• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于压机热模拟实验的页岩孔隙演化特征

    张毅 胡守志 廖泽文 徐建兵 沈传波

    张毅, 胡守志, 廖泽文, 徐建兵, 沈传波, 2019. 基于压机热模拟实验的页岩孔隙演化特征. 地球科学, 44(3): 983-992. doi: 10.3799/dqkx.2018.353
    引用本文: 张毅, 胡守志, 廖泽文, 徐建兵, 沈传波, 2019. 基于压机热模拟实验的页岩孔隙演化特征. 地球科学, 44(3): 983-992. doi: 10.3799/dqkx.2018.353
    Zhang Yi, Hu Shouzhi, Liao Zewen, Xu Jianbing, Shen Chuanbo, 2019. Shale Pore Evolution Characteristics Based on Semi-Closed Pyrolysis Experiment. Earth Science, 44(3): 983-992. doi: 10.3799/dqkx.2018.353
    Citation: Zhang Yi, Hu Shouzhi, Liao Zewen, Xu Jianbing, Shen Chuanbo, 2019. Shale Pore Evolution Characteristics Based on Semi-Closed Pyrolysis Experiment. Earth Science, 44(3): 983-992. doi: 10.3799/dqkx.2018.353

    基于压机热模拟实验的页岩孔隙演化特征

    doi: 10.3799/dqkx.2018.353
    基金项目: 

    国家科技重大专项子课题 2017ZX05032-002-004

    国家自然科学基金面上项目 41572109

    国家科技重大专项子课题 2016ZX05024-002-005

    湖北省自然科学杰出青年基金项目 2016CFA055

    详细信息
      作者简介:

      张毅(1995-), 男, 硕士研究生, 主要从事油气地球化学方面的研究

      通讯作者:

      胡守志

    • 中图分类号: P618.13

    Shale Pore Evolution Characteristics Based on Semi-Closed Pyrolysis Experiment

    • 摘要: 富有机质页岩微观孔隙结构是影响页岩油气富集的重要因素,但热演化过程中的孔隙结构变化特征不甚清楚,是当前领域研究的难点.用新疆三塘湖盆地中二叠统芦草沟组低成熟油页岩样品开展高温高压半封闭体系热模拟实验,对各温度阶段的样品进行抽提,利用低温吸附技术定量表征未抽提和抽提样品的孔隙结构,揭示低熟到过成熟页岩样品的孔隙演化特征.结果表明:低熟-成熟阶段,中、大孔量随热模拟温度上升而降低,微孔量先降低再升高,高压及滞留油/沥青对所有孔隙均有一定的抑制作用;高-过成熟阶段,孔含量明显上升,残留沥青中会产生微孔及中、大孔.在热模拟实验中温度、压力条件对孔隙结构具有重要影响,有机质演化产物与孔隙演化趋势紧密相关.

       

    • 图  1  抽提前后样品的中、大孔孔径分布对比(低成熟至成熟阶段样品)

      P为原始样品,P(E)为抽提后的原始样品

      Fig.  1.  The pore size distribution comparisons of the mesopore and macropore of the sample after the extraction (low to mature stages)

      图  2  抽提前后样品的微孔孔径分布对比(低成熟至成熟阶段样品)

      Fig.  2.  The pore size distribution comparisons of the micropore of the sample after the extraction (low to mature stages)

      图  3  高、过成熟阶段样品抽提前后微孔孔径分布对比

      Fig.  3.  The pore size distribution comparisons of the micropore of the sample before and after the extraction in high and over mature stages

      图  4  高、过成熟阶段样品抽提前后的中、大孔孔径分布对比

      Fig.  4.  The pore size distribution comparisons of the mesopore and macropore of the sample before and after the extraction in high and over mature stages

      图  5  中、大孔孔体积(a)和微孔比表面积(b)随热解温度的变化(抽提与未抽提)

      Fig.  5.  Mesopore and macropore pore volume (a) and micropore special surface area (b) changes with pyrolysis temperature (extracted and un-extracted)

      图  6  氮气吸附法测试的中、大孔孔径分布(未抽提)

      Fig.  6.  Mesopore and macropore pore size distribution tested by nitrogen adsorption method (un-extracted)

      图  7  氮气吸附法测试的中、大孔孔径分布(抽提后)

      Fig.  7.  Mesopore and macropore pore size distribution tested by nitrogen adsorption method (extracted)

      图  8  二氧化碳吸附法微孔孔径分布(未抽提)

      Fig.  8.  Microporous pore size distribution of carbon dioxide adsorption method (un-extracted)

      图  9  二氧化碳吸附法微孔孔径分布(抽提后)

      Fig.  9.  Microporous pore size distribution of carbon dioxide adsorption method (extracted)

      表  1  三塘湖芦草沟组页岩样品基础有机地球化学参数

      Table  1.   The basic geochemical data of the sample from the Santanghu Basin

      样品 TOC(%) Ro(%) Tmax(℃) S1(mg/g) S2(mg/g) S3(mg/g) HI(mg/g TOC) OI(mg/g TOC)
      页岩 10.67 0.52 436 0.57 53.08 4.84 497 45
      下载: 导出CSV

      表  2  热模拟实验页岩孔体积和比表面积

      Table  2.   Shale pore volume and specific surface area of thermal simulation experiment

      温度(℃) 原始样品(P) 320 350 380 420 450
      中、大孔孔体积(未抽提)(m3/g) 0.015 1 0.007 6 0.006 1 0.004 7 0.004 4 0.009 2
      中、大孔比表面积(未抽提)(m2/g) 1.542 8 0.519 7 0.548 5 0.644 8 0.601 1 1.454 4
      微孔孔体积(未抽提)(cm3/g) 2.475 5 1.323 3 1.026 0 2.373 9 2.469 5 3.876 7
      微孔比表面积(未抽提)(m2/g) 11.31 6.04 4.69 10.84 11.28 17.71
      中、大孔孔体积(抽提)(m3/g) 0.011 4 0.010 6 0.008 5 0.005 9 0.002 7 0.007 8
      中、大孔比表面积(抽提)(m2/g) 1.191 6 0.907 1 0.711 6 1.076 7 0.498 1 1.154 0
      微孔孔体积(抽提)(cm3/g) 2.389 2 2.909 2 1.571 5 2.944 9 1.853 8 3.442 5
      微孔比表面积(抽提)(m2/g) 10.91 13.29 7.18 13.45 8.47 15.72
      下载: 导出CSV
    • [1] Bernard, S., Horsfield, B., Schulz, H.M., et al., 2012.Geochemical Evolution of Organic-Rich Shales with Increasing Maturity:A STXM and TEM Study of the Posidonia Shale (Lower Toarcian, Northern Germany).Marine and Petroleum Geology, 31(1):70-89. https://doi.org/10.1016/j.marpetgeo.2011.05.010
      [2] Cao, T.T., Deng, M., Liu, H., et al., 2018.Influences of Soluble Organic Matter on Reservoir Properties of Shale.Lithologic Reservoirs, 30(3):43-51 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yxyqc201803006
      [3] Chen, J., Xiao, X.M., 2014.Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation.Fuel, 129:173-181. https://doi.org/10.1016/j.fuel.2014.03.058
      [4] Chen, Z.H., Wang, T.G., Liu, Q., et al., 2015.Quantitative Evaluation of Potential Organic-Matter Porosity and Hydrocarbon Generation and Expulsion from Mudstone in Continental Lake Basins:A Case Study of Dongying Sag, Eastern China.Marine and Petroleum Geology, 66:906-924. https://doi.org/10.1016/j.marpetgeo.2015.07.027
      [5] Clarkson, C.R., Solano, N., Bustin, R.M., et al., 2013.Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion.Fuel, 103:606-616. https://doi.org/10.1016/j.fuel.2012.06.119
      [6] Connan, J., 1974.Time-Temperature Relation in Oil Genesis.AAPG Bulletin, 58(12):2516-2521. https://www.onacademic.com/detail/journal_1000040489566010_c759.html
      [7] Dai, F.Y., Hao, F., Hu, H.Y., et al., 2017.Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin.Earth Science, 42(7):1185-1194 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.096
      [8] Dong, C.M., Ma, C.F., Luan, G.Q., et al., 2015.Mud Shale Thermal Simulation Experiment and Diagenetic Evolution Model.Acta Sedimentologica Sinica, 33(5):1053-1061 (in Chinese with English abstract).
      [9] Du, J.Y., Cheng, B., Liao, Z.W., 2014.Geochemical Characterization of Gaseous Pyrolysates from a Permian Kerogen of Santanghu Basin.Geochimica, 43(5):510-517 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201405009
      [10] Duan, D.D., Zhang, D.N., Ma, X.X., et al., 2016.Chemical and Structural Characterization of Thermally Simulated Kerogen and Its Relationship with Microporosity.Marine and Petroleum Geology, 89:4-13. https://doi.org/10.1016/j.marpetgeo.2016.12.016
      [11] Fu, J.M., Sheng, G.Y., 1990.Coal-to-Hydrocarbon Geochemistry.Science Press, Beijing, 41-45 (in Chinese).
      [12] Guo, H.J., 2017.Pore Structure and Thermal Evolution of Yanchang Shales from Southeastern Ordos Basin (Dissertation).Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).
      [13] Guo, H.J., Wang, X.Z., Zhang, L.X., et al., 2014.Adsorption of N2 and CO2 on Mature Shales before and after Extraction and Its Implication for Investigations of Pore Structures.Geochimica, 43(4):408-414 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201404011.htm
      [14] Hou, Y.G., He, S., Wang, J.G., et al., 2015.Preliminary Study on the Pore Characterization of Lacustrine Shale Reservoirs Using Low Pressure Nitrogen Adsorption and Field Emission Scanning Electron Microscopy Methods:A Case Study of the Upper Jurassic Emuerhe Formation, Mohe Basin, Northeastern China.Canadian Journal of Earth Sciences, 52(5):294-306. https://doi.org/10.1139/cjes-2014-0188
      [15] Hu, H.Y., 2013.Porosity Evolution of Organic-Rich Shale with Thermal Maturity Increasing.Acta Petrolei Sinica, 34(5):820-825 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-SYXB201305002.htm
      [16] Katz, B.J., Arango, I., 2018.Organic Porosity:A Geochemist's View of the Current State of Understanding.Organic Geochemistry, 123:1-16. https://doi.org/10.1016/j.orggeochem.2018.05.015
      [17] Kuila, U., Prasad, M., 2013.Specific Surface Area and Pore-Size Distribution in Clays and Shales.Geophysical Prospecting, 61(2): 341-362.https: //doi.org/10.1111/1365-2478.12028
      [18] Li, M.Y., Zhan, J.H., Tian, Y., et al., 2017.Reaction Characteristics of Intermediate Product during Oil Shale Pyrolysis.The Chinese Journal of Process Engineering, 17(6):1316-1321 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgyj201706030
      [19] Loucks, R.G., Reed, R.M., 2014.Scanning-Electron-Microscope Petrographic Evidence for Distinguishing Organic-Matter Pores Associated with Depositional Organic Matter versus Migrated Organic Matter in Mudrocks.Gulf Coast Association of Geological Societies Transactions, 3:51-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214853297
      [20] Lu, J.M., Ruppel, S.C., Rowe, H.D., 2015.Organic Matter Pores and Oil Generation in the Tuscaloosa Marine Shale.AAPG Bulletin, 99(2):333-357. https://doi.org/10.1306/08201414055
      [21] Ma, Z.L., Zheng, L.J., Xu, X.H., et al., 2017.Thermal Simulation Experiment on Formation and Evolution of Organic Pores in Organic-Rich Shale.Acta Petrolei Sinica, 38(1):23-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201701003
      [22] Mastalerz, M., Drobniak, A., Stankiewicz, A.B., 2018.Origin, Properties, and Implications of Solid Bitumen in Source-Rock Reservoirs:A Review.International Journal of Coal Geology, 195:14-36. https://doi.org/10.1016/j.coal.2018.05.013
      [23] Neaman, A., Pelletier, M., Villieras, F., 2003.The Effects of Exchanged Cation, Compression, Heating and Hydration on Textural Properties of Bulk Bentonite and Its Corresponding Purified Montmorillonite.Applied Clay Science, 22(4):153-168. https://doi.org/10.1016/s0169-1317(02)00146-1
      [24] Pollastro, R.M., 2007.Total Petroleum System Assessment of Undiscovered Resources in the Giant Barnett Shale Continuous (Unconventional) Gas Accumulation, Fort Worth Basin, Texas.AAPG Bulletin, 91(4):551-578. https://doi.org/10.1306/06200606007
      [25] Ross, D.J.K., Bustin, R.M., 2009.The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs.Marine and Petroleum Geology, 26(6):916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004
      [26] Tang, X., Zhang, J.C., Jin, Z.J., et al., 2015.Experimental Investigation of Thermal Maturation on Shale Reservoir Properties from Hydrous Pyrolysis of Chang 7 Shale, Ordos Basin.Marine and Petroleum Geology, 64:165-172. https://doi.org/10.1016/j.marpetgeo.2015.02.046
      [27] Waples, D.W., 1980.Time and Temperature in Petroleum Formation:Application of Lopatin's Method to Petroleum Exploration.AAPG Bulletin, 64(6):916-926.doi: 10.1306/2f9193d2-16ce-11d7-8645000102c1865d
      [28] Wei, M.M., Xiong, Y.Q., Zhang, L., et al., 2016.The Effect of Sample Particle Size on the Determination of Pore Structure Parameters in Shales.International Journal of Coal Geology, 163:177-185. https://doi.org/10.1016/j.coal.2016.07.013
      [29] Wu, S.T., Zhu, R.K., Cui, J.G., et al., 2015.Characteristics of Lacustrine Shale Porosity Evolution, Triassic Chang 7 Member, Ordos Basin, NW China.Petroleum Exploration and Development, 42(2):185-195. https://doi.org/10.1016/s1876-3804(15)30005-7
      [30] Xue, L.H., Yang, W., Zhong, J.A., et al., 2015.Pore Evolution of the Organic-Rich Shale from Simulated Experiment with Geological Constrains, Samples from Yanchang Formation in Ordos Basin.Acta Geologica Sinica, 89(5):970-978 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201505011.htm
      [31] Yang, F., Ning, Z.F., Kong, D.T., et al., 2013.Pore Structure of Shales from High Pressure Mercury Injection and Nitrogen Adsorption Method.Natural Gas Geoscience, 24(3):450-455 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201303003
      [32] Zargari, S., Canter, K.L., Prasad, M., 2015.Porosity Evolution in Oil-Prone Source Rocks.Fuel, 153:110-117. https://doi.org/10.1016/j.fuel.2015.02.072
      [33] Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017.Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China.Earth Science, 42(7):1057-1068 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.085
      [34] Zhang, L., Xiong, Y.Q., Li, Y., et al., 2017.DFT Modeling of CO2 and Ar Low-Pressure Adsorption for Accurate Nanopore Structure Characterization in Organic-Rich Shales.Fuel, 204:1-11. https://doi.org/10.1016/j.fuel.2017.05.046
      [35] Zhao, J.L., Tang, D.Z., Xu, H., et al., 2015.Fine Characterization of the Shale Micropore Structures Based on the Carbon Dioxide Adsorption Experiment.Petroleum Geology and Oilfield Development in Daqing, 34(5):156-161 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqsydzykf201505030
      [36] Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2016.Shale Gas in China:Characteristics, Challenges and Prospects (Ⅱ).Petroleum Exploration and Development, 43(2):166-178 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK201602003.htm
      [37] 曹涛涛, 邓模, 刘虎, 等, 2018.可溶有机质对泥页岩储集物性的影响.岩性油气藏, 30(3):43-51. http://d.old.wanfangdata.com.cn/Periodical/yxyqc201803006
      [38] 戴方尧, 郝芳, 胡海燕, 等, 2017.川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素.地球科学, 42(7):1185-1194. https://doi.org/10.3799/dqkx.2017.096
      [39] 董春梅, 马存飞, 栾国强, 等, 2015.泥页岩热模拟实验及成岩演化模式.沉积学报, 33(5):1053-1061. http://d.old.wanfangdata.com.cn/Periodical/cjxb201505021
      [40] 杜军艳, 程斌, 廖泽文, 2014.三塘湖盆地二叠系干酪根热模拟气体产物的地球化学特征.地球化学, 43(5):510-517. http://d.old.wanfangdata.com.cn/Periodical/dqhx201405009
      [41] 傅家谟, 盛国英, 1990.煤成烃地球化学.北京:科学出版社, 41-45.
      [42] 郭慧娟, 2017.鄂尔多斯盆地东南部延长组页岩的孔隙结构与热演化特征(博士学位论文).广州: 中国科学院广州地球化学研究所. http://cdmd.cnki.com.cn/Article/CDMD-80165-1017074623.htm
      [43] 郭慧娟, 王香增, 张丽霞, 等, 2014.抽提前/后成熟页岩对氮气、二氧化碳的吸附特征及其对孔隙研究的意义.地球化学, 43(4):408-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201404011
      [44] 胡海燕, 2013.富有机质Woodford页岩孔隙演化的热模拟实验.石油学报, 34(5):820-825. http://d.old.wanfangdata.com.cn/Periodical/syxb201305002
      [45] 李梦雅, 战金辉, 田勇, 等, 2017.油页岩热解中间产物的反应特性.过程工程学报, 17(6):1316-1321. http://d.old.wanfangdata.com.cn/Periodical/hgyj201706030
      [46] 马中良, 郑伦举, 徐旭辉, 等, 2017.富有机质页岩有机孔隙形成与演化的热模拟实验.石油学报, 38(1):23-30. http://d.old.wanfangdata.com.cn/Periodical/syxb201701003
      [47] 薛莲花, 杨巍, 仲佳爱, 等, 2015.富有机质页岩生烃阶段孔隙演化——来自鄂尔多斯延长组地质条件约束下的热模拟实验证据.地质学报, 89(5):970-978. doi: 10.3969/j.issn.0001-5717.2015.05.011
      [48] 杨峰, 宁正福, 孔德涛, 等, 2013.高压压汞法和氮气吸附法分析页岩孔隙结构.天然气地球科学, 24(3):450-455. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201303003
      [49] 翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7):1057-1068. https://doi.org/10.3799/dqkx.2017.085
      [50] 赵俊龙, 汤达祯, 许浩, 等, 2015.基于二氧化碳吸附实验的页岩微孔结构精细表征.大庆石油地质与开发, 34(5):156-161. doi: 10.3969/J.ISSN.1000-3754.2015.05.030
      [51] 邹才能, 董大忠, 王玉满, 等, 2016.中国页岩气特征、挑战及前景(二).石油勘探与开发, 43(2):166-178. http://d.old.wanfangdata.com.cn/Periodical/syktykf201602002
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  4927
    • HTML全文浏览量:  1691
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-11-06
    • 刊出日期:  2019-03-15

    目录

      /

      返回文章
      返回