• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    早三叠世海洋异常的碳-氮-硫同位素记录

    宋虎跃 童金南 杜勇 宋海军 田力 楚道亮

    宋虎跃, 童金南, 杜勇, 宋海军, 田力, 楚道亮, 2018. 早三叠世海洋异常的碳-氮-硫同位素记录. 地球科学, 43(11): 3922-3931. doi: 10.3799/dqkx.2018.334
    引用本文: 宋虎跃, 童金南, 杜勇, 宋海军, 田力, 楚道亮, 2018. 早三叠世海洋异常的碳-氮-硫同位素记录. 地球科学, 43(11): 3922-3931. doi: 10.3799/dqkx.2018.334
    Song Huyue, Tong Jinnan, Du Yong, Song Haijun, Tian Li, Chu Daoliang, 2018. Large Perturbed Marine Carbon-Nitrogen-Sulfur Isotopes during Early Triassic. Earth Science, 43(11): 3922-3931. doi: 10.3799/dqkx.2018.334
    Citation: Song Huyue, Tong Jinnan, Du Yong, Song Haijun, Tian Li, Chu Daoliang, 2018. Large Perturbed Marine Carbon-Nitrogen-Sulfur Isotopes during Early Triassic. Earth Science, 43(11): 3922-3931. doi: 10.3799/dqkx.2018.334

    早三叠世海洋异常的碳-氮-硫同位素记录

    doi: 10.3799/dqkx.2018.334
    基金项目: 

    国家自然科学基金项目 41872033

    安徽省国土资源科技项目 2016-K-5

    湖北省自然科学基金项目 2017CFB610

    国家自然科学基金项目 41402302

    国家自然科学基金项目 41661134047

    详细信息
      作者简介:

      宋虎跃(1986-), 男, 副教授, 主要从事古-中生代之交古海洋环境演变研究

    • 中图分类号: P539.7

    Large Perturbed Marine Carbon-Nitrogen-Sulfur Isotopes during Early Triassic

    • 摘要: 早三叠世作为显生宙最大生物灭绝之后的一段特殊地质历史时期,不仅见证了海洋生物的迟缓复苏,而且记录了极其动荡的海洋环境变化,该时期异常的生物环境事件及其机制已经成为当前国际地质学者关注的重大科学问题之一.近些年来,研究学者在早三叠世的碳-氮-硫异常循环研究中取得了许多重要的进展,这对深入理解该时期的环境演变及其对生物复苏的影响十分重要.重点回顾近年来关于早三叠世古海洋碳-氮-硫循环方面的研究进展,对当前存在的科学问题及发展趋势进行分析和总结.

       

    • 图  1  早三叠世碳同位素组成全球对比

      δ13Ccarb结果均相对于VPDB;碳同位素分别引自:华南,Payne et al.(2004);意大利,Horacek et al.(2007a);伊朗,Horacek et al.(2007b);N代表碳同位素负偏事件,P代表碳同位素正漂事件

      Fig.  1.  Global correlation of the Early Triassic carbon isotope changes

      图  2  珠穆朗玛峰地区早三叠世全岩有机碳-氮同位素初步结果

      未发表数据;δ13Corg结果均相对于VPDB;δ15NTN结果均相对于空气中氮气;TN代表全岩总有机氮

      Fig.  2.  Early Triassic organic carbon-nitrogen isotope curves in the Everest area

      图  3  打讲、上关刀、下关刀剖面早三叠世δ34SCAS, δ13Ccarb曲线

      Song et al.(2014)δ13Ccarb结果均相对于VPDB;δ34SCAS结果均相对于VCDT.C.=Clarkina; H.=Hindeodus parvus; I.s.=Isarcicella staeschi; I.i.=Isarcicella isarcica; Ns.=Neospathodus; Nv.= Novispathodus; T.=Triassospathodus; Cs.=Chiosella; Ni.=Nicoraella; Pg.=Paragondolella; Bv.=Budurovignathus

      Fig.  3.  Early Triassic δ34SCAS, δ13Ccarb curves from Dajiang, Lower and Upper Guandao sections

    • [1] Algeo, T.J., Hannigan, R., Rowe, H., et al., 2007.Sequencing Events across the Permian-Triassic Boundary, Guryul Ravine (Kashmir, India).Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1):328-346.https://doi.org/10.1016/j.palaeo.2006.11.050 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a9aa9f7a9edf8d3adeacf845149d477
      [2] Bernasconi, S.M., Meier, I., Wohlwend, S., et al., 2017.An Evaporite-Based High-Resolution Sulfur Isotope Record of Late Permian and Triassic Seawater Sulfate.Geochimica et Cosmochimica Acta, 204:331-349. https://doi.org/10.1016/j.gca.2017.01.047
      [3] Berner, R.A., 2004.The Phanerozoic Carbon Cycle:CO2 and O2.Oxford University Press, New York.
      [4] Berner, R.A., 2005.The Carbon and Sulfur Cycles and Atmospheric Oxygen from Middle Permian to Middle Triassic.Geochimica et Cosmochimica Acta, 69(13):3211-3217. https://doi.org/10.1016/j.gca.2005.03.021
      [5] Berner, R.A., 2006.Geocarbsulf:A Combined Model for Phanerozoic Atmospheric O2 and CO2.Geochimica et Cosmochimica Acta, 70(23):5653-5664. https://doi.org/10.1016/j.gca.2005.11.032
      [6] Berner, R.A., Kothavala, Z., 2001.Geocarb Ⅲ:A Revised Model of Atmospheric CO2 over Phanerozoic Time.American Journal of Science, 301(2):182-204. doi: 10.2475/ajs.301.2.182
      [7] Berner, R.A., Rao, J.L., 1994.Phosphorus in Sediments of the Amazon River and Estuary:Implications for the Global Flux of Phosphorus to the Sea.Geochimica et Cosmochimica Acta, 58(10):2333-2339. https://doi.org/10.1016/0016-7037(94)90014-0
      [8] Bottrell, S.H., Newton, R.J., 2006.Reconstruction of Changes in Global Sulfur Cycling from Marine Sulfate Isotopes.Earth-Science Reviews, 75(1):59-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d8174a3ba7587853b13dccac16f70afe
      [9] Brühwiler, T., Goudemand, N., Galfetti, T., et al., 2009.The Lower Triassic Sedimentary and Carbon Isotope Records from Tulong (South Tibet) and Their Significance for Tethyan Palaeoceanography.Sedimentary Geology, 222(3-4):314-332. https://doi.org/10.1016/j.sedgeo.2009.10.003
      [10] Cao, C.Q., Love, G.D., Hays, L.E., et al., 2009.Biogeochemical Evidence for Euxinic Oceans and Ecological Disturbance Presaging the End-Permian Mass Extinction Event.Earth and Planetary Science Letters, 281(3-4):188-201. https://doi.org/10.1016/j.epsl.2009.02.012
      [11] Cao, C.Q., Wang, W., Jing, Y., 2002.Carbon Isotope Changes near Permo-Triassic Boundary in Meishan, Zhejiang.Chinese Science Bulletin, 47(4):302-306 (in Chinese). doi: 10.1360/02tb9072
      [12] Caravaca, G., Thomazo, C., Vennin, E., et al., 2017.Early Triassic Fluctuations of the Global Carbon Cycle:New Evidence from Paired Carbon Isotopes in the Western USA Basin.Global and Planetary Change, 154:10-22. https://doi.org/10.1016/j.gloplacha.2017.05.005
      [13] Chen, J.S., Chu, X.L., 1988.Sulfur Isotope Composition of Triassic Marine Sulfates of South China.Chemical Geology:Isotope Geoscience Section, 72(2):155-161. https://doi.org/10.1016/0168-9622(88)90063-2
      [14] Chen, J.S., Chu, X.L., Shao, M.R., 1986.Sulfur Isotope of the Triassic Sea.Scientia Geologica Sinica, 21(4):330-338 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX198604002.htm
      [15] Chen, Z.Q., Benton, M.J., 2012.The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction.Nature Geoscience, 5(6):375-383. https://doi.org/10.1038/ngeo1475
      [16] Clarkson, M.O., Richoz, S., Wood, R.A., et al., 2013.A New High-Resolution δ13C Record for the Early Triassic:Insights from the Arabian Platform.Gondwana Research, 24(1):233-242. https://doi.org/10.1016/j.gr.2012.10.002
      [17] Clarkson, M.O., Wood, R.A., Poulton, S.W., et al., 2016.Dynamic Anoxic Ferruginous Conditions during the End-Permian Mass Extinction and Recovery.Nature Communications, 7:12236. https://doi.org/10.1038/ncomms12236
      [18] Cortecci, G., Reyes, E., Berti, G., et al., 1981.Sulfur and Oxygen Isotopes in Italian Marine Sulfates of Permian and Triassic Ages.Chemical Geology, 34(1-2):65-79. doi: 10.1016/0009-2541(81)90072-3
      [19] Fike, D.A., Bradley, A.S., Rose, C.V., 2015.Rethinking the Ancient Sulfur Cycle.Annual Review of Earth and Planetary Sciences, 43(1):593-622. https://doi.org/10.1146/annurev-earth-060313-054802
      [20] Fike, D.A., Grotzinger, J.P., Pratt, L.M., et al., 2006.Oxidation of the Ediacaran Ocean.Nature, 444(7120):744-747. https://doi.org/10.1038/nature05345
      [21] Galfetti, T., Bucher, H., Brayard, A., et al., 2007a.Late Early Triassic Climate Change:Insights from Carbonate Carbon Isotopes, Sedimentary Evolution and Ammonoid Paleobiogeography.Palaeogeography, Palaeoclimatology, Palaeoecology, 243(3-4):394-411. https://doi.org/10.1016/j.palaeo.2006.08.014
      [22] Galfetti, T., Hochuli, P.A., Brayard, A., et al., 2007b.Smithian-Spathian Boundary Event:Evidence for Global Climatic Change in the Wake of the End-Permian Biotic Crisis.Geology, 35(4):291.https://doi.org/10.1130/g23117a.1 doi: 10.1130/G23117A.1
      [23] Gill, B.C., Lyons, T.W., Young, S.A., et al., 2011.Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean.Nature, 469(7328):80-83. https://doi.org/10.1038/nature09700
      [24] Grasby, S.E., Beauchamp, B., Embry, A., et al., 2013.Recurrent Early Triassic Ocean Anoxia.Geology, 41(2):175-178.https://doi.org/10.1130/g33599.1 doi: 10.1130/G33599.1
      [25] Grasby, S.E., Beauchamp, B., Knies, J., 2016.Early Triassic Productivity Crises Delayed Recovery from World's Worst Mass Extinction.Geology, 44(9):779-782. doi: 10.1130/G38141.1
      [26] Holser, W.T., 1977.Catastrophic Chemical Events in the History of the Ocean.Nature, 267(5610):403-408. doi: 10.1038/267403a0
      [27] Horacek, M., Brandner, R., Abart, R., 2007a.Carbon Isotope Record of the P/T Boundary and the Lower Triassic in the Southern Alps:Evidence for Rapid Changes in Storage of Organic Carbon.Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2):347-354. https://doi.org/10.1016/j.palaeo.2006.11.049
      [28] Horacek, M., Richoz, S., Brandner, R., et al., 2007b.Evidence for Recurrent Changes in Lower Triassic Oceanic Circulation of the Tethys:The δ13C Record from Marine Sections in Iran.Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2):355-369. https://doi.org/10.1016/j.palaeo.2006.11.052
      [29] Horacek, M., Koike, T., Richoz, S., 2009.Lower Triassic δ13C Isotope Curve from Shallow-Marine Carbonates in Japan, Panthalassa Realm:Confirmation of the Tethys δ13C Curve.Journal of Asian Earth Sciences, 36(6):481-490. https://doi.org/10.1016/j.jseaes.2008.05.005
      [30] Huang, K.K., Huang, S.J., Lan, Y.F., et al., 2013.Review of the Carbon Isotope of Early Triassic Carbonates.Advances in Earth Science, 28(3):357-365 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201303009.htm
      [31] Huang, S.J., Huang, K.K., Lü, J., et al., 2012.Carbon Isotopic Composition of Early Triassic Marine Carbonates, Eastern Sichuan Basin, China.Science China Earth Sciences, 42(10):1508-1522 (in Chinese). doi: 10.1007/s11430-012-4440-1
      [32] Huang, Y.G., Chen, Z.Q., Wignall, P.B., et al., 2017.Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China:Pyrite Framboid Evidence.Geological Society of America Bulletin, 129(1-2):229-243.https://doi.org/10.1130/b31458.1 doi: 10.1130/B31458.1
      [33] Jenkyns, H.C., Gröcke, D.R., Hesselbo, S.P., 2001.Nitrogen Isotope Evidence for Water Mass Denitrification during the Early Toarcian Oceanic Anoxic Event.Paleoceanography, 16(6):593-603.https://doi.org/10.1029/2000pa000558 doi: 10.1029/2000PA000558
      [34] Kaiho, K., Oba, M., Fukuda, Y., et al., 2012.Changes in Depth-Transect Redox Conditions Spanning the End-Permian Mass Extinction and Their Impact on the Marine Extinction:Evidence from Biomarkers and Sulfur Isotopes.Global and Planetary Change, 94-95:20-32. https://doi.org/10.1016/j.gloplacha.2012.05.024
      [35] Kampschulte, A., Strauss, H., 2004.The Sulfur Isotopic Evolution of Phanerozoic Seawater Based on the Analysis of Structurally Substituted Sulfate in Carbonates.Chemical Geology, 204(3):255-286.https://doi.org/10.1016/j.chemgeo.2003.11.013 http://www.sciencedirect.com/science/article/pii/S0009254103003747
      [36] Knies, J., Grasby, S.E., Beauchamp, B., et al., 2013.Water Mass Denitrification during the Latest Permian Extinction in the Sverdrup Basin, Arctic Canada.Geology, 41(2):167-170.https://doi.org/10.1130/g33816.1 doi: 10.1130/G33816.1
      [37] Knoll, A.H., Bambach, R.K., Payne, J.L., et al., 2007.Paleophysiology and End-Permian Mass Extinction.Earth and Planetary Science Letters, 256(3-4):295-313. https://doi.org/10.1016/j.epsl.2007.02.018
      [38] Kump, L.R., Arthur, M.A., 1999.Interpreting Carbon-Isotope Excursions:Carbonates and Organic Matter.Chemical Geology, 161(1-3):181-198.https://doi.org/10.1016/s0009-2541(99)00086-8 doi: 10.1016/S0009-2541(99)00086-8
      [39] Lei, L.D., 2017.Marine Redox Variability and Its Coupling with Oceanic C-N Biogeochemical Cycling across the Permian-Triassic Boundary in South China (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract).
      [40] Li, R., Jones, B., 2016.Diagenetic Overprint on Negative δ13C Excursions across the Permian/Triassic Boundary:A Case Study from Meishan Section, China.Palaeogeography, Palaeoclimatology, Palaeoecology, 468:18-33.https://doi.org/10.1016/j.palaeo.2016.11.044 http://www.sciencedirect.com/science/article/pii/S0031018216307933
      [41] Luo, G.M., Algeo, T.J., Huang, J.H., et al., 2014.Vertical δ13Corg Gradients Record Changes in Planktonic Microbial Community Composition during the End-Permian Mass Extinction.Palaeogeography, Palaeoclimatology, Palaeoecology, 396:119-131. https://doi.org/10.1016/j.palaeo.2014.01.006
      [42] Luo, G.M., Junium, C.K., Izon, G., et al., 2018.Nitrogen Fixation Sustained Productivity in the Wake of the Palaeoproterozoic Great Oxygenation Event.Nature Communications, 9(1):69-78.https://doi.org/10.1038/s41467-018-03361-2 doi: 10.1038/s41467-017-02477-1
      [43] Luo, G.M., Kump, L.R., Wang, Y.B., et al., 2010.Isotopic Evidence for an Anomalously Low Oceanic Sulfate Concentration Following End-Permian Mass Extinction.Earth and Planetary Science Letters, 300(1):101-111.https://doi.org/10.1016/j.epsl.2010.09.041 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=27834f35de4ea01ffe320ad6ce098a23
      [44] Luo, G.M., Wang, Y.B., Algeo, T.J., et al., 2011.Enhanced Nitrogen Fixation in the Immediate Aftermath of the Latest Permian Marine Mass Extinction.Geology, 39(7):647-650.https://doi.org/10.1130/g32024.1 doi: 10.1130/G32024.1
      [45] Marenco, P.J., Corsetti, F.A., Hammond, D.E., et al., 2008.Oxidation of Pyrite during Extraction of Carbonate Associated Sulfate.Chemical Geology, 247(1):124-132.https://doi.org/10.1016/j.chemgeo.2007.10.006 http://www.sciencedirect.com/science/article/pii/S0009254107004421
      [46] McFadden, K.A., Huang, J., Chu, X., et al., 2008.Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation.Proceedings of the National Academy of Sciences, 105(9):3197-3202. https://doi.org/10.1073/pnas.0708336105
      [47] Meyer, K.M., Yu, M., Jost, A.B., et al., 2011.δ13C Evidence That High Primary Productivity Delayed Recovery from End-Permian Mass Extinction.Earth and Planetary Science Letters, 302(3/4):378-384.https://doi.org/10.1016/j.epsl.2010.12.033 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e83b975bd7f08f4a8f24fb68895bc17
      [48] Meyer, K.M., Yu, M., Lehrmann, D., et al., 2013.Constraints on Early Triassic Carbon Cycle Dynamics from Paired Organic and Inorganic Carbon Isotope Records.Earth and Planetary Science Letters, 361:429-435. https://doi.org/10.1016/j.epsl.2012.10.035
      [49] Minagawa, M., Wada, E., 1986.Nitrogen Isotope Ratios of Red Tide Organisms in the East China Sea:A Characterization of Biological Nitrogen Fixation.Marine Chemistry, 19(3):245-259. https://doi.org/10.1016/0304-4203(86)90026-5
      [50] Newton, R.J., Pevitt, E.L., Wignall, P.B., et al., 2004.Large Shifts in the Isotopic Composition of Seawater Sulphate across the Permo-Triassic Boundary in Northern Italy.Earth and Planetary Science Letters, 218(3):331-345.https://doi.org/10.1016/s0012-821x(03)00676-9 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6e45e8319d1456f55968a0e8b2bef50c
      [51] Payne, J., Kump, L., 2007.Evidence for Recurrent Early Triassic Massive Volcanism from Quantitative Interpretation of Carbon Isotope Fluctuations.Earth and Planetary Science Letters, 256(1/2):264-277.https://doi.org/10.1016/j.epsl.2007.01.034 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c90108bb89203fa367523f22f826668e
      [52] Payne, J.L., Lehrmann, D.J., Wei, J., et al., 2004.Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction.Science, 305(5683):506-509. https://doi.org/10.1126/science.1097023
      [53] Riccardi, A.L., Arthur, M.A., Kump, L.R., 2006.Sulfur Isotopic Evidence for Chemocline upward Excursions during the End-Permian Mass Extinction.Geochimica et Cosmochimica Acta, 70(23):5740-5752. doi: 10.1016/j.gca.2006.08.005
      [54] Romano, C., Goudemand, N., Vennemann, T.W., et al., 2013.Climatic and Biotic Upheavals Following the End-Permian Mass Extinction.Nature Geoscience, 6(1):57-60. https://doi.org/10.1038/ngeo1667
      [55] Shen, J., Schoepfer, S.D., Feng, Q.L., et al., 2015.Marine Productivity Changes during the End-Permian Crisis and Early Triassic Recovery.Earth-Science Reviews, 149:136-162. doi: 10.1016/j.earscirev.2014.11.002
      [56] Shen, S.Z., Crowley, J.L., Wang, Y., et al., 2011.Calibrating the End-Permian Mass Extinction.Science, 334(6061):1367-1372. https://doi.org/10.1126/science.1213454
      [57] Shen, S.Z., Zhu, M.Y., Wang, X.D., et al., 2010.A Comparison of the Biological, Geological Events and Environmental Backgrounds between the Neoproterozoic-Cambrian and Permian-Triassic Transitions.Science China Earth Sciences, 40(9):1228-1244 (in Chinese). http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/s11430-010-4092-y
      [58] Sigman, D.M., Casdotti, K.L., 2001.Nitrogen Isotopes in the Ocean.Academic Press, London.
      [59] Song, H.J., Tong, J.N., 2016.Mass Extinction and Survival during the Permian-Triassic Crisis.Earth Science, 41(6):901-918 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201606001.htm
      [60] Song, H.J., Wignall, P.B., Tong, J.N., et al., 2012.Geochemical Evidence from Bio-Apatite for Multiple Oceanic Anoxic Events during Permian-Triassic Transition and the Link with End-Permian Extinction and Recovery.Earth and Planetary Science Letters, 353:12-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d9a213220876084fad58736e519e23ca
      [61] Song, H.Y., Tong, J.N., Algeo, T.J., et al., 2013.Large Vertical δ13CDIC Gradients in Early Triassic Seas of the South China Craton:Implications for Oceanographic Changes Related to Siberian Traps Volcanism.Global and Planetary Change, 105:7-20. https://doi.org/10.1016/j.gloplacha.2012.10.023
      [62] Song, H.Y., Tong, J.N., Algeo, T.J., et al., 2014.Early Triassic Seawater Sulfate Drawdown.Geochimica et Cosmochimica Acta, 128:95-113. doi: 10.1016/j.gca.2013.12.009
      [63] Song, H.Y., Tong, J.N., Song, H.J., et al., 2010.Excursion of Sulfur Isotope Compositions in the Lower Triassic of South Guizhou, China.Journal of Earth Science, 21(S1):158-160. doi: 10.1007/s12583-010-0198-6
      [64] Sun, Y., Joachimski, M.M., Wignall, P.B., et al., 2012.Lethally Hot Temperatures during the Early Triassic Greenhouse.Science, 338(6105):366-370. https://doi.org/10.1126/science.1224126
      [65] Sun, Y.D., Wignall, P.B., Joachimski, M.M., et al., 2015.High Amplitude Redox Changes in the Late Early Triassic of South China and the Smithian-Spathian Extinction.Palaeogeography, Palaeoclimatology, Palaeoecology, 427:62-78. https://doi.org/10.1016/j.palaeo.2015.03.038
      [66] Thomazo, C., Vennin, E., Brayard, A., et al., 2016.A Diagenetic Control on the Early Triassic Smithian-Spathian Carbon Isotopic Excursions Recorded in the Marine Settings of the Thaynes Group (Utah, USA).Geobiology, 14(3):220-236.https://doi.org/10.1111/gbi.12174 doi: 10.1111/gbi.2016.14.issue-3
      [67] Tong, J.N., Qiu, H., Zhao, L., et al., 2002.Lower Triassic Inorganic Carbon Isotope Excursion in Chaohu, Anhui Province, China.Journal of Earth Science, 13(2):98-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx-e200202002
      [68] Tong, J.N., Yin, H.F., 2009.Advance in the Study of Early Triassic Life and Environment.Acta Palaeontologica Sinica, 48(3):497-508 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gswxb200903020
      [69] Tong, J.N., Zuo, J.X., Chen, Z.Q., 2007.Early Triassic Carbon Isotope Excursions from South China:Proxies for Devastation and Restoration of Marine Ecosystems Following the End-Permian Mass Extinction.Geological Journal, 42(3-4):371-389.https://doi.org/10.1002/gj.1084 doi: 10.1002/(ISSN)1099-1034
      [70] Wada, E., Hattori, A., 1990.Nitrogen in the Sea:Forms, Abundance, and Rate Processes.CRC Press, Boca Raton.
      [71] Wignall, P.B., Bond, D.P.G., Sun, Y.D., et al., 2016.Ultra-Shallow-Marine Anoxia in an Early Triassic Shallow-Marine Clastic Ramp (Spitsbergen) and the Suppression of Benthic Radiation.Geological Magazine, 153(2):316-331.https://doi.org/10.1017/s0016756815000588 doi: 10.1017/S0016756815000588
      [72] Zhou, G.S., 2003.Global Carbon Cycle.Meteorology Press, Beijing (in Chinese).
      [73] Zuo, J.X., Tong, J.N., Qiu, H.O., et al., 2006.Carbon Isotope Composition of the Lower Triassic Marine Carbonates, Lower Yangtze Region, South China.Science in China (Series D), 49(3):225-241. https://doi.org/10.1007/s11430-006-0225-8
      [74] 曹长群, 王伟, 金玉玕, 2002.浙江煤山二叠-三叠系界线附近碳同位素变化.科学通报, 47(4):302-306. doi: 10.3321/j.issn:0023-074X.2002.04.014
      [75] 陈锦石, 储雪蕾, 邵茂茸, 1986.三叠纪海的硫同位素.地质科学, 21(4):330-338. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000368688
      [76] 黄可可, 黄思静, 兰叶芳, 等, 2013.早三叠世海相碳酸盐碳同位素研究进展.地球科学进展, 28(3):357-365. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201303007
      [77] 黄思静, 黄可可, 吕杰, 等, 2012.早三叠世海水的碳同位素组成与演化-来自四川盆地东部的研究.中国科学(D辑), 42(10):1508-1522. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204687033
      [78] 雷丽丹, 2017.华南古中生代之交古海洋氧化(博士学位论文).武汉: 中国地质大学.
      [79] 沈树忠, 朱茂炎, 王向东, 等, 2010.新元古代-寒武纪与二叠-三叠纪转折时期生物和地质事件及其环境背景之比较.中国科学, 40(9):1228-1240. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXK201009013&dbname=CJFD&dbcode=CJFQ
      [80] 宋海军, 童金南, 2016.二叠纪-三叠纪之交生物大灭绝与残存.地球科学, 41(6):901-918. http://earth-science.net/WebPage/Article.aspx?id=3307
      [81] 童金南, 殷鸿福, 2009.早三叠世生物与环境研究进.古生物学报, 48(3):497-508. doi: 10.3969/j.issn.0001-6616.2009.03.020
      [82] 周广胜, 2003.全球碳循环.北京:气象出版社.
    • 加载中
    图(3)
    计量
    • 文章访问数:  3182
    • HTML全文浏览量:  1246
    • PDF下载量:  54
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-20
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回