Origin of High Velocity Layer in Lower Crust of Southwestern Nansha Block
-
摘要: 高速层成因的争议限制了对南海深部结构、构造演化以及南海完整演化历史的认识.运用Oasis Montaj软件对穿越南沙西南部的最新地震测线进行重震联合反演,分析莫霍面起伏、地壳厚度及高速层的分布,计算全壳伸展因子和现今高速层的温度、识别火山时代,并探讨高速层的成因.南薇西盆地和礼乐盆地区伸展因子为1.5~4.0,未达到蛇纹石发育条件;南沙海槽区伸展因子大,最大为11.2,海水可通过深大断裂下渗与橄榄岩反应生成蛇纹石,高速层处温度低于蛇纹石稳定温度;通过地震剖面确定火山在南海停止扩张之后形成.研究结果表明,南沙西南部高速层按成因分为两类,南薇西盆地和礼乐盆地区为南海扩张停止后火山喷发残余的岩浆,而南沙海槽盆地区为早期橄榄岩的蛇纹石化与南海停止扩张后岩浆的混合体.Abstract: The controversy over the genesis of the high velocity layer limits the understanding of the deep structure, tectonic evolution and complete evolution of the South China Sea.In order to understand the origin of high velocity layer in the lower crust of the southwestern Nansha block, the joint inversion of gravity and seismic data was performed by using Oasis Montaj software in this study.The seismic profile is across the southwestern Nansha Block.The Moho undulation, crustal thickness and the distribution of the high velocity layer are recorded.The regional extension factor and the temperature at the high layer depth are calculated, and the age of volcanic eruption is determined by seismic features.The whole crustal stretching factor of the Nanweixi Basin and the Liyue Basin area is 1.5-4.0, which is impossible to develop serpentine.The whole crustal stretching factor is up to 11.2 in the Nansha trough.The serpentine is formed by the reaction of peridotite and sea water which enters the mantle through the fractures.The temperature near the high velocity layer is lower than the stable temperature of the serpentine.The volcanic eruption was found in the same place in the seismic profile, and the volcano formed after the cessation of the spreading of the South China Sea.The results indicate that the high velocity layer of the southwestern Nansha Block can be divided into two types.The high velocity layer in the Nanweixi and the Liyue basins is formed by volcanic eruption after the cessation of the spreading of the South China Sea; and the other section in the Nansha trough basin is a mixture of serpentinized peridotite and late magma.
-
Key words:
- Nansha /
- deep crustal structure /
- high velocity layer /
- volcano /
- stretch factor /
- serpentinization /
- marine geology
-
图 3 南沙西南部深部异常反射
位置见图 2
Fig. 3. Fragmentary but distinct reflector elements of the deeper parts of southwestern Nansha
图 4 基于Oasis Montaj软件的L1测线重震联合反演结果
黑色实线为测量重力异常数据;绿色实线为模拟重力异常数据;红色实线为模拟误差.位置见图 1
Fig. 4. Results of gravity modeling based on Oasis Montaj software
图 7 南沙西南部火山形态与时代判别图
c和d为时间域剖面;图c据Vijayan et al.(2013);位置见图 1
Fig. 7. Volcano morphology and age of southwestern Nansha
图 9 南沙地块深部结构与高速层成因示意图
据Reston(2009)和Dong et al.(2016)修编
Fig. 9. Dynamic evolution diagram of deep crustal structure and high velocity layer of the Nansha Block
表 1 重力模拟参考密度值
Table 1. Density parameters used in the gravity modeling
分层 密度(g/cm3) 海水 1.03 沉积层 2.40 陆壳 2.70 洋壳 2.83 高速层 2.97 地幔 3.20 注:据郝天珧等(2011)、 McIntosh et al.(2014) 和高金尉(2015). -
[1] Boillot, G., Grimaud, S., Mauffret, A., et al., 1980.Ocean-Continent Boundary off the Iberian Margin:A Serpentinite Diapir West of the Galicia Bank.Earth and Planetary Science Letters, 48(1):23-34. https://doi.org/10.1016/0012-821x(80)90166-1 [2] Briais, A., Patriat, P., Tapponnier, P., 1993.Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea:Implications for the Tertiary Tectonics of Southeast Asia.Journal of Geophysical Research, 98(B4):6299-6328. https://doi.org/10.1029/92jb02280 [3] Chen, Y.L., Niu, F.L., Liu, R.F., et al., 2010.Crustal Structure beneath China from Receiver Function Analysis.Journal of Geophysical Research, 115:B03307. https://doi.org/10.1029/2009jb006386 [4] Cheng, Z.H., Ding, W.W., Dong, C.Z., et al., 2014.Crustal Structures Inferred from Gravity Modeling and Stretching Model in the South of South China Sea.Geological Journal of China Universities, 20(2):239-248 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201402008.htm [5] Christensen, N.I., Mooney, W.D., 1995.Seismic Velocity Structure and Composition of the Continental Crust:A Global View.Journal of Geophysical Research:Solid Earth, 100(B6):9761-9788. https://doi.org/10.1029/95jb00259 [6] Ding, W.W., Li, J.B., 2011.Seismic Stratigraphy, Tectonic Structure and Extension Factors across the Southern Margin of the South China Sea:Evidence from Two Regional Multi-Channel Seismic Profiles.Chinese Journal of Geophysics, 54(12):3038-3056 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201112008.htm [7] Dong, M., Wu, S.G., Zhang, J., 2016.Thinned Crustal Structure and Tectonic Boundary of the Nansha Block, Southern South China Sea.Marine Geophysical Research, 37(4):1-16. https://doi.org/10.1007/s11001-016-9290-3. [8] Fan, C.Y., Xia, S.H., Zhao, F., et al., 2017.New Insights into the Magmatism in the Northern Margin of the South China Sea:Spatial Features and Volume of Intraplate Seamounts.Geochemistry, Geophysics, Geosystems, 18(6):2216-2239. https://doi.org/10.1002/2016gc006792 [9] Franke, D., 2013.Rifting, Lithosphere Breakup and Volcanism:Comparison of Magma-Poor and Volcanic Rifted Margins.Marine and Petroleum Geology, 43:63-87. https://doi.org/10.1016/j.marpetgeo.2012.11.003 [10] Franke, D., Barckhausen, U., Baristeas, N., et al., 2011.The Continent-Ocean Transition at the Southeastern Margin of the South China Sea.Marine and Petroleum Geology, 28(6):1187-1204. https://doi.org/10.1016/j.marpetgeo.2011.01.004 [11] Gao, J.W., 2015.The Continent-Ocean Transition Zone at the Northern Margin of the South China Sea (Dissertation).University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract). [12] Gernigon, L., Ringenbach, J.C., Planke, S., et al., 2004.Deep Structures and Breakup along Volcanic Rifted Margins:Insights from Integrated Studies along the Outer Vøring Basin (Norway).Marine and Petroleum Geology, 21(3):363-372. https://doi.org/10.1016/j.marpetgeo.2004.01.005 [13] Hall, R., van Hattum, M.W.A., Spakman, W., 2008.Impact of India-Asia Collision on SE Asia:The Record in Borneo.Tectonophysics, 451:366-389. https://doi.org/10.1016/j.tecto.2007.11.058 [14] Hao, T.Y., Xu, Y., Sun, F.L., et al., 2011.Integrated Geophysical Research on the Tectonic Attribute of Conjugate Continental Margin of South China Sea.Chinese Journal of Geophysics, 54(12):3098-3116 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201112013.htm [15] Hesse, S., Back, S., Franke, D., 2009.The Deep-Water Fold-and-Thrust Belt Offshore NW Borneo:Gravity-Driven versus Basement-Driven Shortening.Geological Society of America Bulletin, 121(5-6):939-953. https://doi.org/10.1130/b26411.1 [16] Kido, Y., Suyehiro, K., Kinoshita, H., 2001.Rifting to Spreading Process along the Northern Continental Margin of the South China Sea.Marine Geophysical Researches, 22(1):1-15. https://doi.org/10.1023/A:1004869628532 [17] Lei, C., Ren, J.Y., Tong, D.J., 2013.Geodynamics of the Ocean-Continent Transition Zone, Northern Margin of the South China Sea:Implications for the Opening of the South China Sea.Chinese Journal of Geophysics, 56(4):1287-1299 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201304025.htm [18] Lei, C., Ren, J.Y., Zhang, J., 2015.Tectonic Province Divisions in the South China Sea:Implications for Basin Geodynamic.Earth Science, 40(4):744-762 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.062 [19] Liu, A., Wu.G, Z., Wu, S.M., 2008.A Discussion on the Origin of High Velocity Layer in the Lower Crust of Northeast South China Sea.Geological Review, 54(5):609-616 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000004572 [20] McIntosh, K., Lavier, L., van Avendonk, H., et al., 2014.Crustal Structure and Inferred Rifting Processes in the Northeast South China Sea.Marine and Petroleum Geology, 58:612-626. https://doi.org/10.1016/j.marpetgeo.2014.03.012 [21] McKenzie, D., 1978.Some Remarks on the Development of Sedimentary Basins.Earth and Planetary Science Letters, 40(1):25-32. https://doi.org/10.1016/0012-821x(78)90071-7 [22] McKenzie, D., Bickle, M.J., 1988.The Volume and Composition of Melt Generated by Extension of the Lithosphere.Journal of Petrology, 29(3):625-679. https://doi.org/10.1093/petrology/29.3.625 [23] Mével, C., 2003.Serpentinization of Abyssal Peridotites at Mid-Ocean Ridges.Comptes Rendus-Géoscience, 335(10):825-852. https://doi.org/10.1016/j.crte.2003.08.006 [24] Peng, X., Shen, C.B., Mei, L.F., et al., 2018.Rift-Drift Transition in the Dangerous Grounds, South China Sea.Marine Geophysical Research, Online.https: //doi.org/10.1007/s11001-018-9353-8 [25] Pichot, T., Delescluse, M., Chamot-Rooke, N., et al., 2014.Deep Crustal Structure of the Conjugate Margins of the SW South China Sea from Wide-Angle Refraction Seismic Data.Marine and Petroleum Geology, 58:627-643. https://doi.org/10.1016/j.marpetgeo.2013.10.008 [26] Reston, T.J., 2009.The Structure, Evolution and Symmetry of the Magma-Poor Rifted Margins of the North and Central Atlantic:A Synthesis.Tectonophysics, 468(1-4):6-27. https://doi.org/10.1016/j.tecto.2008.09.002 [27] Schlüter, H.U., Hinz, K., Block, M., 1996.Tectono-Stratigraphic Terranes and Detachment Faulting of the South China Sea and Sulu Sea.Marine Geology, 130(1-2):39-78. https://doi.org/10.1016/0025-3227(95)00137-9 [28] Sun, Z., Zhao, Z.X., Li, J.B., et al., 2011.Tectonic Analysis of the Breakup and Collision Unconformities in the Nansha.Chinese Journal of Geophysics, 54(12):3196-3209 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201112021.htm [29] Tang, W., Zhao, Z.G., Xie, X.J., et al., 2018.Structural Patterns of Thrust-Related Folds of Deepwater Fold and Thrust Belts in NW Borneo.Earth Science, 43(2):491-501 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.025 [30] Vijayan, V.R., Foss, C., Stagg, H., 2013.Crustal Character and Thickness over the Dangerous Grounds and beneath the Northwest Borneo Trough.Journal of Asian Earth Sciences, 76:389-398. https://doi.org/10.1016/j.jseaes.2013.06.004 [31] Whitmarsh, R.B., White, R.S., Horsefield, S.J., et al., 1996.The Ocean-Continent Boundary off the Western Continental Margin of Iberia:Crustal Structure West of Galicia Bank.Journal of Geophysical Research:Solid Earth, 101(B12):28291-28314. https://doi.org/10.1029/96jb02579 [32] Wu, Z.L., Li, J.B., Ruan, A.G., et al., 2011.Crustal Structure of the Northwestern Sub-Basin, South China Sea:Results from a Wide-Angle Seismic Experiment.Scientia Sinica Terrae, 41(10):1463-1476 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201201017.htm [33] Xia, S.H., Zhao, D.P., Sun, J.L., et al., 2016.Teleseismic Imaging of the Mantle beneath Southernmost China:New Insights into the Hainan Plume.Gondwana Research, 36:46-56. https://doi.org/10.1016/j.gr.2016.05.003 [34] Xie, X.J., Zhao, Z.G., Zhang, G.C., et al., 2018.Hydrocarbon Geological Differences of Three Basins in Southern South China Sea.Earth Science, 43(3):802-811 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.508 [35] Xu, Y.G., Wei, J.X., Qiu, H.N., et al., 2012.Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks:Preliminary Results and a Research Design.Chinese Science Bulletin, 57(20):1863-1878(in Chinese). doi: 10.1007/s11434-011-4921-1 [36] Yan, P., Zhou, D., Liu, Z.S., 2001.A Crustal Structure Profile across the Northern Continental Margin of the South China Sea.Tectonophysics, 338(1):1-21. https://doi.org/10.1016/s0040-1951(01)00062-2 [37] Ye, Q., Shi, H.S., Mei, L.F., et al., 2017.Post-Rift Faulting Migration, Transition and Dynamics in ZhuⅠ Depression, Pearl River Mouth Basin.Earth Science, 42(1):105-118 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.008 [38] Zhang, J., Dong, M., Wu, S.G., et al., 2017.Lithosphere Thermal-Rheological Structure and Geodynamic Evolution Model of the Nansha Trough Basin, South China Sea.Earth Science Frontiers, 24(3):27-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201703004.htm [39] Zhang, Q., Wu, S.G., Lü, F.L., et al., 2014.The Seismic Characteristics and the Distribution of the Igneous Rocks in the Northernwest Slope of the South China Sea.Geotectonica et Metallogenia, 38(4):919-938 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201404018.htm [40] Zhao, F., Alves, T.M., Wu, S.G., et al., 2016.Prolonged Post-Rift Magmatism on Highly Extended Crust of Divergent Continental Margins (Baiyun Sag, South China Sea).Earth and Planetary Science Letters, 445:79-91. https://doi.org/10.1016/j.epsl.2016.04.001 [41] Zhou, D., Wang, W.Y., Pang, X., et al., 2006.Mesozoic Subduction-Accretion Zone in Northeastern South China Sea Inferred from Geophysical Interpretations.Scientia Sinica Terrae, 36(3):209-218(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200605003.htm [42] 程子华, 丁巍伟, 董崇志, 等, 2014.南海南部地壳结构的重力模拟及伸展模式探讨.高校地质学报, 20(2):239-248. doi: 10.3969/j.issn.1006-7493.2014.02.008 [43] 丁巍伟, 李家彪, 2011.南海南部陆缘构造变形特征及伸展作用:来自两条973多道地震测线的证据.地球物理学报, 54(12):3038-3056. doi: 10.3969/j.issn.0001-5733.2011.12.006 [44] 高金尉, 2015.南海北部大陆边缘洋陆过渡带构造研究(博士学位论文).北京: 中国科学院大学. http://cdmd.cnki.com.cn/Article/CDMD-80068-1015387770.htm [45] 郝天珧, 徐亚, 孙福利, 等, 2011.南海共轭大陆边缘构造属性的综合地球物理研究.地球物理学报, 54(12):3098-3116. doi: 10.3969/j.issn.0001-5733.2011.12.011 [46] 雷超, 任建业, 佟殿君, 2013.南海北部洋陆转换带盆地发育动力学机制.地球物理学报, 56(4):1287-1299. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201304023 [47] 雷超, 任建业, 张静, 2015.南海构造变形分区及成盆过程.地球科学, 40(4):744-762. https://doi.org/10.3799/dqkx.2015.062 [48] 刘安, 武国忠, 吴世敏, 2008.南海东北部下地壳高速层的成因探讨.地质论评, 54(5):609-616. doi: 10.3321/j.issn:0371-5736.2008.05.005 [49] 孙珍, 赵中贤, 李家彪, 等, 2011.南沙地块内破裂不整合与碰撞不整合的构造分析.地球物理学报, 54(12):3196-3209. doi: 10.3969/j.issn.0001-5733.2011.12.019 [50] 唐武, 赵志刚, 谢晓军, 等, 2018.西北婆罗洲深水褶皱冲断带相关褶皱构造样式.地球科学, 43(2):491-501. https://doi.org/10.3799/dqkx.2018.025 [51] 吴振利, 李家彪, 阮爱国, 等, 2011.南海西北次海盆地壳结构:海底广角地震实验结果.中国科学:地球科学, 41(10):1463-1476. http://d.old.wanfangdata.com.cn/Periodical/dqkx201204016 [52] 谢晓军, 赵志刚, 张功成, 等.2018.南海南部三大盆地油气地质条件差异性.地球科学, 43(3):802-811. https://doi.org/10.3799/dqkx.2017.508 [53] 徐义刚, 魏静娴, 邱华宁, 等, 2012.用火山岩制约南海的形成演化:初步认识与研究设想.科学通报, 57(20):1863-1878. http://d.old.wanfangdata.com.cn/Conference/8244044 [54] 叶青, 施和生, 梅廉夫, 等, 2017.珠江口盆地珠一坳陷裂后期断裂作用:迁移、转换及其动力学.地球科学, 42(1):105-118. https://doi.org/10.3799/dqkx.2017.008 [55] 张健, 董淼, 吴时国, 等, 2017.南沙海槽岩石圈热-流变结构与动力学演化分析.地学前缘, 24(3):27-40. http://d.old.wanfangdata.com.cn/Periodical/dxqy201703003 [56] 张峤, 吴时国, 吕福亮, 等, 2014.南海西北陆坡火成岩体地震识别及分布规律.大地构造与成矿学, 38(4):919-938. doi: 10.3969/j.issn.1001-1552.2014.04.017 [57] 周蒂, 王万银, 庞雄, 等, 2006.地球物理资料所揭示的南海东北部中生代俯冲增生带.中国科学:地球科学, 36(3):209-218. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200603001