通破坏的时间、范围与机制.国科学:地球科学, 41(5):583-592. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201105001.htm [84] 宗克清, 刘勇胜, 2018.华北克拉通东部岩石圈地幔碳酸盐熔体交代作用与克拉通破坏.中国科学:地球科学, 48(6):732-752. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201806006