Fluid-Rock Interactions and Reservoir Formation Driven by Multiscale Structural Deformation in Basin Evolution
-
摘要: 以往的流体-岩石作用研究,主要针对中小尺度的非构造应变机制,制约了盆地中大尺度客观规律的认识.从盆地形成演化动力学视角,梳理了盆地尺度构造驱动的流体-岩石作用的概念模型或工作模式,并结合典型实例,解析和讨论了构造-流体-岩石作用的关键过程、控制要素以及成储效应.对比研究表明,构造驱动的碳酸盐岩和碎屑岩的流体-岩石作用,无论类型、强度和分布均存在显著不同.对于碳酸盐岩储层,即便是弱应变阶段,与微裂缝有关的扩溶及充填-胶结作用在构造圈闭范围内也具有普遍意义.反观碎屑岩(砂岩),弱应变阶段发育了特征的变形条带及其构造成岩演变序列;而强应变将可能导致深层碎屑岩(微)裂缝及其相关构造-流体-岩石作用的发育,并可能在相当程度上改善储集性.研究表明,流体介质压力环境的强烈更变、应力/应变改造岩矿稳定性、以及流体-岩矿反应界面和空间的快速/强烈更变,是构造驱动流体-岩石作用研究的关键.Abstract: Fluid-rock interactions in sedimentary basins have been focused on the non-structural genetic mechanisms on medium and small scales in most papers published, which has constrained the understanding of the objective laws on basin-scale. The conceptual models or working modes of fluid-rock interactions driven by structural deformation (FRIDSD) in sedimentary basin evolution are presented in this paper. Conbined with the typical cases on carbonate and clastic reservoirs studied, key processes, control factors and reservoir-forming effects of FRIDSD are analysed and discussed. It is indicated that there are significant differences of FRIDSD between carbonates and sandstones in the type, intensity and distribution, exist between carbonates and sandstones. For carbonate reservoirs, it cannot be neglected that, even in weak structural deformation, dissolution and filling-cementation of carbonates related to a lot of microcracks also develop over structural traps. On the other hand, for clastic (sandstone) reservoirs, diagnostic deformation bands and their related structural diagenesis, with few microcracks, develop in weak structural deformation. However, intensive structural deformation most probably makes more (micro-) cracks and promotes FRIDSD in sandstones, which may also improve the deep-buried reservoir property to a certain extent. It is pointed out that key problems of FRIDSD mainly include intensive change of fluid pressure, petrological-mineral stabilities modified by strain, intensive/rapid change of reactive surface and volume on fluid-rock interactions.
-
图 2 盆地流体活动与相关流体-岩石作用要素示意图
据李忠(2016)修改
Fig. 2. Basin fluid flow and its related key factors on fluid-rock interactions
图 3 塔中鹰山组碳酸盐胶结物原位碳-氧同位素特征
据李忠等(2016)修改
Fig. 3. Scatter diagram for in-situ isotopic values of oxygen and carbon of the Yingshan Formation carbonate cements, Tazhong
表 1 盆地构造-流体-岩石作用研究的基本分类
Table 1. The principal classification for a research on structure deformation-fluid-rock interactions in sedimentary basins
理论模型 定义 类型划分及支撑依据 实例文献 大类 亚类 种类 一级 伸展型挠曲型冲断型走滑型 盆地尺度构造-流体活动; 穿层流体影响二级以上层序 按盆地构造类型划分:主要依据数值模拟; 实际地质记录支撑较弱或缺乏 Garven(1995)
Allen and Allen (2013)强应变构造 二级 (多种组合) 盆地区带尺度构造-流体活动:一系列成因相近的构造组成 按盆地区带构造组合类型划分:主要依据实际地质记录支撑, 但支撑较弱 Davies and Smith (2007) 三级 背斜向斜正断裂逆断裂 圈闭尺度构造-流体活动:单一构造及配套要素组成 按单一构造类型划分:主要依据实际岩石-矿物-地化等地质记录支撑, 流体证据丰富 Davies and Smith (2007) 弱应变构造 一级
二级
三级扩张剪切压实 构造单元边界断裂不活动, 内部岩层总体无显著应变, 变形条带、隐形裂缝发育; 流体穿层活动弱 按应变属性划分:依据实际岩石-矿物-地化等地质记录支撑; 盆地/一级、区带/二级尺度认识较弱, 三级构造内流体证据丰富 Fossen et al.(2007)
Schultz and Fossen (2008)表 2 盆地深埋过程中构造驱动的碳酸盐岩和碎屑岩的流体-岩石作用对比
Table 2. Comparision of fluid-rock interactions driven by structure deformation between carbonates and sandstones in basin deep-buried processes
岩类 作用类型 碳酸盐岩 碎屑岩(砂岩) 压实/压溶 内生节理广泛发育, 存在破裂作用, 微裂缝及压溶局域发育 压实变形条带广泛发育 弱应变 胶结/充填 在碱性介质条件下, 可促进局域粒间胶结和裂缝充填作用 对胶结和充填作用影响不大 溶蚀/扩溶 在酸性介质条件下, 可促进局域溶蚀和裂缝扩溶作用 对溶蚀和扩溶作用影响不大 压实/压溶 破裂和压溶作用广泛发育 促进压实/压溶作用, 微裂缝局域发育, 变形条带局域保存 强应变 胶结/充填 可促进应变区域范围内的粒间胶结和裂缝充填作用、交代/云化作用 可在应变范围内或局域促进粒间胶结和裂缝充填作用 溶蚀/扩溶 可促进应变区域范围内的溶蚀和裂缝扩溶作用 可在应变范围内或局域促进溶蚀和裂缝扩溶作用 -
[1] Agar, S., Geiger, S., Léonide, P., et al., 2013.Summary of the AAPG-SPE-SEG Hedberg Research Conference on "Fundamental Controls on Flow in Carbonates".AAPG Bulletin, 97(4):533-552.https://doi.org/10.1306/12171212229 [2] Allen, P.A., Allen, J.R., 1990.Basin Analysis:Principles and Applications.Blackwell Scientific Publications, Cambridge, 263-308. [3] Allen, P.A., Allen, J.R., 2013.Basin Analysis:Principles and Application to Petroleum Play Assessment.Wiley-Blackwell, Oxford. [4] Bethke, C.M., 1985.A Numerical Model of Compaction-Driven Groundwater Flow and Heat Transfer and Its Application to the Paleohydrology of Intracratonic Sedimentary Basins.Journal of Geophysical Research, 90(B8):6817-6828.https://doi.org/10.1029/jb090ib08p06817 doi: 10.1029/JB090iB08p06817 [5] Bjørlykke, K., 1994.Fluid-Flow Processes and Diagenesis in Sedimentary Basins.Geological Society, London, Special Publications, 78(1):127-140.https://doi.org/10.1144/gsl.sp.1994.078.01.11 http://adsabs.harvard.edu/abs/1994GSLSP..78..127B [6] Bjørlykke, K., Egeberg, P.K., 1993.Quartz Cementation in Sedimentary Basins.AAPG Bulletin, 9(9):1538-1548.https://doi.org/10.1306/bdff8ee8-1718-11d7-8645000102c1865d [7] Bjørlykke, K., Mo, A., Palm, E., 1988.Modelling of Thermal Convection in Sedimentary Basins and Its Relevance to Diagenetic Reactions.Marine and Petroleum Geology, 5(4):338-351.https://doi.org/10.1016/0264-8172(88)90027-x http://www.sciencedirect.com/science/article/pii/026481728890027X [8] Davies, G.R., Smith, L.B.Jr, 2007.Structurally Controlled Hydrothermal Dolomite Reservoir Facies:An Overview:Reply.AAPG Bulletin, 91(9):1342-1344. https://doi.org/10.1306/04290707031 [9] Dewers, T., Ortoleva, P., 1988.The Role of Geochemical Self-Organization in the Migration and Trapping of Hydrocarbons.Applied Geochemistry, 3(3):287-316.https://doi.org/10.1016/0883-2927(88)90108-4 [10] Dickinson, W.R., 1993.Basin Geodynamics.Basin Research, 5(4):195-196.https://doi.org/10.1111/j.1365-2117.1993.tb00066.x http://d.old.wanfangdata.com.cn/Periodical/dqkx200405001 [11] Fossen, H., Schultz, R.A., Shipton, Z.K., et al., 2007.Deformation Bands in Sandstone:A Review.Journal of the Geological Society, 164(4):755-769. https://doi.org/10.1144/0016-76492006-036 [12] Galloway, W.E., 1984.Hydrogeologic Regimes of Sandstone Diagenesis.In: McDonald, D.A., Surdam, R.C., eds., Clastic Diagenesis.AAPG Memoir 37, America Association of Petroleum Geologists, Tulsa, 3-13. [13] Garven, G., 1995.Continental-Scale Groundwater Flow and Geologic Processes.Annual Review of Earth and Planetary Sciences, 23(1):89-117.https://doi.org/10.1146/annurev.earth.23.1.89 doi: 10.1146/annurev.ea.23.050195.000513 [14] Garven, G., Bull, S.W., Large, R.R., 2001.Hydrothermal Fluid Flow Models of Stratiform Ore Genesis in the McArthur Basin, Northern Territory, Australia.Geofluids, 1(4):289-311.https://doi.org/10.1046/j.1468-8123.2001.00021.x [15] Gonçalvès, J., Violette, S., Guillocheau, F., et al., 2004.Contribution of a Three-Dimensional Regional Scale Basin Model to the Study of the Past Fluid Flow Evolution and the Present Hydrology of the Paris Basin, France.Basin Research, 16(4):569-586.https://doi.org/10.1111/j.1365-2117.2004.00243.x [16] Han, D.L., Li, Z., Shou, J.F., 2011.Reservoir Heterogeneities between Structural Positions in the Anticline:A Case Study from Kela-2 Gas Field in the Kuqa Depression, Tarim Basin, NW China.Petroleum Exploration and Development, 38(3):282-286(in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60034-7 [17] Ingersoll, R.V., 2012.Tectonics of Sedimentary Basins.Busby C, Azor A.Tectonics of Sedimentary Basins:Recent Advances.Wiley-Blackwell, Oxford. [18] Ingersoll, R.V., Busby, C.J., 1995.Tectonics of Sedimentary Basins.Blackwell Science, Oxford. [19] Land, L.S., 1997.Mass Transfer During Burial Diagenesis in the Gulf of Mexico Sedimentary Basin: An Overview.In: Montaez, I.P., Gregg, J.M., Shelton, K.L., eds., Basin-Wide Diagenetic Patterns: Integrated Petrologic, Geochemical, and Hydrologic Considerations.SEPM Special Publication 57, Tulsa, 29-39. [20] Laubach, S.E., Eichhubl, P., Hilgers, C., et al., 2010.Structural Diagenesis.Journal of Structural Geology, 32(12):1866-1872.https://doi.org/10.13039/100006151 doi: 10.1016/j.jsg.2010.10.001 [21] Li, S.T., 1995.Geodynamics of Sedimentary Basins-The Trend of Basin Research.Earth Science Frontiers, 2(3-4):1-8 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201807006 [22] Li, Z., 1992.Basic Ideas and Methods of Diagenesis Study in Oil-Bearing Basin.Natural Gas Geoscience, 3(5):1-6.(in Chinese with English abstract). [23] Li, Z., 2013.Sedimentary Basin Geodynamics in China:Advances and Frontiers during the First Decade of the 21th Century.Bulletin of Mineralogy, Petrology, and Geochemistry, 32(3):290-300 (in Chinese with English abstract). [24] Li, Z., 2016.Research Frontiers of Fluid-Rock Interaction and Oil-Gas Formation in Deep-Buried Basins.Bulletion of Mineralogy, Petrology and Geochemistry, 35(5):807-816 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201605004 [25] Li, Z., Chen, J.S., Guan, P., 2006a.Scientific Problems and Frontiers of Sedimentary Diagenesis Research in Oil-Gas-Bearing Basins.Acta Petrologica Sinica, 22(8):1745-1754 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200608000.htm [26] Li, Z., Han, D.L., Shou, J.F., 2006b.Diagenesis Systems and Their Spatio-Temporal Attributes in Sedimentary Basins.Acta Petrologica Sinica, 22(8):2151-2164 (in Chinese with English abstract). [27] Li, Z., Fei, W.H., Shou, J.F., et al., 2003.Overpressure and Fluid Flow in Dongpu Depression, North China:Constraints on Diagenesis in Reservoir Sandstones.Acta Geologica Sinica, 77(1):126-134(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE200301023.htm [28] Li, Z., Li, J.W., Zhang, P.T., et al., 2016.Key Structural-Fluid Evolution and Reservoir Diagenesis of Deep-Buried Carbonates:An Example from the Ordovician Yingshan Formation in Tazhong, Tarim Basin.Bulletion of Mineralogy, Petrology and Geochemistry, 35(5):827-838 (in Chinese with English abstract). [29] Li, Z., Liu, J.Q., 2009.Key Problems and Research Trend of Diagenetic Geodynamic Mechanism and Spatio-Temporal Distribution in Sedimentary Basins.Acta Sedimentologica Sinica, 27(5):837-848 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200905009.htm [30] Mangenot, X., Gasparrini, M., Rouchon, V., et al., 2018.Basin-Scale Thermal and Fluid Flow Histories Revealed by Carbonate Clumped Isotopes (△47)-Middle Jurassic Carbonates of the Paris Basin Depocentre.Sedimentology, 65(1):123-150. https://doi.org/10.1111/sed.12427 [31] Manzocchi, T., Childs, C., Walsh, J.J., 2010.Faults and Fault Properties in Hydrocarbon Flow Models.Geofluids, 10(1-2):94-113.https://doi.org/10.1111/j.1468-8123.2010.00283.x doi: 10.1002/9781444394900.ch8/pdf [32] Mao, Y.K., Zhong, D.K., Neng, Y., et al., 2015.Fluid Inclusion Characteristics and Hydrocarbons Accumulation of the Cretaceous Reservoirs in Kuqa Foreland Thrust Belt, Tarim Basin, Northwest China.Journal of China University of Mining & Technology, 44(6):1033-1042 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201506011 [33] Moore, C.H., 2001.Carbonate Reservoirs Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework.Developments in Sedimentology Vol.55, Elsevier, New York. [34] Pan, R., Zhu, X.M., Tan, M.X., et al., 2018.Quantitative Research on Porosity Evolution of Deep Tight Reservoir in the Bashijiqike Formation in Kelasu Structure Zone, Kuqa Depression.Earth Science Frontiers, 25(2):159-169 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201802018 [35] Pang, X.Q., Jiang, Z.X., Huang, H.D., et al., 2014.Formation Mechanisms, Distribution Models, and Prediction of Superimposed, Continuous Hydrocarbon Reservoirs.Acta Petrolei Sinica, 35(5):795-828 (in Chinese with English abstract). [36] Potter, P.E., Pettijohn, F.J., 1963.Basin Analysis and the Sedimentary Model.Paleocurrents and Basin Analysis.Springer, Berlin, 224-251. http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201301009 [37] Powley, D.E., 1990.Pressures and Hydrogeology in Petroleum Basins.Earth-Science Reviews, 29(1-4):215-226.https://doi.org/10.1016/0012-8252(0)90038-w http://www.sciencedirect.com/science/article/pii/001282529090038W [38] Roure, F., Cloetingh, S., Scheck, W.M., et al., 2010.Achievements and Challenges in Sedimentary Basin Dynamics: A Review.In: Cloetingh, S., Negendank, J., eds., New Frontiers in Integrated Solid Earth Sciences. Springer, Netherlands. [39] Schultz, R.A., Fossen, H., 2008.Terminology for Structural Discontinuities.AAPG Bulletion, 92(7):853-867. doi: 10.1306/02200807065 [40] Siever, R., 1979.Plate-Tectonic Controls on Diagenesis.The Journal of Geology, 87(2):127-155. https://doi.org/10.1086/628405 [41] Sun, Y.C., Li, Z., Li, H.S., et al., 1996.Diagenesis of Oil-Gas Bearing Fault Basins in Eastern China.Science Press, Beijing (in Chinese with English abstract). [42] Suppe, J., 2014.Fluid Overpressures and Strength of the Sedimentary Upper Crust.Journal of Structural Geology, 69:481-492.https://doi.org/10.13039/501100006477 doi: 10.1016/j.jsg.2014.07.009 [43] Tigert, V., Alshaieb, Z., 1990.Pressure Seals:Their Diagenetic Banding Patterns.Earth-Science Reviews, 29(1-4):227-240.https://doi.org/10.1016/0012-8252(0)90039-x http://www.sciencedirect.com/science/article/pii/001282529090039X [44] Vandeginste, V., Swennen, R., Allaeys, M., et al., 2012.Challenges of Structural Diagenesis in Foreland Fold-And-Thrust Belts:A Case Study on Paleofluid Flow in the Canadian Rocky Mountains West of Calgary.Marine and Petroleum Geology, 35(1):235-251.https://doi.org/10.1016/j.marpetgeo.2012.02.014 http://www.sciencedirect.com/science/article/pii/S0264817212000529 [45] Wang, J.P., Zhang, R.H., Zhao, J.L., et al., 2014.Characteristics and Evaluation of Fractures in Ultra-Deep Tight Sandstones Reservoir:Taking Keshen Gasfield in Tarim Basin, NW China as an Example.Natural Gas Geoscience, 25(11):1735-1745 (in Chinese with English abstract). [46] Wang, J.P., Zhang, H.L., Zhang, R.H., et al., 2018.Enhancement of Ultra-Deep Tight Sandstone Reservoir Quality by Fractures:A Case Study of Keshen Gas Field in Kuqa Depression, Tarim Basin.Oil & Gas Geology, 39(1):77-88 (in Chinese with English abstract). [47] Wang, Z.M., Li, Y., Xie, H.W., et al., 2016.Geological Understanding on the Formation of Large-Scale Ultra-Deep Oil-Gas Field in Kuqa Foreland Basin.China Petroleum Exploration, 21(1):37-43 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-KTSY201601006.htm [48] Williamson, M.A., 1995.Overpressures and Hydrocarbon Generation in the Sable Sub-Basin, Offshore Nova Scotia.Basin Research, 7(1):21-34.https://doi.org/10.1111/j.1365-2117.1995.tb00092.x doi: 10.1111/bre.1995.7.issue-1 [49] Wolf, K.H., Chilingar, G.V., 1992.Diagenesis Ⅲ.Elsevier, Amsterdam. [50] Wolf, K.H., Chilingar, G.V., 1994.Diagenesis Ⅳ.Elsevier, Amsterdam. [51] Worden, R.H., Benshatwan, M.S., Pott, G.J., et al., 2016.Basin-Scale Fluid Movement Patterns Revealed by Veins:Wessex Basin, UK.Geofluids, 16(1):149-174.https://doi.org/10.1111/gfl.12141 doi: 10.1111/gfl.2016.16.issue-1 [52] Yang, X.Z., Mao, Y.K., Zhong, D.K., et al., 2016.Tectonic Compression Controls the Vertical Property Variation of Sandstone Reservoir:An Example of Cretaceous Bashijiqike Formation in Kuqa Foreland Thrust Belt, Tarim Basin.Natural Gas Geoscience, 27(4):591-599 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201604004 [53] Zhang, H.L., Zhang, R.H., Yang, H.J., et al., 2014.Characterization and Evaluation of Ultra-Deep Fracture-Pore Tight Sandstone Reservoirs:A Case Study of Cretaceous Bashijiqike Formation in Kelasu Tectonic Zone in Kuqa Foreland Basin, Tarim, NW China.Petroleum Exploration and Development, 41(2):158-167 (in Chinese with English abstract). [54] Zhang, Z.P., Wang, Q.C., Wang Y., et al., 2006.Brittle Structure Sequence in the Kuqa Depression and Its Implications to the Tectonic Paleostress.Earth Science, 31(3):309-316 (in Chinese with English abstract).https://doi.org/10.3321/j.issn:1000-2383.2006.03.004 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200603004 [55] 韩登林, 李忠, 寿建峰, 2011.背斜构造不同部位储集层物性差异——以库车坳陷克拉2气田为例.石油勘探与开发, 38(3):282-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201103004 [56] 李思田, 1995.沉积盆地的动力学分析——盆地研究领域的主要趋向.地学前缘, 2(3-4):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500054555 [57] 李忠, 1992.含油气盆地成岩作用研究的基本思路及方法.天然气地球科学, 3(5):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003077121 [58] 李忠, 2013.中国的盆地动力学——21世纪开初十年的主要研究进展及前沿.矿物岩石地球化学通报, 32(3):290-300. doi: 10.3969/j.issn.1007-2802.2013.03.002 [59] 李忠, 2016.盆地深层流体-岩石作用与油气形成研究前沿.矿物岩石地球化学通报, 35(5):807-816. doi: 10.3969/j.issn.1007-2802.2016.05.001 [60] 李忠, 陈景山, 关平, 2006a.含油气盆地成岩作用的科学问题及研究前沿.岩石学报, 22(8):1745-1754. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200608001 [61] 李忠, 韩登林, 寿建峰, 2006b.沉积盆地成岩作用系统及其时空属性.岩石学报, 22(8):2151-2164. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200608005 [62] 李忠, 费卫红, 寿建峰, 等, 2003.华北东濮凹陷异常高压与流体活动及其对储集砂岩成岩作用的制约.地质学报, 77(1):126-134. doi: 10.3321/j.issn:0001-5717.2003.01.015 [63] 李忠, 李佳蔚, 张平童, 等, 2016.深层碳酸盐岩关键构造-流体演变与成岩-成储——以塔中奥陶系鹰山组为例.矿物岩石地球化学通报, 35(5):827-838. doi: 10.3969/j.issn.1007-2802.2016.05.003 [64] 李忠, 刘嘉庆, 2009.沉积盆地成岩作用的动力机制与时空分布研究若干问题及趋向.沉积学报, 27(5):837-848. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200905009.htm [65] 毛亚昆, 钟大康, 能源, 等, 2015.库车前陆冲断带白垩系储层流体包裹体特征与油气成藏.中国矿业大学学报, 44(6):1033-1042. doi: 10.3969/j.issn.2095-2686.2015.06.025 [66] 潘荣, 朱筱敏, 谈明轩, 等, 2018.库车坳陷克拉苏冲断带深部巴什基奇克组致密储层孔隙演化定量研究.地学前缘, 25(2):159-169. http://d.old.wanfangdata.com.cn/Periodical/dxqy201802018 [67] 庞雄奇, 姜振学, 黄捍东, 等, 2014.叠复连续油气藏成因机制、发育模式及分布预测.石油学报, 35(5):795-828. http://d.old.wanfangdata.com.cn/Periodical/syxb201405001 [68] 孙永传, 李忠, 李蕙生, 等, 1996.中国东部含油气断陷盆地的成岩作用.北京:科学出版社. [69] 王俊鹏, 张惠良, 张荣虎, 等, 2018.裂缝发育对超深层致密砂岩储层的改造作用——以塔里木盆地库车坳陷克深气田为例.石油与天然气地质, 39(1):77-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201801008 [70] 王俊鹏, 张荣虎, 赵继龙, 等, 2014.超深层致密砂岩储层裂缝定量评价及预测研究——以塔里木盆地克深气田为例.天然气地球科学, 25(11):1735-1745. doi: 10.11764/j.issn.1672-1926.2014.11.1735 [71] 王招明, 李勇, 谢会文, 等, 2016.库车前陆盆地超深层大油气田形成的地质认识.中国石油勘探, 21(1):37-43. doi: 10.3969/j.issn.1672-7703.2016.01.004 [72] 杨宪彰, 毛亚昆, 钟大康, 等, 2016.构造挤压对砂岩储层垂向分布差异的控制——以库车前陆冲断带白垩系巴什基奇克组为例.天然气地球科学, 27(4):591-599. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201604004 [73] 张惠良, 张荣虎, 杨海军, 等, 2014.超深层裂缝-孔隙型致密砂岩储集层表征与评价——以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例.石油勘探与开发, 41(2):158-167. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201402004 [74] 张仲培, 王清晨, 王毅, 等, 2006.库车坳陷脆性构造序列及其对构造古应力的指示.地球科学, 31(3):309-316.https://doi.org/10.3321/j.issn:1000-2383.2006.03.004 http://earth-science.net/WebPage/Article.aspx?id=1550