The World-Class Huoshaoyun Nonsulfide Zinc-Lead Deposit, Xinjiang, NW China: Formation by Supergene Oxidization of a Mississippi Valley-Type Deposit
-
摘要: 火烧云矿床是我国新发现具有超大型规模的非硫化物铅锌矿床,成因倍受关注.矿床主要由菱锌矿和白铅矿组成,形成块状及少量纹层状和角砾状矿石,构成了层状矿体.赋矿围岩为中侏罗统含沉积石膏的台地相碳酸盐岩,为密西西比河谷型矿床的典型赋矿围岩,而非喷流沉积型矿床的赋矿围岩.矿石中普遍出现被白铅矿交代的方铅矿残留,表明原生矿化为硫化物.方铅矿δ34SV-CDT值为-34‰~-18‰,显示还原硫的来源与细菌还原作用作用有关,这在MVT矿床中较为常见,而在与岩浆作用有关的铅锌矿床中少见.同时,矿床也不具有与岩浆有关的热液矿化和蚀变特征,故矿床的原生硫化物矿化应为MVT型.通过菱锌矿和白铅矿的O同位素组成,计算出形成这两种矿物的流体具有低温、低δ18O值的大气降水的特征,结合白铅矿交代方铅矿的这一现象,表明目前观察到的由菱锌矿和白铅矿构成铅锌矿体系是在表生作用下直接交代原生硫化物矿体形成.Abstract: Huoshaoyun is a newly discovered world-class nonsulfide zinc-lead deposit in Xinjiang, NW China, so its genesis attracts many geologists'attentions. Conformable orebodies in the deposit contain massive and minor stratiform and breccia-hosted ores that are dominated by smithsonite and cerussite. Ores are hosted by Middle Jurassic sedimentary gypsum-bearing platform facies carbonate. Clearly, the carbonate is typical host for Mississippi Valley-type (MVT) deposit rather than for sedimentary exhalative (SEDEX) deposit. Galena is common in the ores and was replaced by cerussite, implying that precursor mineralization in the deposit was zinc and lead sulfides. δ34SV-CDT values of the galena range from -34‰ to -18‰, indicating that derivation of reduced sulfur was related to bacterial sulfate reduction (BSR) process, which is common in MVT deposits but is scarce in magmatic -related Zn -Pb deposits. Together with the absence of magmatic -related hydrothermal alteration and mineralization, it suggests that primary mineralization at Huoshaoyun is of MVT origin. Oxygen isotopic compositions of water that reached isotopic equilibrium with smithsonite and cerussite are low in temperature and light in δ18O values, implyimg that meteoric water was involved in the two mineral formations. Combined with the observation that galena was replaced by cerussite, we suggest that the smithsonite and cerussite were the result of intensive supergene oxidization of primary znic and lead sulfides of MVT origin.
-
Key words:
- smithsonite /
- cerussite /
- galena /
- platform carbonate /
- Mississippi Valley-type /
- supergene oxidization /
- Huoshaoyun /
- deposits
-
图 1 青藏高原沉积岩容矿铅锌矿床分布
Fig. 1. Distribution map of sedimentary zinc-lead deposits in the Qinghai-Tibet Plateau
图 2 火烧云铅锌矿床区地质简图
1.第四纪沉积物;2.石膏层;3.中侏罗统龙山组上段第三岩性层:青灰色细晶灰岩和生物碎屑灰岩,局部见泥灰岩,见厚层石膏;4.中侏罗统龙山组上段第二岩性层:灰-深灰色细晶灰岩,局部泥灰岩;5.中侏罗统龙山组上段第一岩性层:灰色细晶灰岩和生物碎屑灰岩,局部夹鲕粒灰岩、泥灰岩;6.中侏罗统龙山组下段:紫红色、红褐色砾岩、砂岩;7.上三叠统克勒青河组:深灰色、灰绿色泥质粉砂岩、砂岩;8.图 3剖面图位置;9.地质界线;10.不整合地质界线;11.地表出露的铅锌矿体;12.平移断层;13.正断层;14.主矿体投影边界;15.钻孔;16.地层产状据;范廷宾等(2017)修改
Fig. 2. Geological map of the Huoshaoyun zinc-lead deposit
图 5 火烧云主要铅锌矿石特征
a.块状矿石,可见矿石发育孔洞,Ⅲ1矿体;b和c.条带状矿石,表现为褐色和白色菱锌矿互层产出,Ⅱ2矿体;d.角砾状矿石,表现为菱锌矿胶结灰岩角砾,Ⅲ1矿体;e.角砾状矿石,表现为方铅矿(蓝灰色)、白铅矿、菱锌矿(深褐色)胶结菱锌矿化的灰岩角砾,Ⅲ1矿体;f.白铅矿(蓝灰色)交代方铅矿(亮白色),残留的方铅矿呈他型的“蠕虫状”,反射光,照片位置见图 5e;g.扫描电镜下的方铅矿(立方体晶型,颜色浅灰白色)与白铅矿(较深的灰色),白铅矿形成在方铅矿表面,方铅矿具有被“溶蚀”的特征(如箭头所指位置);h.胶状/皮壳状菱锌矿充tu填孔洞,矿物从早到晚向残留孔洞方向生长,反映胶状/皮壳状菱锌矿沉淀晚于方铅矿和白铅矿,反射光,照片位置见图 5e
Fig. 5. Lead-zinc ores and mineralization in the Huoshaoyun deposit
图 6 火烧云矿床C-O同位素组成
火烧云矿床已发表的碳酸盐矿物数据来自董连慧等(2015)
Fig. 6. Carbon and oxygen isotopic compositions of smithson-ite, cerussite, and limestone in the Huoshaoyun deposit
-
[1] Boni, M., Gilg, H. A., Balassone, G., et al., 2007. Hypogene Zn Carbonate Ores in the Angouran Deposit, NW Iran.Mineralium Deposita, 42, 799-820. doi: 10.1007/s00126-007-0144-4 [2] Brugger, J., McPhail, D.C., Wallace, M., et al., 2003.Forma-tion of Willemite in Hydrothermal Environments. Eco-nomic Geology, 98(4):819-835. doi: 10.2113/gsecongeo.98.4.819 [3] Dong, L. H., Xu, X. W., Fan, T. B., et al., 2015. Discovery of the Huoshaoyun Super-Large Exhalative-Sedimentary Carbonate Pb-Zn Deposit in the Western Kunlun Area and Its Great Significance for Regional Metallogeny.Xin-jiang Geology, 33(1):41-50(in Chinese with English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz2015010008 [4] Fan, T.B., Yu, Y.J., Xia, M.Y., et al., 2017.Geological Fea-tures and Prospecting for the Huoshaoyun Pb-Zn Depos-it in Hotan, Xinjiang. Acta Geologica Sichuan, 37(4):578-582(in Chinese with English abstract). [5] Gao, Y.B., Teng, J.X., Li, K., et al., 2017.Metallogenic Char-acteristics and Genesis of the Huoshaoyun Superlarge Lead-Zinc Deposit in Karakorum.Acta Mineralogica Si-nica, 37(Suppl.):561-562(in Chinese). [6] Gilg, H.A., Boni, M., Hochleitner, R., et al., 2008.Stable Iso-tope Geochemistry of Carbonate Minerals in Supergene Oxidation Zones of Zn-Pb Deposits. Ore Geology Re-views, 33(2):117-133. doi: 10.1016/j.ore-georev.2007.02.005 [7] Hitzman, M.W., 2003.Classification, Genesis, and Exploration Guides for Nonsulfide Zinc Deposits.Economic Geology, 98(4):685-714.doi: 10.2113/98.4.685 [8] Hou, Z. Q., Cook, N. J., 2009. Metallogenesis of the Tibetan Collisional Orogen:A Review and Introduction to the Special Issue.Ore Geology Reviews, 36(1-3):2-24. doi: 10.1016/j.oregeorev.2009.05.001 [9] Hou, Z.Q., Song, Y.C., Li, Z., et al., 2008.Thrust-Controlled, Sediments-Hosted Pb-Zn-Ag-Cu Deposits in Eastern and Northern Margins of Tibetan Orogenic Belt:Geolog-ical Features and Tectonic Model. Mineral Deposits, 27(2):123-144(in Chinese with English abstract). [10] Huang, Q.F., Lu, Y., 2016.Analysis of Geological Characteris-tics and Genesis of Hotan Huoshaoyun Lead-Zinc Depos-it. Resource Information and Engineeing, 31(4):3-5(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200904013.htm [11] Jin, H.Z., 2018.Analysis of Metallogenic Condition and Pros-pecting Potential of Lead-Zinc Deposit in Tianshuihai-Huoshaoyun Area, Karakoram. Journal of Geology, 42(1):17-22(in Chinese with English abstract). [12] Leach, D.L., Bradley, D.C., Huston, D., et al., 2010.Sediment-Hosted Lead-Zinc Deposits in Earth History. Economic Geology, 105:593-625. doi: 10.2113/gsec-ongeo.105.3.593 [13] Leach, D.L., Sangster, D.F., Kelley, K.D., et al., 2005.Sedi-ment-Hosted Lead-Zinc Deposit:A Global Perspective.Economic Geology, 100:561-607. [14] Li, X.F., Zhang, M.J., Li, Y.J., et al., 2012.Characteristics of δ18O in Precipitation and Moisture Transports over the Arid Region in Northwest China.Environmental Science, 33(3):711-719(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201203006 [15] Ohmoto, H., 1996. Formation of Volcanogenic Massive Sul-fide Deposits:The Kuroko Perspective.Ore Geology Re-views, 10(3-6):135-177. doi: 10.1016/0169-1368(95)00021-6 [16] Ohmoto, H., Rye, R.O., 1979.Isotopes of Sulfur and Carbon. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits.Wiley, New York, 509-567. [17] Reichert, J., Borg, G., 2008.Numerical Simulation and a Geo-chemical Model of Supergene Carbonate-Hosted Non-Sulphide Zinc Deposits. Ore Geology Reviews, 33(2):134-151. doi: 10.1016/j.oregeor-ev.2007.02.006 [18] Song, Y. C., Hou, Z. Q., Liu, Y. C., et al., 2017. Mississippi Valley-Type (MVT) Pb-Zn Deposits in the Tethyan Do-main:A Review. Geology in China, 44(4):664-689(in Chinese with English abstract). doi: 10.1007/s001260100208 [19] Song, Y. C., Hou, Z. Q., Yang, T. N., et al., 2011. Sediment-Hosted Himalayan Base Metal Deposits in Sanjiang Re-gion:Characteristics and Genetic Types.Acta Petrologi-ca et Mineralogica, 30(3):355-380(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201103003.htm [20] Spurlin, M. S., Yin, A., Horton, B. K., et al., 2005. Structural Evolution of the Yushu-Nangqian Region and Its Rela-tionship to Syncollisional Igneous Activity, East-Central Tibet. Geological Society of America Bulletin, 117(9):1293.doi: 10.1130/b25572.1 [21] Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883. doi: 10.2113/gsecongeo.69.6.843 [22] Xiao, W.J., Li, J.L., Hou, Q.L., et al., 1998.Structural Styles of the Southeastern West Kunlun Mountains and Their Implication to Growing-Arc Orogenesis.Chinese Journal of Geophysics, 41(Suppl.):133-141(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=8d30ed5707902d5032eb7b72d832176c&encoded=0&v=paper_preview&mkt=zh-cn [23] Yi, A., 2001. Geologic Evolution of the Himalayan-Tibetan Orogen in the Context of Phanerozoic Continental Growth of Asia.Acta Geoscientia Sinica, 22(3):193-230(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200103001 [24] Zhang, Z.D., Zeng, Y.C., 1988.The Division and Evolution of Tectonic Area in Western Kunlun Mt.-Karakorum Mt.Xinjiang Geology, 6(1):60-72(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a903d0e17d7c8621c08b6d60b5f907fd&encoded=0&v=paper_preview&mkt=zh-cn [25] Zhao, D. D., Chen, H. L., Yang, S. F., et al., 2000. Structural Styles of the Foreland Fold and Thrust Belt in the Tians-huihai Area, Western Kunlun, and Its Tectonic Evolu-tion. Acta Geologica Sinica, 74(2):134-141(in Chinese with English abstract). [26] Zhou, M.L., Liu, Y.C., 2018.The Sachakou Deposit in West Kunlun of Xinjiang:A Pb-Zn Polymetallic Deposit Asso-ciated with Magmatic Metasomatism of Carbonate Rock.Acta Geologica Sinica(English Edition), 92(2):883-884.doi: 10.1111/1755-6724.13572 [27] 董连慧, 徐兴旺, 范廷宾, 等, 2015.喀喇昆仑火烧云超大型喷流-沉积成因碳酸盐型Pb-Zn矿的发现及区域成矿学意义.新疆地质, 33(1):41-50. doi: 10.3969/j.issn.1000-8845.2015.01.008 [28] 范廷宾, 余元军, 夏明毅, 等, 2017.新疆和田县火烧云铅锌矿地质特征及其找矿.四川地质学报, 37(4):578-582. doi: 10.3969/j.issn.1006-0995.2017.04.011 [29] 高永宝, 滕家欣, 李侃, 2017.喀喇昆仑火烧云超大型铅锌矿床成矿特征与成因.矿物学报, 37(增刊):561-562. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-KWXB201712001358.htm [30] 侯增谦, 宋玉财, 李政, 等, 2008.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型.矿床地质, 27(2):123-144. doi: 10.3969/j.issn.0258-7106.2008.02.001 [31] 黄清凤, 陆勇, 2016.新疆和田县火烧云铅锌矿地质特征及成因分析.资源信息与工程, 31(4):3-5. http://d.old.wanfangdata.com.cn/Periodical/ysjswz201604002 [32] 晋红展, 2018.喀喇昆仑甜水海-火烧云一带铅锌矿成矿条件及找矿潜力.地质学刊, 42(1):17-22. doi: 10.3969/j.issn.1674-3636.2018.01.003 [33] 李小飞, 张明军, 李亚举, 等, 2012.西北干旱区降水中δ18O变化特征及其水汽输送.环境科学, 33(3):711-719. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201203006 [34] 宋玉财, 侯增谦, 刘英超, 等, 2017.特提斯域的密西西比河谷型(MVT)铅锌矿床.中国地质, 44(4):664-689. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201704004 [35] 宋玉财, 侯增谦, 杨天南, 等, 2011. "三江"喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型.岩石矿物学杂志, 30(3):355-380. doi: 10.3969/j.issn.1000-6524.2011.03.002 [36] 肖文交, 李继亮, 侯泉林, 等, 1998.西昆仑东南构造样式及其对增生弧造山作用的意义.地球物理学报, 41(增刊1):133-141. http://www.cnki.com.cn/Article/CJFDTotal-DQWX1998S1014.htm [37] 尹安, 2001.喜马拉雅-青藏高原造山带地质演化:显生宙亚洲大陆生长.地球学报, 22(3):193-230. doi: 10.3321/j.issn:1006-3021.2001.03.001 [38] 张志德, 曾亚参, 1988.西昆仑山-喀喇昆仑山的构造分区及其演化.新疆地质, 6(1):60-67. http://www.cnki.com.cn/Article/CJFDTotal-XJDI198801005.htm [39] 赵冬冬, 陈汉林, 杨树锋, 等, 2000.西昆仑甜水海地区前陆褶皱冲断带的构造样式及其演化.地质学报, 74(2):134-141. doi: 10.3321/j.issn:0001-5717.2000.02.005 -
dqkx-44-6-1987-Table.pdf