Petrogenesis and Mineralization Chronology Study on the Mo Deposit of the Haisugou Intrusive Mass, Inner Mongolia, and Its Geological Implications
-
摘要: 海苏沟岩体位于大兴安岭造山带南段,岩体中发育有海苏沟钼矿床及小井子北铜钼矿床,目前对该岩体的了解还不完善,成因类型存在争议且对两个钼矿床间差异并未进行探讨.对该岩体不同岩相花岗岩开展锆石U-Pb年代学、岩石地球化学研究,对矿区内辉钼矿进行Re-Os同位素研究.获得海苏沟钼矿床黑云母花岗岩年龄结果为137.1±0.6 Ma和143.6±0.8 Ma,测得Re-Os模式年龄为143.9±2.9 Ma.小井子北铜钼矿区二长花岗岩年龄为126.5±0.7 Ma.海苏沟岩体中花岗岩均属高钾钙碱性系列Ⅰ型花岗岩,具准铝质-弱过铝质特征,主量元素SiO2含量为68.81%~77.18%,K2O+Na2O含量为6.80%~8.31%,CaO含量为0.43%~2.88%,MgO含量为0.15%~1.32%,A/CNK值介于0.97~1.07.岩石相对富集轻稀土,(La/Yb)N=6.19~10.74,稀土配分呈右倾海鸥型,具有中等铕负异常(δEu=0.37~0.81).结合已有的研究结果,认为海苏沟岩体演化过程中经历了强烈的分离结晶作用,该岩体黑云母花岗岩与钼矿床的形成密切相关.海苏沟岩体的成岩及钼成矿作用的时间与西拉沐伦成矿带的第3期大规模成岩成矿作用时间相吻合,对应当时的构造背景为构造体系转折(由挤压环境转变为拉伸环境)至岩石圈减薄的环境.Abstract: The Haisugou rock mass is located in the southern part of the Daxing'anling orogenic belt. The Haisugou Mo deposit and the Xiaojingzibei Cu and Mo deposit are found in the intrusive mass. At present,the understanding of the rock mass is insufficient,the genetic type is controversial and the difference between the two molybdenum deposits has not been discussed. In this study,zircon U-Pb geochronology and petro-geochemistry analyses were carried out on different rocky granites in Haisugou rock mass,and Re-Os isotope analyses on molybdenite in the mining area were conducted. The LA-ICP-MS zircon U-Pb dating results of the biotite granite in the Haisugou molybdenum mining area are 137.1±0.6 Ma and 143.6±0.8 Ma; the Re content of molybdenite in the Haisugou molybdenum deposit is 2.1×10-6,the molybdenite Re-Os model age is 143.9±2.9 Ma. The dating result of LA-ICP-MS zircon U-Pb of the monzonitic granite in the Xiaojingzibei copper-molybdenum deposit is 126.5±0.7 Ma.The granite in the Haishugou pluton belongs to high-K calc-alkaline series Ⅰ-type granite with metaluminous to weakly peraluminous characteristics. The main elements SiO2 content is 68.81%-77.18%,K2O+Na2O=6.80%-8.31%,CaO content ranges from 0.43% to 2.88%,MgO ranges from 0.15% to 1.32% and aluminum index (A/CNK) value ranges from 0.97 to 1.07. The rocks are relatively enriched in light rare-earth elements (La/Yb)N=6.19-10.74 and the rare earth distribution pattern is right-dipping with a moderate negative Eu anomalies with a δEu value from 0.37 to 0.81. By combining existing research results,It can be considered that the magma evolution experienced magma mixing and the fractional crystallization plays a dominant role. The time of diagenesis and molybdenum metallogenesis of the Haisugou intrusive mass coincides with the time of the third phase of the large-scale diagenesis and mineralization of the Silamulun metallogenic belt,indicating the corresponding tectonic background is the transition of the tectonic system (from the extrusion environment to the tensile environment) to the lithosphere thinning environment.
-
图 1 大兴安岭南段及区域构造简图
据刘建明等(2004)修编
Fig. 1. Simplified tectonic map of the southern Da Hinggan Mts and its adjacent area
图 6 海苏沟岩体样品的K2O-SiO2图解、A/CNK-A/NK图解及(Na2O+K2O)-SiO2图解
据Rickwood(1989)、Peccerillo et al.(1976);前人数据据刘孜等(2017)
Fig. 6. Classification of the Haisugou intrusive mass sample on K2O vs. SiO2, A/CNK vs. A/NK and (Na2O+K2O) vs. SiO2 diagrams
图 7 海苏沟岩体各类花岗质岩石原始地幔标准化蛛网图和球粒陨石标准化稀土元素蛛网图
据Sun and McDonough(1989);前人数据据刘孜等(2017)
Fig. 7. Primitive mantle normalized trace element and chondrite-normalized REE patterns spider diagrams for granitic rocks of the Haisugou intrusive mass
图 8 海苏沟岩体选定主量和微量元素哈克图解
前人数据来自刘孜等(2017)
Fig. 8. Harker diagrams for selected major and trace elements of the Haisugou intrusive mass
图 9 海苏沟岩体花岗质岩石构造环境判别图
据Pearce et al.(1984);前人数据据刘孜等(2017)
Fig. 9. Tectonic setting discrimination diagram of granitic rocks of the Haisugou intrusive mass
图 10 海苏沟岩体花岗质岩石104×Ga/Al-(K2O+Na2O)和(Zr+Nb+Ce+Y)-FeOT/MgO图解
据Whalen et al.(1987);前人数据据刘孜等(2017)
Fig. 10. The 104×Ga/Al-(K2O+Na2O) and (Zr+Nb+Ce+Y)-FeOT/MgO diagrams of granitic rocks of the Haisugou intrusive mass
表 1 西拉沐伦钼成矿带成岩成矿年龄及辉钼矿Re含量
Table 1. The age of ores and hosting rocks and the content of Re in the Xilamulun molybdenum metallogenic belt, China
矿床名称 矿床类型 测试矿物/岩石 测试方法 年龄(Ma) Re含量(10-6) 资料来源 车户沟 斑岩型 花岗斑岩 SHRIMP U-Pb 245.1±4.4 — Zeng et al.(2010b) 辉钼矿 Re-Os 245.0±5.0 48.2~113.3 库里吐 斑岩型 二长花岗岩 SHRIMP U-Pb 229.4±4.3 — 吴华英等(2008) 辉钼矿 Re-Os 236.0±3.3 17.0~38.1 Zhang et al.(2009) 元宝山 石英脉型 辉钼矿 Re-Os 248.0±3.0 2.9 Liu et al.(2010) 碾子沟 石英脉型 辉钼矿 Re-Os 153.0±5.0 18.1~27.4 Zhang et al.(2009) 二长花岗岩 SHRIMP U-Pb 152.4±1.6 — Zeng et al.(2010b) 辉钼矿 Re-Os 154.3±3.6 12.6~37.0 张作伦等(2009) 鸡冠山 斑岩型 流纹斑岩 SHRIMP U-Pb 151.1±1.3 — 陈伟军等(2010) 辉钼矿 Re-Os 148.5±3.3 8.2~57.1 小东沟 斑岩型 辉钼矿 Re-Os 138.1±2.8 4.5~8.4 Zeng et al.(2010a) 辉钼矿 Re-Os 135.5±1.5 2.2~10.3 聂风军等(2007) 围岩 SHRIMP U-Pb 142.2±2.0 — Zeng et al.(2010a) 岗子 云英岩型 花岗岩 SHRIMP U-Pb 139.1±2.3 — Zeng et al.(2010b) 羊场 石英脉型 辉钼矿 Re-Os 138.5±4.5 4.1~20.2 Zeng et al.(2010c) 二长花岗岩 LA-ICP-MS U-Pb 137.6±1.6 — Zeng et al.(2011) 敖仑花 斑岩型 花岗斑岩 LA-ICP-MS U-Pb 133.6±2.3 — Zeng et al.(2011) 花岗斑岩 SHRIMP U-Pb 134.0±4.0 — 马星华等(2009) 辉钼矿 Re-Os 132.0±1.0 6.0~38.9 辉钼矿 Re-Os 131.2±1.9 19.5~79.8 Zeng et al.(2010c) 辉钼矿 Re-Os 129.4±3.4 18.8~31.3 Shu et al.(2016) 半砬山 斑岩型 花岗斑岩 SHRIMP U-Pb 129.4±3.5 — 曾庆栋等(2010) 花岗闪长斑岩 LA-ICP-MS U-Pb 133.5±1.7 — 张晓静等(2010) 辉钼矿 Re-Os 136.1±6.6 0.1~3.0 Shu et al.(2016) 辉钼矿 Re-Os 140.5±2.4 1.1~1.3 Zeng et al.(2011) 沙布台 斑岩型 辉钼矿 Re-Os 135.3±2.6 2.3~37.6 Shu et al.(2016) 小井子北 石英脉型 黑云母花岗岩 LA-ICP-MS U-Pb 133.1±1.4 — 刘孜等(2017) 二长花岗岩 LA-ICP-MS U-Pb 126.5±0.7 — 本文 海苏沟 石英脉型 黑云母花岗岩 LA-ICP-MS U-Pb 137.6±0.9 — Shu et al.(2014) 辉钼矿 Re-Os 136.4±0.8 2.1~28.8 Shu et al.(2016) 黑云母花岗岩 LA-ICP-MS U-Pb 137.1±0.6 — 本文 辉钼矿 Re-Os 143.9±2.9 2.1 本文 -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X [2] Belousova, E., Griffin, W., Y, O'Reilly, S.Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7 [3] Cao, C., Shen, P., 2018. Advances and Problems in Study of Porphyry Molybdenum Deposits. Geological Review, 64(2): 477-497 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201802015 [4] Chen, W.J., Liu, J.M., Liu, H.T., et al., 2010. Geochronology and Fluid Inclusion Study of the Jiguanshan Porphyry Mo Deposit, Inner Monggolia. Acta Petrologica Sinica, 26(5): 1423-1436 (in Chinese with English abstract). [5] Clemens, J.D., Stevens, G., Farina, F., 2011. The Enigmatic Sources of Ⅰ-Type Granites: The Peritectic Connexion. Lithos, 126(3-4): 174-181. https://doi.org/10.1016/j.lithos.2011.07.004 [6] Hanchar, J.M., Hoskin, P.W.O., 2003. Zircon: Reviews in Mineralogy and Geochemistry. Mineralogical Society of America/Geochemical Society, Washington D. C.. [7] Inner Mongolia Autonomous Region Bureau of Geology and Mineral Resources, 1991. Regional Geology of Inner Mongolia Autonomous Region. Geological Publishing House, Beijing (in Chinese). [8] Keppler, H., Wyllie, P.J., 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between Melt and Aqueous Fluid in the Systems Haplogranite-H2O–HCl and Haplogranite-H2O-HF. Contributions to Mineralogy and Petrology, 109: 139-150. https://doi.org/10.1007/BF00306474 [9] Kong, F.G., Sun, J.Y., Wei, L.M., 2013. The Characteristics of Silver, Lead and Zinc Polymetallic Mineralization in Xiaojingzi Mining Area of Balinzuoqi. Journal of Mineralogy, 33(S2): 777 (in Chinese with English abstract). [10] Lai, Y., Shu, Q.H., Wang, C., 2013. Evolution Mechanism of Ore-Forming Fluids of Porphyry Molybdenum (Copper) Deposits in Inner Mongolia: A Case Study of Porphyry Molybdenum Deposits in Haisugou, Moulenghua, Chehugou. Journal of Mineralogy, 33(S2): 455 (in Chinese with English abstract). [11] Li, P.C., Liu, Z.H., Li, S.C., et al., 2016. Geochronology, Geochemistry, Zircon Hf Isotopic Characteristics and Tectonic Setting of Hudugeshaorong Pluton in Balinyouqi, Inner Mongolia. Earth Science, 41(12): 1995-2007 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201612002 [12] Li, X.H., Li, Z.X., Li, W.X., et al., 2007. U–Pb Zircon, Geochemical and Sr–Nd–Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1-2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018 [13] Liu, J.M., Zhang, R., Zhang, Q.Z., et al., 2004. The Regional Metallogeny of Daxinganling, China. Earth Science Frontiers, 11(1): 269-277 (in Chinese with English abstract). [14] Liu, J.M., Zhao, Y., Sun, Y.L., et al., 2010. Recognition of the Latest Permian to Early Triassic Cu–Mo Mineralization on the Northern Margin of the North China Block and Its Geological Significance. Gondwana Research, 17(1): 125-134. https://doi.org/10.1016/j.gr.2009.07.007 [15] Liu, Z., Huan, X.K., Zhu, X.Y., et al., 2017. Chronology of U-Pb Zircon and Geochemistry of the Biotite Monzogranite and its Geological Implication of the North Xiaojingzi Copper-Molybdenum Deposit in Inner Mongolia. Mineral Exploration, 8(6): 997-1009 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcj201706009 [16] Ludwig, K.R., 2001a. ISOPLOT/EX Version 2.49: A Geochronological Toolkit for Microsoft Excel. Berkley Geochronological Centre, Berkley. [17] Ludwig, K.R., 2001b. SQUID Version 1.02: A Geochronological Toolkit for Microsoft Excel. Berkley Geochronological Centre, Berkley. [18] Ludwig, K.R., Szabo, B.J., Moore, J.G., 1991. Crustal Subsidence Rate off Hawaii Determined from 234U/238U Ages of Drowned Coral Reefs. Geology, 19(2):171-174. https://doi.org/10.1130/0091-7613(1991)019 < 0171:CSROHD > 2.3.CO; 2 doi: 10.1130/0091-7613(1991)019<0171:CSROHD>2.3.CO;2 [19] Ma, X.H., Chen, B., Lai, Y., et al., 2009. Petrogenesis and Mineralization Chronology Study on the Aolunhua Porphyry Mo Deposit, Inner Mongolia, and Its Geological Implications. Acta Petrologica Sinica, 25(11): 2939-2950 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200911023 [20] Mao, J.W., Zhang, Z.C., Zhang, Z.H., et al., 1999. Re–Os Isotopic Dating of Molybdenites in the Xiaoliugou W (Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818. https://doi.org/10.1016/s0016-7037(99)00165-9 [21] Meng, X.J., Hou, Z.X., Dong, G.Y., et al., 2007. The Geological Characteristics and Re–Os Idotope Age of Molybdenite of the Xiongjiashan Molybdenum Deposit, Jiangxi Province. Acta Geologica Sinica, 81(7): 946-951 (in Chinese with English abstract). [22] Miller, J.S., Matzel, J.E.P., Miller, C.F., et al., 2007. Zircon Growth and Recycling during the Assembly of Large, Composite Arc Plutons. Journal of Volcanology and Geothermal Research, 167(1-4): 282-299. https://doi.org/10.1016/j.jvolgeores.2007.04.019 [23] Nie, F.J., Zhang, W.Y., Du, A.D., et al., 2007. Re–Os Isotopic Dating on Molybdenite Separates from the Xiaodonggou Porphyry Mo Deposit, Hexigten Qi, Inner Mongolia. Acta Geologica Sinica, 81(7): 898-905 (in Chinese with English abstract). [24] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [25] Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745 [26] Rickwood, P.C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5 [27] Robb, L.J., 2005. Introduction to Ore-Forming Processes. Blackwell Publishing, Malden. [28] Shen, C.L., Zhang, M., Yu, X.Q., et al., 2010. New Progresses in Exploration of Molybdenum Eeposits and Analysis of Mineralization Prospect in Inner Mongolia. Geology and Exploration, 46(4): 561-575 (in Chinese with English abstract). [29] Shu, Q.H., Chang, Z.S., Lai, Y., et al., 2016. Regional Metallogeny of Mo-Bearing Deposits in Northeastern China, with New Re–Os Dates of Porphyry Mo Deposits in the Northern Xilamulun District. Economic Geology, 111(7): 1783-1798. https://doi.org/10.2113/econgeo.111.7.1783 [30] Shu, Q.H., Lai, Y., Wang, C., et al., 2014. Geochronology, Geochemistry and Sr–Nd–Hf Isotopes of the Haisugou Porphyry Mo Deposit, Northeast China, and Their Geological Significance. Journal of Asian Earth Sciences, 79: 777-791. https://doi.org/10.1016/j.jseaes.2013.05.015 [31] Sun, S.S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts; Implication for Mantel Composition and Processes. Geological Society, London, Special Publications, 42: 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [32] Sun, X.G., Liu, J.M., Qin, F., et al., 2008. The New Progress on Polymetallic Studies in Daxing'anling-The Revelation of the Southern Bank Xilamulun River Molybdenum Polymetallic Belt. China Mingng Magazine, 17(2): 75-77, 83 (in Chinese with English abstract). [33] Wang, D.Z., Zhao, C.T., Qiu, J.S., 1995. The Tectonic Constraint on the Late Mesozoic A-Type Granitoids in Eastern China. Geological Journal of Universities, 2: 13-21 (in Chinese with English abstract). [34] Wang, J.B., Wang, Y.W., Wang, L.J., 2005. Tin-Polymetallic Metallogenic Series in the Southern Part of Daxing'anling Mountains China. Geology and Prospecting, 41(6): 15-20 (in Chinese with English abstract). [35] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 [36] Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x [37] Wu, H.Y., Zhang, L.C., Chen, Z.G., et al., 2008. Geochemistries, Tectonic Setting and Mineralization Potentiality of the Ore-Bearing Monzogranite in the Kulitu Molybdenum (Copper) Deposit of Xar Moron Metallogetic Belt, Inner Monglia. Acta Petrologica Sinica, 24(4): 867-878 (in Chinese with English abstract). [38] Xia, B.B., Xia, B., Wang, B.D., et al., 2010. Formation Time of the Tangbula Porphyry Mo–Cu Deposit Evidence from SHRIMP Zircon U-Pb Dating of Tangbula Ore-Bearing Porphyries.Geotectonica et Metallogenia, 34(2): 291-298 (in Chinese with English abstract). [39] Yang, F., Pang, X.J., Wu, M., et al., 2019. Geochronology, Geochemistry and Hf Isotopic Compositions of Granitoids in Jinchanggouliang Area, Chifeng, Inner Mongolia. Earth Science, 44(10): 3209-3222 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201910004 [40] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U–Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x [41] Zeng, Q.D., Liu, J.M., 2010. Zircon SHRIMP U–Pb Dating and Geological Significance of the Ganite Porphyry from Banlashan Porphyry Molybdenum Deposit in Xilamulun Molybdenum Metallogenic Belt. Journal of Jilin University (Earth Science Edition), 40(4): 827-834 (in Chinese with English abstract). [42] Zeng, Q.D., Liu, J.M., Qin, F., et al., 2010a. Geochronology of the Xiaodonggou Porphyry Mo Deposit in Northern Margin of North China Craton. Resource Geology, 60(2): 192-202. https://doi.org/10.1111/j.1751-3928.2010.00125.x [43] Zeng, Q.D., Liu, J.M., Zhang, Z.L., et al., 2010b. Geology and Geochronology of the Xilamulun Molybdenum Metallogenic Belt in Eastern Inner Mongolia, China. International Journal of Earth Sciences, 100(8): 1791-1809. https://doi.org/10.1007/s00531-010-0617-z [44] Zeng, Q.D., Liu, J.M., Zhang, Z.L., 2010c. Re–Os Geochronology of Porphyry Molybdenum Deposit in South Segment of Da Hinggan Mountains, Northeast China. Journal of Earth Science, 21(4): 392- 401. https://doi.org/10.1007/s12583-010-0102-4 [45] Zeng, Q.D., Liu, J.M., Zhang, Z.L., et al., 2009. Geology and Lead-Isotope Study of the Baiyinnuoer Zn–Pb–Ag Deposit, South Segment of the Da Hinggan Mountains, Northeastern China. Resource Geology, 59(2): 170-180. https://doi.org/10.1111/j.1751-3928.2009.00088.x [46] Zeng, Q.D., Liu, J.M., Zhang, Z.L., et al., 2009. Ore-Forming Time of the Jiguanshan Porphyry Molybdenym Deposit, Northern Margin of North China Craton and the Indosinian Mineralization. Acta Petrologica Sinica, 25(2): 393-398 (in Chinese with English abstract). [47] Zeng, Q. D., Liu, J. M., Zhang, Z. L., et al., 2011. Geology and Geochronology of the Xilamulun Molybdenum Metallogenic Belt in Eastern Inner Mongolia, China. International Journal of Earth Sciences, 100(8): 1791-1809. https://doi.org/10.1007/s00531-010-0617-z [48] Zeng, Q.D., Liu, J.M., Zhang, Z.L., et al., 2011. Mesozoic Granitic Magmatism and Molybdenum Ore-Forming Processes in the Xilamulun Metallogenic Belt. Journal of Jilin University (Earth Science Edition), 41(6): 1705-1714, 1725 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201106006 [49] Zhang, L. C., Wu, H. Y., Wan, B., et al., 2009. Ages and Geodynamic Settings of Xilamulun Mo-Cu Metallogenic Belt in the Northern Part of the North China Craton. Gondwana Research, 16(2): 243-254. https://doi.org/10.1016/j.gr.2009.04.005 [50] Zhang, L.C., Ying, J.F., Chen, Z.C., et al., 2008. Age and Tectonic Setting of Triassic Basic Volcanic Rocks in Southern Da Hinggan Range. Acta Petrologica Sinica, 24(4): 911-920 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200804029 [51] Zhang, X.J., Zhang, L.C., Jin, X.D., et al., 2010. U–Pb Ages, Geochemical Characteristics and Their Implications of Banlashan Molybdenum Deposit. Acta Petrologica Sinica, 26(5): 1411-1422 (in Chinese with English abstract). [52] Zhang, Y.B., Sun, S.H., Mao, S., 2006. Mesozoic O-Type Adakitic Volcanic Rocks and Its Petrogenesis, Paleo-Tectonic Dynamic and Mineralization Significance of the Eastern Side of Sourthern Da Hinggan, China. Acta Petrologica Sinica, 22(9): 2289-2304 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200609004 [53] Zhang, Z.L., Zeng, Q.D., Qu, W.J., et al., 2009. The Molybdenite Re–Os Dating from the Nianzigou Mo Deposit, Inner Mongolia and Its Geological Significance. Acta Petrologica Sinica, 25(1): 212-218 (in Chinese with English abstract). [54] 曹冲, 申萍, 2018.斑岩型钼矿床研究进展与问题.地质论评, 64(2):477-497. http://d.old.wanfangdata.com.cn/Periodical/dzlp201802015 [55] 陈伟军, 刘建明, 刘红涛, 等, 2010.内蒙古鸡冠山斑岩钼矿床成矿时代和成矿流体研究.岩石学报, 26(5): 1423-1436. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201005009 [56] 内蒙古自治区地质矿产局, 1991.内蒙古自治区区域地质志.北京:地质出版社. [57] 孔凡干, 孙靖宇, 韦龙明, 2013.巴林左旗小井子矿区银铅锌多金属矿化特征.矿物学报, 33(S2):777. http://d.old.wanfangdata.com.cn/Conference/8301351 [58] 赖勇, 舒启海, 王潮, 2013.内蒙古斑岩钼(铜)矿成矿流体演化机理研究——以海苏沟、敖仑花、车户沟等斑岩钼矿为例.矿物学报, 33(S2):455. http://d.old.wanfangdata.com.cn/Conference/8300922 [59] 李鹏川, 刘正宏, 李世超, 等, 2016.内蒙古巴林右旗胡都格绍荣岩体的年代学、地球化学、Hf同位素特征及构造背景.地球科学, 41(12):1995-2007. doi: 10.3799/dqkx.2016.139 [60] 刘建明, 张锐, 张庆洲, 等, 2004.大兴安岭地区的区域成矿特征.地学前缘, 1:269-277. doi: 10.3321/j.issn:1005-2321.2004.01.024 [61] 刘孜, 黄行凯, 祝新友, 等, 2017.内蒙古小井子北铜钼矿区黑云母二长花岗岩年代学、地球化学特征及地质意义.矿产勘查, 8(6):997-1009. doi: 10.3969/j.issn.1674-7801.2017.06.009 [62] 马星华, 陈斌, 赖勇, 等, 2009.内蒙古敖仑花斑岩钼矿床成岩成矿年代学及地质意义.岩石学报, 25(11):2939-2950. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200911023 [63] 孟祥金, 侯增谦, 董光裕, 等, 2007.江西金溪熊家山钼矿床特征及其Re–Os年龄.地质学报, 81(7):946-951. doi: 10.3321/j.issn:0001-5717.2007.07.010 [64] 聂凤军, 张万益, 杜安道, 等, 2007.内蒙古小东沟斑岩钼矿床辉钼矿铼-锇同位素年龄及地质意义.地质学报, 81(7):898-905. doi: 10.3321/j.issn:0001-5717.2007.07.004 [65] 沈存利, 张梅, 于玺卿, 等, 2010.内蒙古钼矿找矿新进展及成矿远景分析.地质与勘探46(4):561-575. http://d.old.wanfangdata.com.cn/Periodical/dzykt201004001 [66] 孙兴国, 刘建明, 覃锋, 等, 2008.大兴安岭成矿研究新进展——西拉沐伦河南岸Mo多金属成矿带的发现.中国矿业, 17(2):75-77, 83. doi: 10.3969/j.issn.1004-4051.2008.02.022 [67] 王德滋, 赵广涛, 邱检生, 1995.中国东部晚中生代A型花岗岩的构造制约.高校地质学报, 2:13-21. [68] 王京彬, 王玉往, 王莉娟, 等, 2005.大兴安岭南段锡多金属成矿系列.地质与勘探, 41(6):15-20. doi: 10.3969/j.issn.0495-5331.2005.06.003 [69] 吴华英, 张连昌, 陈志广, 等, 2008.内蒙古西拉木伦成矿带库里吐钼铜矿区二长花岗岩地球化学构造环境及含矿性分析.岩石学报, 24(4):867-878. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200804025 [70] 夏抱本, 夏斌, 王保弟, 等, 2010.汤不拉含矿斑岩的形成时代及其对斑岩钼铜矿的制约.大地构造与成矿学, 34(2):291-298. doi: 10.3969/j.issn.1001-1552.2010.02.016 [71] 杨帆, 庞雪娇, 吴猛, 等, 2019.内蒙古赤峰金厂沟梁地区花岗岩类年代学、地球化学与Hf同位素特征.地球科学, 44(10):3209-3222. doi: 10.3799/dqkx.2019.204 [72] 曾庆栋, 刘建明, 2010.西拉沐伦钼矿带半拉山斑岩钼矿床花岗斑岩锆石SHRIMP U–Pb测年及其地质意义.吉林大学学报(地球科学版), 40(4):827-834. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201004011 [73] 曾庆栋, 刘建明, 褚少雄, 等, 2011.西拉沐伦成矿带中生代花岗岩浆活动与钼成矿作用.吉林大学学报(地球科学版), 41(6):1705-1714, 1725. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201106006 [74] 曾庆栋, 刘建明, 张作伦, 等, 2009.华北克拉通北缘鸡冠山斑岩钼矿床成矿年代及印支期成矿事件.岩石学报, 25(2):393-398. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200902013 [75] 张连昌, 英基丰, 陈志广, 等, 2008.大兴安岭南段三叠纪基性火山岩时代与构造环境.岩石学报, 24(4):911-920. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200804029 [76] 张晓静, 张连昌, 靳新娣, 等, 2010.内蒙古半砬山钼矿含矿斑岩U-Pb年龄和地球化学及其地质意义.岩石学报, 26(5):1411-1422. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201005008 [77] 张永北, 孙世华, 毛骞, 等, 2006.大兴安岭南段东麓中生代O型埃达克质火山岩及其成因、古构造环境和找矿意义.岩石学报, 22(9):2289-2304. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609004 [78] 张作伦, 曾庆栋, 屈文俊, 等, 2009.内蒙碾子沟钼矿床辉钼矿Re-Os同位素年龄及其地质意义.岩石学报, 25(1):212-218. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200901018 -
dqkx-45-1-43-Table1-4.pdf