• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    自由烃差值法评价页岩含油性的思想、方法及应用

    李水福 胡守志 张冬梅 李祥权 解习农

    李水福, 胡守志, 张冬梅, 李祥权, 解习农, 2019. 自由烃差值法评价页岩含油性的思想、方法及应用. 地球科学, 44(3): 929-938. doi: 10.3799/dqkx.2018.354
    引用本文: 李水福, 胡守志, 张冬梅, 李祥权, 解习农, 2019. 自由烃差值法评价页岩含油性的思想、方法及应用. 地球科学, 44(3): 929-938. doi: 10.3799/dqkx.2018.354
    Li Shuifu, Hu Shouzhi, Zhang Dongmei, Li Xiangquan, Xie Xinong, 2019. Idea, Method and Application of Evaluating Shale Oil Potential by Free Hydrocarbon Difference. Earth Science, 44(3): 929-938. doi: 10.3799/dqkx.2018.354
    Citation: Li Shuifu, Hu Shouzhi, Zhang Dongmei, Li Xiangquan, Xie Xinong, 2019. Idea, Method and Application of Evaluating Shale Oil Potential by Free Hydrocarbon Difference. Earth Science, 44(3): 929-938. doi: 10.3799/dqkx.2018.354

    自由烃差值法评价页岩含油性的思想、方法及应用

    doi: 10.3799/dqkx.2018.354
    基金项目: 

    国家自然科学基金项目 41672136

    国家自然科学基金项目 41572109

    国家科技重大专项子课题 2017ZX05032-001-004

    详细信息
      作者简介:

      李水福(1962-), 男, 教授, 博导, 主要从事油气地球化学教学与科研工作

      通讯作者:

      胡守志

    • 中图分类号: P618.13

    Idea, Method and Application of Evaluating Shale Oil Potential by Free Hydrocarbon Difference

    • 摘要: 如何准确判断页岩含油性是页岩油勘探甜点预测的关键.根据陆相泥页岩非均质性特点,提出用自由烃差值(即原始生烃量减去现存残留量)评价页岩含油性的方法,并对泌阳凹陷深凹区重点井进行采样分析,刻画自由烃差值在剖面上与平面上的分布特征.结果表明:剖面上,泌页1井5号页岩层的底部含油性较好,程2井5号页岩层的顶部含油性较好;平面上,含油性较好的主要分布在程2井区一带,而最先获得工业油流的泌页1井区并非含油性最好的区域.结合地层压力系数、脆性矿物含量及其他地质因素,在大甜点区内进一步划分出3个不同级别的小甜点区.由此可见,用自由烃差值法评价和预测页岩含油性是可行的,后期的勘探实践也证明了该甜点预测的正确性.

       

    • 图  1  研究区构造位置及5号页岩层地层柱状图

      Fig.  1.  Tectonic location of the research region and the stratigraphic column of the No.5 shale layer

      图  2  泌页1井5号页岩层自由烃差值剖面变化

      Fig.  2.  Geochemical sections indicating free hydrocarbon differences in the No.5 shale layer of Well Biye1

      图  3  程2井5号页岩层自由烃差值剖面变化

      Fig.  3.  Geochemical sections indicating free hydrocarbon differences in the No.5 shale layer of Well Cheng2

      图  4  泌阳凹陷深凹区5号页岩层泥页岩含油饱和指数等值线图

      Fig.  4.  OSI distribution of the No.5 shale layer in the deep sag, Biyang Depression

      图  5  泌阳凹陷深凹区5号页岩层泥页岩自由烃差值等值线图

      Fig.  5.  Free hydrocarbon differences distribution of the No.5 shale layer in the deep sag, Biyang Depression

      图  6  地层压力系数和脆性矿物含量与页岩含油性分布叠合图

      Fig.  6.  Formation pressure coefficient, brittle mineral content and shale oil potential of the No.5 shale layer in the deep sag, Biyang Depression

      图  7  页岩油富集甜点区划分与夹层厚度分布叠合图

      Fig.  7.  Division of shale oil sweet spots and the interlayer-thickness distribution of the No.5 shale layer in the deep sag, Biyang Depression

      图  8  页岩油富集甜点区划分与微裂缝发育等级分布叠合图

      Fig.  8.  Division of shale oil sweet spots and the micro-fracture development of the No.5 shale layer in the deep sag, Biyang Depression

      图  9  页岩油富集甜点区划分与微幅构造分布叠合图

      Fig.  9.  Division of shale oil sweet spots and the micro-structure distribution of the No.5 shale layer in the deep sag, Biyang Depression

      表  1  泌阳凹陷深凹区5号页岩层部分井含油饱和指数和自由烃差值

      Table  1.   OSI and free hydrocarbon differences in the No.5 shale layer of some wells in the deep sag, Biyang Depression

      井号 含油饱和指数
      (OSI, mg/g TOC)
      自由烃差值
      S1, mg/g rock)
      B80 14.50 1.26
      B93 51.69 0.71
      B215 18.74 0.44
      B270 404.39 -3.94
      B280 142.02 -1.76
      B289 36.18 -0.50
      B291 355.30 -6.18
      B296 134.42 -1.64
      B305 306.05 -3.43
      B314 18.30 -0.08
      B354 446.06 -8.60
      B355 45.22 4.79
      B364 494.93 -4.91
      B365 101.31 -0.79
      BYHF1 43.98 1.53
      Cheng2 276.88 0.97
      AS1 45.40 0.49
      下载: 导出CSV

      表  2  泌阳凹陷深凹区5号页岩层甜点区级别与指标

      Table  2.   Sweet spots and its parameters for the No.5 shale layer in the deep sag, Biyang Depression

      指标 Ⅰ级甜点区 Ⅱ级甜点区 Ⅲ级甜点区
      地层压力系数 >1.25 >1.25 >1.25
      脆性矿物含量 >64% >64% >64%
      含油饱和指数(OSI,mg/g TOC) >200 >200 >200
      自由烃差值(ΔS1,mg/g rock) <-2.0 <-2.0 <-2.0
      夹层厚度(m) 与2 m夹层分布形状一致,其内夹层厚度大于2 m,最厚超过6 m 与2 m夹层分布形状一致,其内夹层厚度大于2 m,最厚超过6 m 小于2 m
      微裂缝发育等级 与Ⅰ级微裂缝发育相吻合 裂缝不发育 裂缝不发育
      微幅构造 介于2个微幅构造的鞍部 有一个Ⅱ级微幅鼻状构造 北部有Ⅱ级微幅构造
      下载: 导出CSV
    • [1] Badics, B., VetöI., 2012.Source Rocks and Petroleum Systems in the Hungarian Part of the Pannonian Basin:The Potential for Shale Gas and Shale Oil Plays.Marine and Petroleum Geology, 31(1):53-69. https://doi.org/10.1016/j.marpetgeo.2011.08.015
      [2] Cao, T.T., Song, Z.G., Wang, S.B., et al., 2015.A Comparative Study of the Specific Surface Area and Pore Structure of Different Shales and Their Kerogens.Scientia Sinica Terrae, 45(2):139-151 (in Chinese). doi: 10.1360/zd-2015-45-2-139
      [3] Chew, K.J., 2014.The Future of Oil:Unconventional Fossil Fuels.Philosophical Transactions of the Royal Society A, 372(2006):1-33. http://dx.doi.org/10.1098/rsta.2012.0324
      [4] Hu, Y., 2015.The Synthetic Evaluating Method of Shale Oil Sweet Spot in the Jiyang Depression.Acta Geologica Sinica (English Edition), 89(Suppl.1):342-345. https://doi.org/10.1111/1755-6724.12305_16
      [5] Jarvie, D.M., 2012a.Shale Resource Systems for Oil and Gas: Part 1-Shale-Gas Resource Systems.In: Breyer, J.A., ed., Shale Reservoirs-Giant Resources for the 21st Century.AAPG Memoir 97, 69-87.
      [6] Jarvie, D.M., 2012b.Shale Resource Systems for Oil and Gas: Part 1-Shale-Gas Resource Systems.In: Breyer, J.A., ed., Shale Reservoirs-Giant Resources for the 21st Century.AAPG Memoir 97, 89-119.
      [7] Jarvie, D.M., 2014.Components and Processes Affecting Producibility and Commerciality of Shale Resource Systems.Geologica Acta, 12(4):307-325. https://doi.org/10.1344/GeologicaActa2014.12.4.3
      [8] Jia, C.Z., Zheng, M., Zhang, Y.F., 2012.Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development.Petroleum Exploration and Development, 39(2):129-136 (in Chinese with English abstract).
      [9] Jiang, S., Tang, X.L., Osborne, S., et al., 2017.Enrichment Factors and Current Misunderstanding of Shale Oil and Gas:Case Study of Shales in U.S., Argentina and China.Earth Science, 42(7):1083-1091 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.087
      [10] Jiang, Y.Q., Dong, D.Z., Qi, L., et al., 2010.Basic Features and Evaluation of Shale Gas Reservoirs.Natural Gas Industry, 30(10):7-12 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201010002
      [11] Ke, S., 2017.Discussion on Occurrence and Mobility of Shale Oil in Biyang Depression.Petroleum Geology and Engineering, 31(1):80-83 (in Chinese with English abstract).
      [12] Li, S.F., Hu, S.Z., Xie, X.N., et al., 2016.Assessment of Shale Oil Potential Using a New Free Hydrocarbon Index.International Journal of Coal Geology, 156:74-85. https://doi.org/10.1016/j.coal.2016.02.005
      [13] Li, C.L., Zhang, J.L., Du, Z.M., 2007.New Viewpoints of the Primary Migration of Oil and Gas.Earth Science Frontiers, 14(4):132-142 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200704014
      [14] Li, J.J., Shi, Y.L., Zhang, X.W., et al., 2014.Control Factors of Enrichment and Producibility of Shale Oil:A Case Study of Biyang Depression.Earth Science, 39(7):848-857 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.079
      [15] Li, Z.M., Zheng, L.J., Jiang, Q.G., et al., 2018.Simulation of Hydrocarbon Generation and Expulsion for Lacustrine Organic-Rich Argillaceous Dolomite and Its Implications for Shale Oil Exploration.Earth Science, 43(2):566-576 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.025
      [16] Lu, S.F., Huang, W.B., Chen, F.W., et al., 2012.Classification and Evaluation Criteria of Shale Oil and Gas Resources:Discussion and Application.Petroleum Exploration and Development, 39(2):249-256 (in Chinese with English abstract).
      [17] Lu, S.F., Xue, H.T., Wang, M., et al., 2016.Several Key Issues and Research Trends in Evaluation of Shale Oil.Acta Petrolei Sinica, 37(10):1309-1322 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201610012
      [18] Ma, Y.S., Feng, J.H., Mu, Z.H., et al., 2012.The Potential and Exploring Progress of Unconventional Hydrocarbon Resources in SINOPEC.Engineering Science, 14(6):22-30 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggckx201206004
      [19] Shang, F., Xie, X.N., Li, S.F., et al., 2018.Comprehensive Prediction of Shale Oil Sweet Spots Based on Geophysical and Geochemical Data:A Case Study of the Paleogene Hetaoyuan Formation, Biyang Depression, China.Earth Science, 43(10):3640-3651 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.249
      [20] Slatt, R.M., 2011.Important Geological Properties of Unconventional Resource Shales.Central European Journal of Geosciences, 3(4):435-448. https://doi.org/10.2478/s13533-011-0042-2
      [21] Song, G.Q., Zhang, L.Y., Lu, S.F., et al., 2013.Resource Evaluation Method for Shale Oil and Its Application.Earth Science Frontiers, 20(4):221-228 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201304018
      [22] Song, J.L., Littke, R., Weniger, P., et al., 2015.Shale Oil Potential and Thermal Maturity of the Lower Toarcian Posidonia Shale in NW Europe.International Journal of Coal Geology, 150-151:127-153. https://doi.org/10.1016/j.coal.2015.08.011
      [23] Xie, J., Zhang, H.M., She, C.Y., et al., 2017.Practice of Geology-Engineering Integration in Changning State Shale Gas Demonstration Area.China Petroleum Exploration, 22(1):21-28 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt201701004
      [24] Yang, X.H., Sun, Y.C., Sun, J.Z., 1994.Lower Tertiary Sequence Stratigraphy Framework and Its Response to Boundary Faults, Paleoclimate and Sediment Source in Biyang Depression.Earth Science, 19(5):676-684 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400803379
      [25] Zeng, W.Z., Song, Z.G., Cao, X.X., 2018.Oil Potential of Qingshankou Formation Source Rocks in Northern Songliao Basin.Geochimica, 47(4):345-353 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqhx201804003
      [26] Zhang, J.C., Lin, L.M., Li, Y.X., et al., 2012.Classification and Evaluation of Shale Oil.Earth Science Frontiers, 19(5):322-331 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201803008
      [27] Zhang, J.G., Yao, G.Q., Chen, Y.B., et al., 2011.Sub-Lacustrine Fan of Chengdian and Zircon U-Pb Ages and Constraint on Its Provenance in Biyang Depression, Nanxiang Basin, China.Earth Science, 36(6):1105-1118 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2011.116
      [28] Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.163
      [29] Zou, C.N., Yang, Z., Cui, J.W., et al., 2013.Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China.Petroleum Exploration and Development, 40(1):14-26 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201301002
      [30] 曹涛涛, 宋之光, 王思波, 等, 2015.不同页岩及干酪根比表面积和孔隙结构的比较研究.中国科学(D辑), 45(2):139-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201502002
      [31] 贾承造, 郑民, 张永峰, 2012.中国非常规油气资源与勘探开发前景.石油勘探与开发, 39(2):129-136. http://d.old.wanfangdata.com.cn/Periodical/syktykf201202001
      [32] 蒋恕, 唐相路, Osborne, S., 等, 2017.页岩油气富集的主控因素及误辩:以美国、阿根廷和中国典型页岩为例.地球科学, 42(7):1083-1091. https://doi.org/10.3799/dqkx.2017.087
      [33] 蒋裕强, 董大忠, 漆麟, 等, 2010.页岩气储层的基本特征及其评价.天然气工业, 30(10):7-12. http://d.old.wanfangdata.com.cn/Periodical/trqgy201010002
      [34] 柯思, 2017.泌阳凹陷页岩油赋存状态及可动性探讨.石油地质与工程, 31(1):80-83. doi: 10.3969/j.issn.1673-8217.2017.01.018
      [35] 李传亮, 张景廉, 杜志敏, 2007.油气初次运移理论新探.地学前缘, 14(4):132-142. doi: 10.3321/j.issn:1005-2321.2007.04.014
      [36] 李吉君, 史颖琳, 章新文, 等, 2014.页岩油富集可采主控因素分析:以泌阳凹陷为例.地球科学, 39(7):848-857. https://doi.org/10.3799/dqkx.2014.079
      [37] 李志明, 郑伦举, 蒋启贵, 等, 2018.湖相富有机质泥质白云岩生排烃模拟及其对页岩油勘探的启示.地球科学, 43(2):566-576. https://doi.org/10.3799/dqkx.2018.025
      [38] 卢双舫, 黄文彪, 陈方文, 等, 2012.页岩油气资源分级评价标准探讨.石油勘探与开发, 39(2):249-256. http://d.old.wanfangdata.com.cn/Periodical/syktykf201202017
      [39] 卢双舫, 薛海涛, 王民, 等, 2016.页岩油评价中的若干关键问题及研究趋势.石油学报, 37(10):1309-1322. doi: 10.7623/syxb201610012
      [40] 马永生, 冯建辉, 牟泽辉, 等, 2012.中国石化非常规油气资源潜力及勘探进展.中国工程科学, 14(6):22-30. doi: 10.3969/j.issn.1009-1742.2012.06.004
      [41] 尚飞, 解习农, 李水福, 等, 2018.基于地球物理和地球化学数据的页岩油甜点区综合预测:以泌阳凹陷核三段5号页岩层为例.地球科学, 43(10):3640-3651. https://doi.org/10.3799/dqkx.2018.249
      [42] 宋国奇, 张林晔, 卢双舫, 等, 2013.页岩油资源评价技术方法及其应用.地学前缘, 20(4):221-228. http://d.old.wanfangdata.com.cn/Periodical/dxqy201304018
      [43] 谢军, 张浩淼, 佘朝毅, 等, 2017.地质工程一体化在长宁国家级页岩气示范区中的实践.中国石油勘探, 22(1):21-28. doi: 10.3969/j.issn.1672-7703.2017.01.004
      [44] 杨香华, 孙永传, 孙家振, 1994.泌阳凹陷下第三系的层序地层格架及其对边界断裂、古气候和物源的响应.地球科学, 19(5):676-684. http://earth-science.net/WebPage/Article.aspx?id=197
      [45] 曾维主, 宋之光, 曹新星, 2018.松辽盆地北部青山口组烃源岩含油性分析.地球化学, 47(4):345-353. http://d.old.wanfangdata.com.cn/Periodical/dqhx201804003
      [46] 张金川, 林腊梅, 李玉喜, 等, 2012.页岩油分类与评价.地学前缘, 19(5):322-331. http://d.old.wanfangdata.com.cn/Periodical/dxqy201205031
      [47] 张建光, 姚光庆, 陈亚兵, 等, 2011.南襄盆地泌阳凹陷深水湖底扇厘定及碎屑锆石U-Pb年代学物源追踪.地球科学, 36(6):1105-1118. http://earth-science.net/WebPage/Article.aspx?id=2186
      [48] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11):1824-1833. https://doi.org/10.3799/dqkx.2015.163
      [49] 邹才能, 杨智, 崔景伟, 等, 2013.页岩油形成机制、地质特征及发展对策.石油勘探与开发, 40(1):14-26. http://d.old.wanfangdata.com.cn/Periodical/syktykf201301002
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  3973
    • HTML全文浏览量:  1337
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-11-06
    • 刊出日期:  2019-03-15

    目录

      /

      返回文章
      返回