Ordovician Sequence and Lithofacies Paleogeography Reconstruction in Upper Yangtze Region and Its Implications for Oil and Gas Exploration
-
摘要: 四川盆地奥陶系岩相古地理格局研究程度偏低、认识出入较大,沉积期古隆起分布有待进一步研究.运用最新的井震及野外资料,在层序地层划分与对比基础上,建立了上扬子地区奥陶纪三级层序地层格架,并重建了重点层位层序岩相古地理.研究揭示,二级层序结构控制了沉积充填结构,每个二级层序的下部地层厚度起伏明显,指示了古地貌明显起伏特征,古隆起区具有明显的三级层序超覆沉积缺失结构;二级层序晚期古隆起范围缩小,填平补齐作用使得三级层序地层厚度总体稳定.岩相古地理分析揭示,奥陶纪总体具有北部、西部和南部三面稳定古隆起环绕中部凹陷区特征,川中古隆起明显分隔中部凹陷区;认为川中古隆起及南北两侧古隆起具有间歇性扩大、川东地区SSQ2早期存在隆起区,而中部凹陷区总体具有持续性沉降及向东迁移的特征.研究表明,早奥陶世桐梓组沉积期继承了娄山关群的总体古地理格局结构,形成了2个膏岩区及古隆起周缘白云石化颗粒滩相带组合,而湄潭组可能存在西部来源的三角洲沉积.Abstract: There are different understandings about lithofacies paleogeographic features of Ordovician in Sichuan Basin, and its synsedimentary paleo-uplifts need further research.Using the latest well, seismic data and field data, a study on the Ordovician lithofacies paleogeography on the basis of the sequence stratigraphic division and comparison is carried out.The Ordovician third-order sequence stratigraphic framework in the Upper Yangtze region was established, and the lithofacies palaeogeography of the key stratigraphic sequence was reconstructed.The study reveals that the sedimentary filling texture of Ordovician was controlled by second-order sequence stratigraphy.The strata thickness varies in the lower of each second-order sequence stratigraphy, indicating distinct fluctuant paleogeomorphology.Third-order sequence stratigraphy overlied toward the paleo-uplift region resulting in the loss of strata.The range of paleo-uplift was reduced at the late stage of second-order sequence, and the stratigraphic thickness of the third-order sequence was generally stable as the result of filling.The analysis of lithofacies paleogeography reveals that stable uplifts surrounded the central depressions from three sides, including the north, west, and south during Ordovician, and paleo-uplift in central Sichuan divided central depressions into two parts clearly.It is believed that the paleo-uplift in the central Sichuan and the paleo-uplift on both north and south sides are characterized by intermittent expansion.An uplift area exists during SSQ2 in the east of Sichuan.The central depression has the characteristics of continuous settlement and eastward migration.The study reveals that Early Ordovician Tongzi Formation had inherited the overall paleogeographic background of Loushanguan Group of Cambrian, forming two gypsum rock areas and dolomitization grain shoals distributed around paleo-uplift.In addition, delta depositions sourced from the west of study area maybe existed during Meitan period.
-
图 2 川中古隆起与川北古隆起地层结构
a.过川中古隆起地震剖面(志留底拉平,剖面位置见图 5a中AA′);b.北部TX1井奥陶系柱状图
Fig. 2. Stratigraphic structure of paleo-uplift in Middle and North Sichuan
图 3 过雷波抓抓岩-湖北三峡奥陶系层序地层及沉积体系剖面对比
剖面位置见图 5中BB′
Fig. 3. Sequence stratigraphy and sedimentary contrast of Ordovician across Leibozhuazhuayan—Hubeisanxia section in Upper Yangtze region
图 4 过Z5-贵州仁怀奥陶系层序地层及沉积体系剖面对比
剖面位置参见图 5中CC′
Fig. 4. Sequence stratigraphy and sedimentary contrast of Ordovician across Well Z5-Guizhourenhuai section in Upper Yangtze region
图 5 上扬子地区SQ1-SQ3层序(桐梓组)岩相古地理图
北部和西部古隆起及沉积背景参考黄福喜(2011)、陈洪德和郭彤楼(2012)修改;龙门山断裂展示的是现今断裂位置
Fig. 5. Lithofacies paleogeography of SQ1 to SQ3 (Tongzi Formation of the Lower Ordovician) in the Upper Yangtze region
图 8 上扬子地区SQ5-SQ8(湄潭组)岩相古地理图
北部和西部古隆起及沉积背景部分参考黄福喜(2011)、陈洪德和郭彤楼(2012)修改;龙门山断裂展示的是现今断裂位置
Fig. 8. Lithofacies paleogeography of SQ5 to SQ8 (Meitan Formation of the Lower-Middle Ordovician) in the Upper Yangtze region
图 9 上扬子地区SQ10层序(宝塔组-临湘组)岩相古地理图
北部和西部古隆起及沉积背景参考黄福喜(2011)、陈洪德和郭彤楼(2012)修改;南部古隆起参考谢尚克等(2011)修改;龙门山断裂展示的是现今断裂位置
Fig. 9. Lithofacies paleogeography of SQ10 (Baota Formation to Linxiang Formation of the Upper Ordovician) in the Upper Yangtze region
-
[1] Chen, H.D., Guo, T.L., 2012.Sedimentary Filling Processes and Material Distributions in the Upper-Middle Yangtze Superimposed Basin.Science Press, Beijing (in Chinese). [2] Cui, J.D., 2013.Sedimentary Response to Tectonic Evolution of the Central Guizhou Uplift and Its Adjacent Areas (Dissertation).Central South University, Changsha (in Chinese with English abstract). [3] Guo, T.L., 2014.Characteristics and Exploration Potential of Ordovician Reservoirs in Sichuan Basin.Oil & Gas Geology, 35(3):372-378 (in Chinese with English abstract). [4] Guo, X.S., 2017.Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area.Earth Science, 42(7):1069-1082 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.086 [5] Han, C., Jiang, Z.X., Han, M., et al., 2016.The Lithofacies and Reservoir Characteristics of the Upper Ordovician and Lower Silurian Black Shale in the Southern Sichuan Basin and Its Periphery, China.Marine and Petroleum Geology, 75:181-191. https://doi.org/10.1016/j.marpetgeo.2016.04.014 [6] Hou, M.C., Chen, A.Q., Ogg, J.G., et al., 2018.China Paleogeography:Current Status and Future Challenges.Earth-Science Reviews, 189:177-193. https://doi.org/10.1016/j.earscirev.2018.04.004 [7] Huang, F.X., 2011.Filling Process and Evolutionary Model of Sedimentary Sequence in Middle-Upper Yangtze Cratonic Basin (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract). [8] Huang, W.M., Liu, S.G., Wang, G.Z., et al., 2011.Geological Conditions and Gas Reservoir Features in Lower Paleozoic in Sichuan Basin.Natural Gas Geoscience, 22(3):465-476 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201103013 [9] Kang, J.W., Sun, Y.Y., Men, Y.P., et al., 2018.Shale Gas Enrichment Conditions in the Frontal Margin of Dabashan Orogenic Belt, South China.Journal of Natural Gas Science and Engineering, 54:11-24. https://doi.org/10.1016/j.jngse.2018.03.010 [10] Li, J., He, D.F., Mei, Q.H., 2015.Tectonic-Depositional Environment and Proto-Type Basins Evolution of the Ordovician in Sichuan Basin and Adjacent Areas.Acta Petrolei Sinica, 36(4):427-445 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201504004 [11] Li, W., Yi, H.Y., Hu, W.S., et al., 2014.Tectonic Evolution of Caledonian Paleohigh in the Sichuan Basin and Its Relationship with Hydrocarbon Accumulation.Natural Gas Industry, 34(3):8-15 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201403002 [12] Li, Y.F., Zhang, T.W., Ellis, G.S., et al., 2017.Depositional Environment and Organic Matter Accumulation of Upper Ordovician-Lower Silurian Marine Shale in the Upper Yangtze Platform, South China.Palaeogeography, Palaeoclimatology, Palaeoecology, 466:252-264. https://doi.org/10.1016/j.palaeo.2016.11.037 [13] Li, Z.C., Pei, X.Z., Liu, Z.Q., et al., 2011.Characteristics of Sedimentary Strata and Their Forming Environments of Nanhuan Period-Early Paleozoic of Back-Longmenshan in the Northwest Margin of Yangtze Block.Journal of Earth Sciences and Environment, 33(2):117-124 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201102002 [14] Lu, Y.B., Ma, Y.Q., Wang, Y.X., et al., 2017.The Sedimentary Response to the Major Geological Events and Lithofacies Characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area.Earth Science, 42(7):1169-1184 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.095. [15] Luo, B., Yang, Y.M., Luo, W.J., et al., 2017.Controlling Factors of Dengying Formation Reservoirs in the Central Sichuan Paleo-Uplift.Petroleum Research, 2(1):54-63. https://doi.org/10.1016/j.ptlrs.2017.06.001 [16] Ma, Y.S., Chen, H.D., Wang, G.L., et al., 2009a.Sequence Stratigraphy and Palaeogeography in South China.Science Press, Beijing (in Chinese). [17] Ma, Y.S., Chen, H.D., Wang, G.L., et al., 2009b.Tectonic-Sequence Lithofacies Paleogeographic Atlas of Southern China:Sinian-New Age.Science Press, Beijing (in Chinese). [18] Wang, W.H., Hu, W.X., Chen, Q., et al., 2017.Temporal and Spatial Distribution of Ordovician-Silurian Boundary Black Graptolitic Shales on the Lower Yangtze Platform.Palaeoworld, 26(3):444-455. https://doi.org/10.1016/j.palwor.2016.11.002 [19] Xie, S.K., Wang, Z.J., Wang, J., 2011.Lithofacies Palaeogeography of the Late Ordovician in Northeastern Guizhou Province.Journal of Palaeogeography, 13(5):539-549 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201105008 [20] Yan, C.N., Jin, Z.J., Zhao, J.H., et al., 2018.Influence of Sedimentary Environment on Organic Matter Enrichment in Shale:A Case Study of the Wufeng and Longmaxi Formations of the Sichuan Basin, China.Marine and Petroleum Geology, 92:880-894. https://doi.org/10.1016/j.marpetgeo.2018.01.024 [21] Yang, W., Xie, W.R., Wei, G.Q., et al., 2012.Sequence Lithofacies Paleogeography, Favorable Reservoir Distribution and Exploration Zones of the Cambrian and Ordovician in Sichuan Basin, China.Acta Petrolei Sinica, 33(S2):21-34 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb2012z2003 [22] Zhao, J.H., Jin, Z.K., Jin, Z.J., et al., 2017.Origin of Authigenic Quartz in Organic-Rich Shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China:Implications for Pore Evolution.Journal of Natural Gas Science and Engineering, 38:21-38. https://doi.org/10.1016/j.jngse.2016.11.037 [23] Zhu, D.Y., Zhang, D.W., Li, S.J., et al., 2015.Development Genesis and Characteristics of Karst Reservoirs in Lower Assemblage in Sichuan Basin.Marine Origin Petroleum Geology, 20(1):33-44 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201501005 [24] 陈洪德, 郭彤楼, 2012.中上扬子叠合盆地沉积充填过程与物质分布规律.北京:科学出版社. [25] 崔金栋, 2013.黔中隆起及周缘构造演化的沉积响应(博士学位论文).长沙: 中南大学. http://d.wanfangdata.com.cn/Thesis/y2423520 [26] 郭彤楼, 2014.四川盆地奥陶系储层发育特征与勘探潜力.石油与天然气地质, 35(3):372-378. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201403011 [27] 郭旭升, 2017.上扬子地区五峰组-龙马溪组页岩层序地层及演化模式.地球科学, 42(7):1069-1082. https://doi.org/10.3799/dqkx.2017.086 [28] 黄福喜, 2011.中上扬子克拉通盆地沉积层序充填过程与演化模式(博士学位论文).成都: 成都理工大学. http://cdmd.cnki.com.cn/article/cdmd-10616-1011236249.htm [29] 黄文明, 刘树根, 王国芝, 等, 2011.四川盆地下古生界油气地质条件及气藏特征.天然气地球科学, 22(3):465-476. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201103013 [30] 李皎, 何登发, 梅庆华, 2015.四川盆地及邻区奥陶纪构造-沉积环境与原型盆地演化.石油学报, 36(4):427-445. http://d.old.wanfangdata.com.cn/Periodical/syxb201504004 [31] 李伟, 易海永, 胡望水, 等, 2014.四川盆地加里东古隆起构造演化与油气聚集的关系.天然气工业, 34(3):8-15. doi: 10.3787/j.issn.1000-0976.2014.03.002 [32] 李佐臣, 裴先治, 刘战庆, 等, 2011.扬子地块西北缘后龙门山南华纪-早古生代沉积地层特征及其形成环境.地球科学与环境学报, 33(2):117-124. doi: 10.3969/j.issn.1672-6561.2011.02.002 [33] 陆扬博, 马义权, 王雨轩, 等, 2017.上扬子地区五峰组-龙马溪组主要地质事件及岩相沉积响应.地球科学, 42(7):1169-1184. https://doi.org/10.3799/dqkx.2017.095 [34] 马永生, 陈洪德, 王国力, 等, 2009a.中国南方层序地层与古地理.北京:科学出版社. [35] 马永生, 陈洪德, 王国力, 等, 2009b.中国南方构造-层序岩相古地理图集:震旦纪-新近纪.北京:科学出版社. [36] 谢尚克, 汪正江, 王剑, 2011.黔东北地区晚奥陶世岩相古地理.古地理学报, 13(5):539-549. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201105008 [37] 杨威, 谢武仁, 魏国齐, 等, 2012.四川盆地寒武纪-奥陶纪层序岩相古地理、有利储层展布与勘探区带.石油学报, 33(S2):21-34. doi: 10.7623/syxb2012S2003 [38] 朱东亚, 张殿伟, 李双建, 等, 2015.四川盆地下组合碳酸盐岩多成因岩溶储层发育特征及机制.海相油气地质, 20(1):33-44. doi: 10.3969/j.issn.1672-9854.2015.01.005