The Relationship between the Paleo-Pressure Gradient and Hydrocarbon Containing of Paleogene Strata in the Bonan Sag
-
摘要: 为揭示古压力衰减梯度与含油气性的本质关系,以渤南洼陷沙三段为研究对象,以流体包裹体均一温度和冰点测试技术恢复的古压力数值作为过程控制,利用盆地模拟法恢复研究区主成藏期压力分布特征,并分析古压力梯度与含油气性的内在关系.研究表明,研究区主要油气成藏期(4.2 Ma至今)存在明显的超压,其中沙三下亚段古压力梯度高于沙三中亚段;古压力梯度高值区多发育于深洼带,近源区的断阶带和陡坡带的古压力梯度值变化相对平缓,缓坡带的古压力梯度值普遍较低.古压力梯度与含油气性关系密切:沙三下亚段源区古压力梯度高值区含油性好,沙三中亚段随古压力梯度增高油气显示变弱,油气环中心分布;近源区高古压力梯度代表较强的成藏动力,油气连片分布;远源区古压力梯度与含油气性关系较弱.Abstract: This study focuses on the characteristics of paleo-pressure gradient. Taking the Es3 in the Bonan sag as the research object,the paleo-pressure values of fluid inclusion uniform temperature and freezing point test technology were used as process control,and the basin simulation method was used to restore the pressure distribution characteristics during the reservoir period,on basis of which the paleo-pressure gradient of Es3z and Es3x in the Bonan sag were calculated,the distribution characteristics of the paleo-pressure gradient in the target stratum of the study area were revealed,and finally the relationship between paleopressure gradient and hydrocarbon containing was determined. The results show that the overpressure developed in the Bonan sag during the main hydrocarbon migration stage(4.2 Ma-now),paleo-pressure gradient of Es3x is higher than that of Es3z. As different structural zones,the high paleo-pressure gradient is often developed in the Bonan sag which is the active source area.The values of paleo-pressure gradient of Boshen 4 stepped belt and North steep slope are relatively gentle.The paleo-pressure gradient in South gentle slope is generally low. In the source area of the Es3x where the paleo-pressure gradient shows high hydrocarbon potential,and the Es3z where the hydrocarbon is distributed circularly around the center,this relationship is opposite. The high paleo-pressure gradient in the near source area represents a strong reservoir-forming power,and the hydrocarbon is distributed continuously.The relationship between the paleo-pressure gradient and the hydrocarbon potential in the far source area is weak.
-
Key words:
- Bonan sag /
- paleo-pressure recovery /
- paleo-pressure gradient /
- hydrocarbon containing /
- oil-gas geology
-
图 2 渤南洼陷储层流体包裹体镜下分布及荧光特征
a.义284井(×500,透射光),3 683.30 m,石英内部零星分布的烃类包裹体;b.义284井(×500,荧光),3 683.30 m,石英内部零星分布的呈蓝色荧光的烃类包裹体;c.义127井(×200,透射光),2 733.43 m,石英内部裂缝中条带状的烃类包裹体;d.义127井(×200,荧光),2 733.43 m,石英内部裂缝中条带状的呈黄绿色荧光的烃类包裹体;e.义282井(×500,透射光),3 469.50 m,穿石英裂缝中条带状分布的烃类包裹体;f.义282井(×500,荧光),3 469.50 m,穿石英裂缝中条带状的呈黄色荧光的烃类包裹体
Fig. 2. The microscopic characteristics of fluid inclusions in the Bonan sag
表 1 渤南洼陷烃类包裹体古压力恢复数据表
Table 1. Paleo-pressure and the test data of fluid inclusions in some reservoirs, Bonan sag
井号 深度(m) 层位 岩性描述 是否有烃类包裹体 均一温度(℃) 冰点(℃) 含盐度(%) 古压力(MPa) 古埋深(m) 古压力系数 义117 3 416.50 Es3x 泥岩 √ 114.30 -2.2 3.71 32.88 2 560.53 1.35 义117 3 416.50 Es3x 泥岩 √ 115.60 -2.5 4.18 32.82 2 594.74 1.32 义117 3 416.50 Es3x 泥岩 √ 117.60 -2.3 3.87 32.62 2 647.37 1.29 义284 3 683.30 Es3x 泥质砂岩 √ 125.60 -7.8 11.46 33.11 2 857.89 1.16 义284 3 683.30 Es3x 泥质砂岩 √ 114.30 -4.9 7.73 33.38 2 780.00 1.22 义284 3 685.80 Es3x 细砂岩 √ 116.20 -3.6 5.86 32.99 2 834.29 1.20 义284 3 685.80 Es3x 细砂岩 √ 115.80 -3.6 5.86 33.02 2 822.86 1.21 义173 3 492.00 Es3z 泥质粉砂岩 √ 102.30 -7.5 11.10 34.68 2 437.14 1.40 义173 3 492.00 Es3z 泥质粉砂岩 √ 126.70 -5.2 8.14 32.49 3 134.29 1.06 义173 3 492.00 Es3z 泥质粉砂岩 √ 111.20 -2.9 4.80 33.28 2 691.43 1.28 义172 3 074.60 Es3z 泥岩 √ 107.75 -13.9 17.70 35.17 2 592.83 1.28 义172 3 074.60 Es3z 泥岩 √ 105.70 -5.4 8.41 34.13 2 534.29 1.36 义127 2 733.43 Es3x 泥岩 √ 121.66 -9.1 12.96 33.61 2 990.31 1.11 义127 2 733.43 Es3x 泥岩 √ 113.90 -6.9 10.36 33.75 2 768.45 1.22 义121 3 474.15 Es3z 含砾砂岩 √ 102.96 -5.8 8.95 34.40 2 455.87 1.40 义121 3 474.15 Es3z 含砾砂岩 √ 104.80 -0.7 1.19 33.53 2 508.57 1.40 义284 3 568.40 Es3z 含砾砂岩 √ 120.60 -9.7 13.62 33.79 2 726.32 1.22 义284 3 568.40 Es3z 含砾砂岩 √ 121.40 -8.3 12.05 33.48 2 747.31 1.21 义282 3 469.50 Es3x 泥质砂岩 √ 108.73 -8.5 12.28 34.37 2 620.98 1.29 义282 3 469.50 Es3x 泥质砂岩 √ 113.90 -6.5 9.86 33.69 2 768.49 1.22 义282 3 469.50 Es3x 泥质砂岩 √ 116.00 -3.2 5.26 32.93 2 828.58 1.21 义173 3 689.50 Es3x 泥质粉砂岩 √ 130.71 -3.7 6.01 31.85 2 992.31 1.11 义173 3 689.50 Es3x 泥质粉砂岩 √ 132.37 -7.1 10.61 32.51 3 036.12 1.08 义172 3 342.50 Es3z 含砾砂岩 √ 136.56 -6.8 10.24 32.15 3 146.36 1.04 渤深4 3 635.40 Es3x 砂质泥岩 √ 134.60 -3.4 5.54 34.74 2 813.40 1.26 渤深4 3 635.40 Es3x 砂质泥岩 √ 128.90 -3.6 5.86 34.58 2 892.27 1.22 表 2 渤南洼陷沙三中、沙三下亚段不同构造带古压力梯度数据表
Table 2. Paleo-pressure gradient in different structural zones in Es3z and Es3x of the Bonan sag
构造带 井区 层位 古压力1 (MPa) 古压力2 (MPa) 距离(m) 古压力梯度(MPa/km) 深洼带 义124 Es3z 34.08 33.57 312.90 1.63 渤深5 Es3z 33.41 34.63 1 008.20 1.21 义173 Es3z 32.47 32.01 522.70 0.88 义83 Es3z 32.34 31.46 1 294.10 0.68 义121 Es3z 33.94 33.05 700.80 1.27 义120 Es3z 34.57 33.54 1 609.40 0.64 义289 Es3z 32.49 31.76 1 327.20 0.55 义124 Es3x 32.97 32.83 583.30 0.24 渤深5 Es3x 33.31 33.12 141.80 1.34 义173 Es3x 33.44 33.05 375.00 1.04 义83 Es3x 35.03 34.57 884.60 0.52 义121 Es3x 35.32 34.67 389.20 1.67 义120 Es3x 34.57 34.01 811.60 0.69 陡坡带 义284 Es3z 31.56 31.50 285.70 0.21 义282 Es3z 30.13 29.61 812.50 0.64 义286 Es3z 31.94 30.86 1 333.30 0.81 义88 Es3z 31.41 30.98 573.30 0.75 义107 Es3z 31.06 30.77 224.80 1.29 义282 Es3x 34.39 33.04 1 666.70 0.81 义286 Es3x 33.78 33.04 1 298.20 0.57 义88 Es3x 34.11 33.57 867.10 0.63 义107 Es3x 34.51 34.02 636.40 0.77 断阶带 义172 Es3z 33.49 33.01 33.01 0.35 义77 Es3z 34.19 33.53 33.53 0.79 义100 Es3z 34.31 33.69 33.69 1.21 义102 Es3z 34.12 33.55 780.80 0.73 义56 Es3z 33.26 32.97 439.40 0.66 义47 Es3z 34.03 33.54 308.20 1.59 义17 Es3z 33.34 33.03 968.70 0.32 义66 Es3z 33.45 32.94 809.50 0.63 义102 Es3z 33.58 33.05 1 232.30 0.43 义172 Es3x 34.65 34.53 352.90 0.34 义67 Es3x 33.29 33.04 1 086.90 0.23 断阶带 义100 Es3x 34.46 34.03 632.35 0.68 义102 Es3x 33.57 33.03 439.00 1.23 义56 Es3x 33.77 33.09 527.10 1.29 缓坡带 义128 Es3z 33.67 32.94 2 607.10 0.28 义125 Es3z 33.59 33.12 1 566.70 0.3 义126 Es3z 33.57 33.02 696.20 0.79 义113 Es3z 33.42 33.24 6 666.70 0.27 罗111 Es3z 33.30 33.07 1 277.80 0.18 罗67 Es3z 32.03 31.58 1 363.60 0.33 义128 Es3x 33.66 33.21 1 071.40 0.42 义125 Es3x 33.73 33.40 1 178.60 0.28 义126 Es3x 33.41 33.02 951.20 0.41 义113 Es3x 33.08 32.76 711.10 0.45 罗111 Es3x 33.23 33.11 375.00 0.32 罗67 Es3x 33.50 33.43 101.40 0.69 -
[1] Anissimov, L., 2001. Overpressure Phenomena in the Precaspian Basin. Petroleum Geoscience, 7(4): 389-394. https://doi.org/10.1144/petgeo.7.4.389 [2] Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O-Nacl Solutions. Geochimica et Cosmochimica Acta, 57(3): 683-684. https://doi.org/10.1016/0016-7037(93)90378-a [3] Kempton, R., Bourdet, J., Gong, S., et al., 2017. Petroleum Migration in the Bight Basin: A Fluid Inclusion Approach to Constraining Source, Composition and Timing. The APPEA Journal, 57(2): 762. https://doi.org/10.1071/aj16222 [4] Li, S.P., Qiu, N.S., Zeng, J.H., 2004. Analyzing Paleopressure of Dongying Sag by Using Fluid Inclusion. Journal of East China Institute of Technology, 27(3):209-212(in Chinese with English Abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb200403002 [5] Liang, Z.Z., Yuan, B., 2014. Fluid Inclusion Characteristics of Wendong Oilfield in Dongpu Depression and Its Significances on Hydrocarbon Accumulation. Journal of China University of Mining & Technology, 43(3):458-463(in Chinese with English Abstract). http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201403014 [6] Liu, D.H., 1995. Fluid Inclusion Studies: An Effective Means for Basin Fluid Investigation. Earth Science Frontiers, 2(3-4):149-154(in Chinese with English Abstract). [7] Liu, H., Jiang, Y.L., Lu, H., et al., 2016. Restoration of Fluid Pressure during Hydrocarbon Accumulation Period and Fluid Inclusion Feature in the Bonan sag. Earth Science, 41(8):1384-1394(in Chinese with English Abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201608011 [8] Liu, X.H., Feng, M.Y., Luo, J.L., et al., 2010.Characteristics of fluid Inclusions in Reservoirs in the Eighth Member of the Shanxi Formation in Uxin Ju Area, the Ordos Basin and Their Significance. Oil & Gas Geology, 31(3):360-366(in Chinese with English Abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201003014 [9] Liu, J.Z., Chen, H.H., Li, J., et al., 2008.Paleo-Fluid Pressure Distribution and Evolution of Inclusions in the Second Member of Shanxi Formation in Yi-Shan Slope of Ordos Basin. Acta Petrolgica Sinica, 29(2):226-230(in Chinese with English Abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200802012 [10] Lu, H., Jiang, Y.L., Liu, H., et al., 2012. Study on Formation Stages of Oil-Gas Reservoirs in Bonan Sub-Sag, Zhanhua Sag. Petroleum Geology and Recovery Efficiency, 19(3):49-52(in Chinese with English Abstract). [11] Mao, C., Chen, Y., Zhou, Y. Q., et al., 2015.Improved Simulation Method of Petroleum Inclusion Thermodynamics and Its Application in Hydrocarbon Accumulations. Journal of Jilin University (Earth Science Edition), 2015(5):1352-1364. (in Chinese with English Abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201505009 [12] Mi, J.K., Xiao, X.M., Liu. D.H., et al., 2003. Calculation to Trapping Pressure of Inclusions Occurring in Upper Paleozoic Sandstone Reservoir from the Ordos Basin Using PVTsim Method. Science in China, 33(7):679-685(in Chinese). [13] Qin, Y.C., Xu, F.G., Zhao, C.X., et al., 2002. Research on Es3 Oil Bearing System in Bonan Oilfield. Petroleum Geology and Recovery Efficiency, 19(3):49-52(in Chinese with English Abstract). [14] Shi, B.H., Zhang, Y., Zhang, L., et al., 2015.Dating of Hydrocarbon Accumulation by Fluid Inclusion Characteristics in the Chang 9 of Yanchang Formation in Jiyuan Area, the Ordos Basin. Oil & Gas Geology, 36(1):17-22(in Chinese with English Abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201501003 [15] Sun, M.L., Liu, G.D., Li, J., 2008. Relationship between Excess Pressure Gradient and Gas Accumulation in Over-Pressured Basin. Journal of China University of Petroleum(Natural Science Edition), 32(3):19-22(in Chinese with English Abstract). [16] Tao, Y.C., 1983. Hydrodynamics Mechanism of Hydrocarbon Migration and Accumulation. Oil & Gas Geology, 4(3):254-268. [17] Tao, S.Z., 2006. Sequence of Diagenetic Authigenic Mineral the Basis of Timing the Inclusions Formation in Sedimentary Rocks. Petroleum Exploration and Development, 33(2):154-160(in Chinese with English Abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200602007 [18] Wang, Z. L., Chen, H. L., 2007. The Distribution and Evolution of Fluid Pressure and Its Influence on Natural Gas Accumulation in the Upper Paleozoic of Shenmu-Yulin Area, Ordos Basin. Science in China Series D: Earth Sciences, 50(S2): 59-74. https://doi.org/10.1007/s11430-007-6031-0 [19] Wilkinson, J. J., 1994. A New System for High-Magnification Thermometric Studies of Fluid Inclusions in Diagenetic Minerals. Journal of Sedimentary Research, 64(3a): 701-703. https://doi.org/10.1306/d4267e88-2b26-11d7-8648000102c1865d [20] Wu, J., Liu, S. G., Wang, G. Z., et al., 2016. Multi-Stage Hydrocarbon Accumulation and Formation Pressure Evolution in Sinian Dengying Formation-Cambrian Longwangmiao Formation, Gaoshiti-Moxi Structure, Sichuan Basin. Journal of Earth Science, 27(5): 835-845. https://doi.org/10.1007/s12583-016-0706-4 [21] Xie, X.N., Li, S.T., Liu, X.F., 2006. Basin Fluid Dynamics in Abnormally Pressured Environments. China University of Geosciences Press, Wuhan(in Chinese). [22] Yang, P., Ren, Z.L., Xia, B., et al., 2018. Tectono-Thermal Evolution, Hydrocarbon Filling and Accumulation Phases of the Hari Sag, in the Yingen-Ejinaqi Basin, Inner Mongolia, Northern China. Acta Geologica Sinica-English Edition, 92(3): 1157-1169. https://doi.org/10.1111/1755-6724.13597 [23] Zha, M., Qu, J.X., Zhang, W.H., 2002.The Relationship between Overpressure and Reservoir Forming Mechanism. Petroleum Exploration and Development, 29(1):19-23(in Chinese with English Abstract). http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201801002 [24] Zhang, S. W., Zhang, L. Y., Zhang, S. C., et al., 2009. Formation of Abnormal High Pressure and Its Application in the Study of Oil-Bearing Property of Lithologic Hydrocarbon Reservoirs in the Dongying Sag. Science Bulletin, 54(23): 4468-4478. https://doi.org/10.1007/s11434-009-0200-9 [25] Zhang, J.W., Zou, H.Y., Li, P.P., et al., 2015.A New PVT Simulation Method for Hydrocarbon-Containing Inclusions and Its Application to Reconstructing Paleo-Pressure of Gas Reservoirs. Petroleum Geology & Experiment, 37(1):102-108(in Chinese with English Abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201501018 [26] Zhang, Y. G., Frantz, J. D., 1987. Determination of the Homogenization Temperatures and Densities of Supercritical Fluids in the System NaCl-KCl-CaCl2 H2O Using Synthetic Fluid Inclusions. Chemical Geology, 64(3/4): 335-350. https://doi.org/10.1016/0009-2541(87)90012-x [27] Zheng, Y. Y., Li, X. J., Ma, L.J., et al., 1998.Application Status of Organic Inclusion in the Research on Oil Generating Basin. Earth Science Frontiers, (2):325-331(in Chinese with English Abstract). [28] 梁正中, 袁波, 2014.东濮老区文东油田流体包裹体特征及成藏意义.中国矿业大学学报, 43(3):458-463. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201403014 [29] 刘建章, 陈红汉, 李剑, 等, 2008.鄂尔多斯盆地伊-陕斜坡山西组2段包裹体古流体压力分布及演化.石油学报, 29(2):226-230. http://d.old.wanfangdata.com.cn/Periodical/syxb200802012 [30] 刘德汉, 1995.包裹体研究盆地流体追踪的有力工具.地学前缘, 2(3-4):149-154. [31] 刘小洪, 冯明友, 罗静兰, 等, 2010.鄂尔多斯盆地乌审召地区盒8、山1段储层流体包裹体特征及其意义.石油与天然气地质, 31(3):360-366. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201003014 [32] 刘华, 蒋有录, 卢浩, 等, 2016.渤南洼陷流体包裹体特征与成藏期流体压力恢复.地球科学, 41(8):1384-1394. doi: 10.3799/dqkx.2016.109 [33] 李善鹏, 邱楠生, 曾溅辉, 2004.利用流体包裹体分析东营凹陷古压力.东华理工大学学报(自然科学版), 27(3):209-212. http://d.old.wanfangdata.com.cn/Periodical/hddzxyxb200403002 [34] 卢浩, 蒋有录, 刘华, 等, 2012.沾化凹陷渤南洼陷油气成藏期分析.油气地质与采收率, 19(2):5-8. http://d.old.wanfangdata.com.cn/Periodical/yqdzycsl201202002 [35] 毛毳, 陈勇, 周瑶琪, 等, 2015.改进后的烃类流体包裹体热力学模拟方法及其在油气成藏研究中的应用.吉林大学学报, 2015(5):1352-1364. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201505009 [36] 米敬奎, 肖贤明, 刘德汉, 等, 2003.利用储层流体包裹体的PVT特征模拟计算天然气藏形成古压力——以鄂尔多斯盆地上古生界深盆气藏为例中国科学:地球科学, 33(7):679-685. [37] 秦延才, 徐福刚, 赵翠霞, 等, 2002.渤南油田沙三段含油体系研究.油气地质与采收率, 9(3):59-62. http://d.old.wanfangdata.com.cn/Periodical/yqdzycsl200203019 [38] 时保宏, 张艳, 张雷, 等, 2015.运用流体包裹体资料探讨鄂尔多斯盆地姬塬地区长9油藏史.石油与天然气地质, 36(1):17-22. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201501003 [39] 孙明亮, 柳广弟, 李剑, 2008.超压盆地内剩余压力梯度与天然气成藏的关系.中国石油大学学报(自然科学版), 32(3):19-22. http://d.old.wanfangdata.com.cn/Periodical/sydxxb200803004 [40] 陶一川, 1983.油气运移聚集的流体动力学机理问题.石油与天然气地质, 4(3):254-268. [41] 陶士振, 2006.自生矿物序次是确定包裹体期次的根本依据.石油勘探与开发, 33(2):154-160. http://d.old.wanfangdata.com.cn/Periodical/syktykf200602007 [42] 解习农, 李思田, 刘晓峰, 2006.异常压力盆地流体动力学.武汉:中国地质大学出版社. [43] 查明, 曲江秀, 张卫海, 2002.异常高压与油气成藏机理.石油勘探与开发, 29(1):19-23. http://d.old.wanfangdata.com.cn/Periodical/syktykf200201005 [44] 郑有业, 李晓菊, 马丽娟, 等, 1998.有机包裹体在生油盆地研究中的应用.地学前缘, (2):325-331. [45] 张俊武, 邹华耀, 李平平, 等, 2015.含烃盐水包裹体PVT模拟新方法及其在气藏古压力恢复中的应用.石油实验地质, 37(1):102-108.