Rearranged Hopane: Molecular Tracers for Filling Pathway in Oil Reservoirs
-
摘要: 基于C30重排藿烷(C30DH)和C30藿烷(C30H)热稳定性差异,研究了C30DH/C30H作为油气运移方向和充注途径的可行性.结果发现:C30DH结构稳定性高于C30H,C30DH/C30H参数具有成熟度属性;同时对比分析C30DH/C30H参数与咔唑类参数的相关性,认为两者之间正相关性明显,表明C30DH/C30H参数不仅是良好的热成熟度参数还是良好的石油充注运移参数.M油田位于Fula凹陷东部,M油田原油为弱氧化-还原、淡水-微咸水环境下低等藻类与高等植物混源生成,属于同一族群原油.利用C30DH/C30H参数示踪Fula凹陷M油田石油充注方向,油气运移途径主要为自北向南,同时还发育自西向东的运移途径;咔唑类参数也验证了C30DH/C30H参数示踪油气运移的准确性.结果表明C30DH/C30H参数是示踪石油充注途径的有效参数.Abstract: Based on the differences in thermal stability of C30 diahopane(C30DH) and C30 hopane(C30H), this paper studied the feasibility of C30DH/C30H in tracing oil migration orientation and filling pathways.The result shows that the thermal stability of C30DH is considered to be higher than C30H, C30DH/C30H parameters have maturity properties. Meanwhile, contrast C30DH/C30H parameters with carbazoles, found that the C30DH/C30H parameters and carbazoles have great positive correlation. Indicate that the C30DH/C30H parameters not only is a good thermal maturity parameters but also a good in hydrocarbon charging migration. M oilfield is located in the eastern Fula depression. The oils are all normal and the source materials are dual contributions of lower hydrobiont and terrigenous higher plants, the environment is fresh to slight saline water oxidizing to reducing sedimentation, belong to the same group of crude oil.Using C30DH/C30H parameter tracer M oilfield reservoir group of hydrocarbon charging migration direction in Fula depression.The migration path of oil and gas is mainly from north to south, and it also develops from west to east. The classic carbazoles parameter also verified the C30DH/C30H tracer the accuracy of the oil and gas migration. Preliminary results show that C30DH/C30H arameters is an effective parameter for tracer oil filling way.
-
Key words:
- hydrocarbon charging migration /
- C30DH/C30H /
- carbazoles /
- M oilfield /
- Fula depression /
- petroleum geology
-
图 1 Fula坳陷M油田分布(据Dou et al., 2013修改)
Fig. 1. Distribution of M oil fields in Fula depression(modified by Dou et al., 2013)
-
[1] Chakhmakhchev, A., Suzuki, M., Takayama, K., 1997. Distribution of Alkylated Dibenzothiophenes in Petroleum as a Tool for Maturity Assessments. Organic Geochemistry, 26(7/8): 483-489. https://doi.org/10.1016/s0146-6380(97)00022-3 [2] Connan, J., Bouroullec, J., Dessort, D., et al., 1986. The Microbial Input in Carbonate-Anhydrite Facies of a Sabkha Palaeoenvironment from Guatemala: A Molecular Approach. Organic Geochemistry, 10(1/2/3): 29-50. https://doi.org/10.1016/0146-6380(86)90007-0 [3] Dou, L. R., Cheng, D. S., Li, Z., et al., 2013. Petroleum Geology of the Fula Sub-Basin, Muglad Basin, Sudan. Journal of Petroleum Gology, 36(1): 43-60. https://doi.org/10.1111/jpg.12541. [4] England, W. A., Mackenzie, A. S., Mann, D. M., et al., 1987. The Movement and Entrapment of Petroleum Fluids in the Subsurface. Journal of the Geological Society, 144(2): 327-347. https://doi.org/10.1144/gsjgs.144.2.0327 [5] Farrimond, P., Telenaes, N., 1996. Three Series of Rearranged Hopanes in Toarician Sediments. Organic Geochemistry, 25(3-4): 165-177. https://doi.org/10.1016/S0146-6380(96)00127-1 [6] Huang, H.P., Lu, S.N., Yuan, P.L., 1994. The New Discovered Diahopanes in the Paleozoic Sediments and Their Significance in Petroleum Exploration(in Chinese). Natural Gas Geoscience, 5(3): 23-28(in Chinese with English abstract). [7] Kolaczkowska, E., Slougui, N. E., Watt, D. S., et al., 1990. Thermodynamic Stability of Various Alkylated, Dealkylated and Rearranged 17α- and 17β- Hopane Isomers Using Molecular Mechanics Calculations. Organic Geochemistry, 16(4/5/6): 1033-1038. https://doi.org/10.1016/0146-6380(90)90140-u [8] Li, M. W., Larter, S. R., Stoddart, D., et al., 1995. Fractionation of Pyrrolic Nitrogen Compounds in Petroleum during Migration: Derivation of Migration-Related Geochemical Parameters. Geological Society, London, Special Publications, 86(1): 103-123. https://doi.org/10.1144/gsl.sp.1995.086.01.09 [9] Li, M. J., Wang, T. G., Liu, J., et al., 2008. Total Alkyl Dibenzothiophenes Content Tracing the Filling Pathway of Condensate Reservoir in the Fushan Depression, South China Sea. Science in China (Series D: Earth Sciences), 51(S2): 138-145. https://doi.org/10.1007/s11430-008-6025-6 [10] Li, M. J., Wang, T. G., Liu, J., et al., 2009. Biomarker 17α(H)-Diahopane: A Geochemical Tool to Study the Petroleum System of a Tertiary Lacustrine Basin, Northern South China Sea. Applied Geochemistry, 24(1): 172-183. https://doi.org/10.1016/j.apgeochem.2008.09.016 [11] Moldowan, J. M., Fago, F. J., Carlson, R. M. K., et al., 1991. Rearranged Hopanes in Sediments and Petroleum. Geochimica et Cosmochimica Acta, 55(11): 3333-3353. https://doi.org/10.1016/0016-7037(91)90492-n [12] Nie, C.M., Cheng, F.J., Bai, Y., et al., 2004. Geological Characteristics of Fula Oilfield in Muglad Basin, Sudan. Oil & Gas Geology, 25(6): 671-676 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200406014.htm [13] Obermajer, M., Osadetz, K. G., Fowler, M. G., et al., 2002. Delineating Compositional Variabilities among Crude Oils from Central Montana, USA, Using Light Hydrocarbon and Biomarker Characteristics. Organic Geochemistry, 33(12): 1343-1359. https://doi.org/10.1016/s0146-6380(02)00118-3 [14] Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide. Cambridge University Press, Cambridge. [15] Radke, M., 1988. Application of Aromatic Compounds as Maturity Indicators in Source Rocks and Crude Oils. Marine and Petroleum Geology, 5(3): 224-236. https://doi.org/10.1016/0264-8172(88)90003-7 [16] Santamaría-Orozco, D., Horsfield, B., di Primio, R., et al., 1998. Influence of Maturity on Distributions of Benzo- And Dibenzothiophenes in Tithonian Source Rocks and Crude Oils, Sonda de Campeche, Mexico. Organic Geochemistry, 28(7/8): 423-439. https://doi.org/10.1016/s0146-6380(98)00009-6 [17] Smith, M., Bend, S., 2004. Geochemical Analysis and Familial Association of Red River and Winnipeg Reservoired Oils of the Williston Basin, Canada. Organic Geochemistry, 35(4): 443-452. https://doi.org/10.1016/j.orggeochem.2004.01.008 [18] Telnaes, N., Isaksen, G. H., Farrimond, P., 1992. Unusual Triterpane Distributions in Lacustrine Oils. Organic Geochemistry, 18(6): 785-789. https://doi.org/10.1016/0146-6380(92)90047-2 [19] Wang, C. J., Fu, J. M., Sheng, G. Y., et al., 2000. Geochemical Characteristics and Applications of 18α(H)-Neohopanes and L7α(H)-Diahopanes. Chinese Science Bulletin, 45(19): 1742-1748. https://doi.org/10.1007/bf02886257 [20] Wang, T. G., He, F. Q., Li, M. J., et al., 2004. Alkyldibenzothiophenes: Molecular Tracers for Filling Pathway in Oil Reservoirs. Chinese Science Bulletin, 49(22): 2399-2404. https://doi.org/10.1007/bf03183429 [21] Xiao, Z.Y., Huang, G.H., Lu, Y.H., et al., 2004. Rearranged Hopanes in Oils from the Quele 1 Well, Tarim Basin, and the Significance for Oil Correlation. Petroleum Exploration and Development, 31(2): 35-37(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/syktykf200402009 [22] Yu, C., Bai, Y., Yu, Z.Y., et al., 2007. Reservoir Formation and Oil and Gas Distribution of Fula Oilfield, Sudan. Petroleum Exploration and Development, 34(5): 633-639 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_syktykf200705021.aspx [23] Zhang, M., 2013. Research and Prospects of Genesis of High Abundant Rearranged Hopanes in Geological Bodies(in Chinese). Journal of Oil and Gas Technology, 35(9): 1-4(in Chinese with English abstract). http://www.researchgate.net/publication/308548344_Progress_in_genesis_research_on_abundant_rearranged_hopanes_in_geological_bodies_J [24] Zhang, S. C., Zhang, B. M., Bian, L. Z., et al., 2007. The Xiamaling Oil Shale Generated through Rhodophyta over 800 Ma ago. Science in China (Series D: Earth Sciences), 50(4): 527-535. https://doi.org/10.1007/s11430-007-0012-1 [25] Zhang, W. Z., Yang, H., Hou, L. H., et al., 2009. Distribution and Geological Significance of 17α(H)-Diahopanes from Different Hydrocarbon Source Rocks of Yanchang Formation in Ordos Basin. Science in China (Series D: Earth Sciences), 52(7): 965-974. https://doi.org/10.1007/s11430-009-0076-1 [26] 黄海平, 卢松年, 袁佩兰, 1994. 古代沉积物中新检出的重排藿烷及其在油气勘探上的意义. 天然气地球科学, 23(5): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199403005.htm [27] 聂昌谋, 陈发景, 白洋, 等, 2004. 苏丹Fula油田油藏地质特征. 石油与天然气地质, 25(6): 671-676. doi: 10.3321/j.issn:0253-9985.2004.06.014 [28] 肖中尧, 黄光辉, 卢玉红, 等, 2004. 库车凹陷却勒1井原油的重排藿烷系列及油源对比. 石油勘探与开发, 31(2): 35-37. doi: 10.3321/j.issn:1000-0747.2004.02.009 [29] 于潮, 白洋, 于中洋, 等, 2007. 苏丹Fula油田成藏规律与油气分布. 石油勘探与开发, 34(5): 633-639. doi: 10.3321/j.issn:1000-0747.2007.05.021 [30] 张敏, 2013. 地质体中高丰度重排藿烷类化合物的成因研究现状与展望. 石油天然气学报, 35(9): 1-4. doi: 10.3969/j.issn.1000-9752.2013.09.001