Idea, Method and Application of Evaluating Shale Oil Potential by Free Hydrocarbon Difference
-
摘要: 如何准确判断页岩含油性是页岩油勘探甜点预测的关键.根据陆相泥页岩非均质性特点,提出用自由烃差值(即原始生烃量减去现存残留量)评价页岩含油性的方法,并对泌阳凹陷深凹区重点井进行采样分析,刻画自由烃差值在剖面上与平面上的分布特征.结果表明:剖面上,泌页1井5号页岩层的底部含油性较好,程2井5号页岩层的顶部含油性较好;平面上,含油性较好的主要分布在程2井区一带,而最先获得工业油流的泌页1井区并非含油性最好的区域.结合地层压力系数、脆性矿物含量及其他地质因素,在大甜点区内进一步划分出3个不同级别的小甜点区.由此可见,用自由烃差值法评价和预测页岩含油性是可行的,后期的勘探实践也证明了该甜点预测的正确性.Abstract: Assessment of shale oil potential is an important issue for predicting the sweet spots of shale oil exploration.Here, we suggest a new free hydrocarbon index to assess the oil content considering the characteristics of heterogeneity, and we present a case study of the Paleogene Hetaoyuan Formation in the Biyang Depression by this method to analyze the key wells of shale oil in the deep sag, Biyang Depression.First, the section characteristics of free hydrocarbon difference for the No.5 shale layer in Well Biye1 and Well Cheng2 are depicted.The results show that the oil potential for the No.5 shale layer is good for the bottom of Well Biye1 and the top of Well Cheng2.Then, the above-mentioned process is appled to the whole deep sag to predict the horizontal distribution of shale oil.It is found that the area of good shale oil potential is located in the area of Well Cheng2, while the area of Biye1 is not the best shale oil area though the industrial shale oil has been found there.Combined with the formation pressure coefficient and the content of brittle mineral, we overlap the thickness of non-mudstone interlayer, the development area of micro-cracks and the distribution of micro-structures, and three different grades of small sweet spots have been proposed based on the previous one big sweet spots.This prediction has been partly proved by the recent exploration.
-
表 1 泌阳凹陷深凹区5号页岩层部分井含油饱和指数和自由烃差值
Table 1. OSI and free hydrocarbon differences in the No.5 shale layer of some wells in the deep sag, Biyang Depression
井号 含油饱和指数
(OSI, mg/g TOC)自由烃差值
(ΔS1, mg/g rock)B80 14.50 1.26 B93 51.69 0.71 B215 18.74 0.44 B270 404.39 -3.94 B280 142.02 -1.76 B289 36.18 -0.50 B291 355.30 -6.18 B296 134.42 -1.64 B305 306.05 -3.43 B314 18.30 -0.08 B354 446.06 -8.60 B355 45.22 4.79 B364 494.93 -4.91 B365 101.31 -0.79 BYHF1 43.98 1.53 Cheng2 276.88 0.97 AS1 45.40 0.49 表 2 泌阳凹陷深凹区5号页岩层甜点区级别与指标
Table 2. Sweet spots and its parameters for the No.5 shale layer in the deep sag, Biyang Depression
指标 Ⅰ级甜点区 Ⅱ级甜点区 Ⅲ级甜点区 地层压力系数 >1.25 >1.25 >1.25 脆性矿物含量 >64% >64% >64% 含油饱和指数(OSI,mg/g TOC) >200 >200 >200 自由烃差值(ΔS1,mg/g rock) <-2.0 <-2.0 <-2.0 夹层厚度(m) 与2 m夹层分布形状一致,其内夹层厚度大于2 m,最厚超过6 m 与2 m夹层分布形状一致,其内夹层厚度大于2 m,最厚超过6 m 小于2 m 微裂缝发育等级 与Ⅰ级微裂缝发育相吻合 裂缝不发育 裂缝不发育 微幅构造 介于2个微幅构造的鞍部 有一个Ⅱ级微幅鼻状构造 北部有Ⅱ级微幅构造 -
[1] Badics, B., VetöI., 2012.Source Rocks and Petroleum Systems in the Hungarian Part of the Pannonian Basin:The Potential for Shale Gas and Shale Oil Plays.Marine and Petroleum Geology, 31(1):53-69. https://doi.org/10.1016/j.marpetgeo.2011.08.015 [2] Cao, T.T., Song, Z.G., Wang, S.B., et al., 2015.A Comparative Study of the Specific Surface Area and Pore Structure of Different Shales and Their Kerogens.Scientia Sinica Terrae, 45(2):139-151 (in Chinese). doi: 10.1360/zd-2015-45-2-139 [3] Chew, K.J., 2014.The Future of Oil:Unconventional Fossil Fuels.Philosophical Transactions of the Royal Society A, 372(2006):1-33. http://dx.doi.org/10.1098/rsta.2012.0324 [4] Hu, Y., 2015.The Synthetic Evaluating Method of Shale Oil Sweet Spot in the Jiyang Depression.Acta Geologica Sinica (English Edition), 89(Suppl.1):342-345. https://doi.org/10.1111/1755-6724.12305_16 [5] Jarvie, D.M., 2012a.Shale Resource Systems for Oil and Gas: Part 1-Shale-Gas Resource Systems.In: Breyer, J.A., ed., Shale Reservoirs-Giant Resources for the 21st Century.AAPG Memoir 97, 69-87. [6] Jarvie, D.M., 2012b.Shale Resource Systems for Oil and Gas: Part 1-Shale-Gas Resource Systems.In: Breyer, J.A., ed., Shale Reservoirs-Giant Resources for the 21st Century.AAPG Memoir 97, 89-119. [7] Jarvie, D.M., 2014.Components and Processes Affecting Producibility and Commerciality of Shale Resource Systems.Geologica Acta, 12(4):307-325. https://doi.org/10.1344/GeologicaActa2014.12.4.3 [8] Jia, C.Z., Zheng, M., Zhang, Y.F., 2012.Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development.Petroleum Exploration and Development, 39(2):129-136 (in Chinese with English abstract). [9] Jiang, S., Tang, X.L., Osborne, S., et al., 2017.Enrichment Factors and Current Misunderstanding of Shale Oil and Gas:Case Study of Shales in U.S., Argentina and China.Earth Science, 42(7):1083-1091 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.087 [10] Jiang, Y.Q., Dong, D.Z., Qi, L., et al., 2010.Basic Features and Evaluation of Shale Gas Reservoirs.Natural Gas Industry, 30(10):7-12 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201010002 [11] Ke, S., 2017.Discussion on Occurrence and Mobility of Shale Oil in Biyang Depression.Petroleum Geology and Engineering, 31(1):80-83 (in Chinese with English abstract). [12] Li, S.F., Hu, S.Z., Xie, X.N., et al., 2016.Assessment of Shale Oil Potential Using a New Free Hydrocarbon Index.International Journal of Coal Geology, 156:74-85. https://doi.org/10.1016/j.coal.2016.02.005 [13] Li, C.L., Zhang, J.L., Du, Z.M., 2007.New Viewpoints of the Primary Migration of Oil and Gas.Earth Science Frontiers, 14(4):132-142 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200704014 [14] Li, J.J., Shi, Y.L., Zhang, X.W., et al., 2014.Control Factors of Enrichment and Producibility of Shale Oil:A Case Study of Biyang Depression.Earth Science, 39(7):848-857 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.079 [15] Li, Z.M., Zheng, L.J., Jiang, Q.G., et al., 2018.Simulation of Hydrocarbon Generation and Expulsion for Lacustrine Organic-Rich Argillaceous Dolomite and Its Implications for Shale Oil Exploration.Earth Science, 43(2):566-576 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.025 [16] Lu, S.F., Huang, W.B., Chen, F.W., et al., 2012.Classification and Evaluation Criteria of Shale Oil and Gas Resources:Discussion and Application.Petroleum Exploration and Development, 39(2):249-256 (in Chinese with English abstract). [17] Lu, S.F., Xue, H.T., Wang, M., et al., 2016.Several Key Issues and Research Trends in Evaluation of Shale Oil.Acta Petrolei Sinica, 37(10):1309-1322 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201610012 [18] Ma, Y.S., Feng, J.H., Mu, Z.H., et al., 2012.The Potential and Exploring Progress of Unconventional Hydrocarbon Resources in SINOPEC.Engineering Science, 14(6):22-30 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggckx201206004 [19] Shang, F., Xie, X.N., Li, S.F., et al., 2018.Comprehensive Prediction of Shale Oil Sweet Spots Based on Geophysical and Geochemical Data:A Case Study of the Paleogene Hetaoyuan Formation, Biyang Depression, China.Earth Science, 43(10):3640-3651 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.249 [20] Slatt, R.M., 2011.Important Geological Properties of Unconventional Resource Shales.Central European Journal of Geosciences, 3(4):435-448. https://doi.org/10.2478/s13533-011-0042-2 [21] Song, G.Q., Zhang, L.Y., Lu, S.F., et al., 2013.Resource Evaluation Method for Shale Oil and Its Application.Earth Science Frontiers, 20(4):221-228 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201304018 [22] Song, J.L., Littke, R., Weniger, P., et al., 2015.Shale Oil Potential and Thermal Maturity of the Lower Toarcian Posidonia Shale in NW Europe.International Journal of Coal Geology, 150-151:127-153. https://doi.org/10.1016/j.coal.2015.08.011 [23] Xie, J., Zhang, H.M., She, C.Y., et al., 2017.Practice of Geology-Engineering Integration in Changning State Shale Gas Demonstration Area.China Petroleum Exploration, 22(1):21-28 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt201701004 [24] Yang, X.H., Sun, Y.C., Sun, J.Z., 1994.Lower Tertiary Sequence Stratigraphy Framework and Its Response to Boundary Faults, Paleoclimate and Sediment Source in Biyang Depression.Earth Science, 19(5):676-684 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400803379 [25] Zeng, W.Z., Song, Z.G., Cao, X.X., 2018.Oil Potential of Qingshankou Formation Source Rocks in Northern Songliao Basin.Geochimica, 47(4):345-353 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqhx201804003 [26] Zhang, J.C., Lin, L.M., Li, Y.X., et al., 2012.Classification and Evaluation of Shale Oil.Earth Science Frontiers, 19(5):322-331 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201803008 [27] Zhang, J.G., Yao, G.Q., Chen, Y.B., et al., 2011.Sub-Lacustrine Fan of Chengdian and Zircon U-Pb Ages and Constraint on Its Provenance in Biyang Depression, Nanxiang Basin, China.Earth Science, 36(6):1105-1118 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2011.116 [28] Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.163 [29] Zou, C.N., Yang, Z., Cui, J.W., et al., 2013.Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China.Petroleum Exploration and Development, 40(1):14-26 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201301002 [30] 曹涛涛, 宋之光, 王思波, 等, 2015.不同页岩及干酪根比表面积和孔隙结构的比较研究.中国科学(D辑), 45(2):139-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201502002 [31] 贾承造, 郑民, 张永峰, 2012.中国非常规油气资源与勘探开发前景.石油勘探与开发, 39(2):129-136. http://d.old.wanfangdata.com.cn/Periodical/syktykf201202001 [32] 蒋恕, 唐相路, Osborne, S., 等, 2017.页岩油气富集的主控因素及误辩:以美国、阿根廷和中国典型页岩为例.地球科学, 42(7):1083-1091. https://doi.org/10.3799/dqkx.2017.087 [33] 蒋裕强, 董大忠, 漆麟, 等, 2010.页岩气储层的基本特征及其评价.天然气工业, 30(10):7-12. http://d.old.wanfangdata.com.cn/Periodical/trqgy201010002 [34] 柯思, 2017.泌阳凹陷页岩油赋存状态及可动性探讨.石油地质与工程, 31(1):80-83. doi: 10.3969/j.issn.1673-8217.2017.01.018 [35] 李传亮, 张景廉, 杜志敏, 2007.油气初次运移理论新探.地学前缘, 14(4):132-142. doi: 10.3321/j.issn:1005-2321.2007.04.014 [36] 李吉君, 史颖琳, 章新文, 等, 2014.页岩油富集可采主控因素分析:以泌阳凹陷为例.地球科学, 39(7):848-857. https://doi.org/10.3799/dqkx.2014.079 [37] 李志明, 郑伦举, 蒋启贵, 等, 2018.湖相富有机质泥质白云岩生排烃模拟及其对页岩油勘探的启示.地球科学, 43(2):566-576. https://doi.org/10.3799/dqkx.2018.025 [38] 卢双舫, 黄文彪, 陈方文, 等, 2012.页岩油气资源分级评价标准探讨.石油勘探与开发, 39(2):249-256. http://d.old.wanfangdata.com.cn/Periodical/syktykf201202017 [39] 卢双舫, 薛海涛, 王民, 等, 2016.页岩油评价中的若干关键问题及研究趋势.石油学报, 37(10):1309-1322. doi: 10.7623/syxb201610012 [40] 马永生, 冯建辉, 牟泽辉, 等, 2012.中国石化非常规油气资源潜力及勘探进展.中国工程科学, 14(6):22-30. doi: 10.3969/j.issn.1009-1742.2012.06.004 [41] 尚飞, 解习农, 李水福, 等, 2018.基于地球物理和地球化学数据的页岩油甜点区综合预测:以泌阳凹陷核三段5号页岩层为例.地球科学, 43(10):3640-3651. https://doi.org/10.3799/dqkx.2018.249 [42] 宋国奇, 张林晔, 卢双舫, 等, 2013.页岩油资源评价技术方法及其应用.地学前缘, 20(4):221-228. http://d.old.wanfangdata.com.cn/Periodical/dxqy201304018 [43] 谢军, 张浩淼, 佘朝毅, 等, 2017.地质工程一体化在长宁国家级页岩气示范区中的实践.中国石油勘探, 22(1):21-28. doi: 10.3969/j.issn.1672-7703.2017.01.004 [44] 杨香华, 孙永传, 孙家振, 1994.泌阳凹陷下第三系的层序地层格架及其对边界断裂、古气候和物源的响应.地球科学, 19(5):676-684. http://earth-science.net/WebPage/Article.aspx?id=197 [45] 曾维主, 宋之光, 曹新星, 2018.松辽盆地北部青山口组烃源岩含油性分析.地球化学, 47(4):345-353. http://d.old.wanfangdata.com.cn/Periodical/dqhx201804003 [46] 张金川, 林腊梅, 李玉喜, 等, 2012.页岩油分类与评价.地学前缘, 19(5):322-331. http://d.old.wanfangdata.com.cn/Periodical/dxqy201205031 [47] 张建光, 姚光庆, 陈亚兵, 等, 2011.南襄盆地泌阳凹陷深水湖底扇厘定及碎屑锆石U-Pb年代学物源追踪.地球科学, 36(6):1105-1118. http://earth-science.net/WebPage/Article.aspx?id=2186 [48] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11):1824-1833. https://doi.org/10.3799/dqkx.2015.163 [49] 邹才能, 杨智, 崔景伟, 等, 2013.页岩油形成机制、地质特征及发展对策.石油勘探与开发, 40(1):14-26. http://d.old.wanfangdata.com.cn/Periodical/syktykf201301002