The Impact of Degradation on the Tetraether-Based Proxies during the Sample Storage
-
摘要: 微生物细胞膜脂甘油二烷基甘油四醚(GDGTs)样品在实验室冰箱储存过程中可能会遭受降解,进而对GDGTs各指标应用的准确性产生影响.了解GDGTs各类化合物抗降解能力的差异能够为指标的准确应用提供重要的判别手段.2017年,通过对2012年的石笋样品提取物(GDGTs)进行二次测试,发现GDGTs化合物绝对含量明显减少且各化合物的相对含量变化明显:细菌brGDGTs含量相对于古菌isoGDGTs含量变化较小,对应的干旱化指标Ri/b值略有减小,陆源输入指数BIT值增大,故细菌brGDGTs化合物在保存过程中更稳定;古菌isoGDGTs含环少的化合物变化较小,环化指数CBT值增加,表明少环的化合物在降解过程中更稳定;基于古菌isoGDGTs建立的古温度指标TEX86值显著降低;基于细菌brGDGTs建立的甲基化指数MBT值增加,表明甲基越多的化合物越易降解.Abstract: The glycerol dialkyl glycerol ether (GDGTs) may be subjected to degradation during the sample storage, which may have an effect on the application of GDGTs. Thus, it is important to understand the resistance of GDGTs compounds to degradation for the accurate application of GDGT derived proxies. In this study, the extractions (GDGTs) of stalagmite sample from the year of 2012 was reanalyzed in 2017. It is found that the absolute concentration of GDGTs has decreased and the relative content of each component has changed significantly. The change of the concentration of bacterial brGDGT is smaller than that of the archaeal isoGDGTs, which corresponds to the decreased Ri/b value and increased BIT values. Therefore, compared to the isoGDGTs, the brGDGTs are more stable during the processes of degradation. Smaller changes of the concentration of archaeal isoGDGTs of less-cyclic-moieties and increasing CBT values indicate that GDGTs with fewer rings tend to be more stable during the degradation processes. The isoGDGTs based TEX86 values also decrease significantly. The increasing of the brGDGTs based MBT values show that GDGTs with more cyclopentyl moieties are more easily to be degraded.
-
Key words:
- GDGTs /
- degradation /
- TEX86 /
- MBT/CBT /
- Ri/b /
- BIT /
- environmental geology
-
图 5 GDGTs温度指标2017年数据与2012年数据之差(a~c)及利用MBT/CBT重建的温度值变化情况(d)
a.∆TEX86(2017年与2012年数据之差);b.∆MBT(2017年与2012年数据之差);c.∆CBT(2017年与2012年数据之差);d.利用公式(6)计算的温度值变化情况(2017年与2012年数据之差).图a~d中黑线为0,两条虚线为误差线-0.02~0.02
Fig. 5. The difference in GDGT-based proxies (a-c) and the difference in temperature reconstructed from MBT/CBT (d) between the 2017 data set and 2012 data set
表 1 2012年测试获得的石笋样品中各化合物占总GDGTs百分比
Table 1. The percentage of each GDGT compound in total GDGTs fromstalagmite samplesin the 2012 data set
样品名称 样品编号 GDGT-0 GDGT-1 GDGT-2 GDGT-3 Crenarchaeol Crenarchaeol' Ia Ib Ic IIa IIb IIc IIIa IIIb IIIc HS4-112 1 0.10 0.11 0.08 0.08 0.60 0.02 0.14 0.07 0.01 0.27 0.23 0.03 0.18 0.04 0.02 HS4-9 2 0.09 0.09 0.09 0.08 0.62 0.03 0.14 0.04 0.01 0.33 0.13 0.02 0.30 0.02 0.02 HS4-15 3 0.09 0.10 0.08 0.08 0.62 0.03 0.15 0.07 0.02 0.27 0.22 0.03 0.18 0.04 0.03 HS4-71 4 0.10 0.10 0.09 0.07 0.60 0.04 0.15 0.04 0.01 0.39 0.15 0.01 0.24 0.02 0.01 HS4-198 5 0.10 0.11 0.10 0.08 0.60 0.02 0.10 0.09 0.04 0.13 0.33 0.09 0.10 0.04 0.07 HS4-83 6 0.09 0.10 0.08 0.08 0.62 0.02 0.14 0.05 0.01 0.31 0.20 0.02 0.21 0.04 0.02 HS4-204 7 0.12 0.09 0.09 0.07 0.59 0.03 0.12 0.09 0.03 0.20 0.31 0.07 0.11 0.04 0.04 HS4-179 8 0.11 0.11 0.09 0.08 0.59 0.02 0.15 0.08 0.02 0.20 0.27 0.04 0.14 0.06 0.04 HS4-144 9 0.10 0.10 0.08 0.08 0.59 0.03 0.13 0.04 0.01 0.37 0.10 0.02 0.30 0.02 0.01 HS4-165 10 0.10 0.10 0.09 0.08 0.60 0.03 0.14 0.08 0.02 0.22 0.28 0.04 0.12 0.05 0.04 HS4-128 11 0.11 0.10 0.09 0.08 0.59 0.03 0.13 0.07 0.01 0.28 0.22 0.03 0.21 0.04 0.02 HS4-30 12 0.10 0.10 0.09 0.08 0.60 0.02 0.15 0.07 0.01 0.29 0.18 0.03 0.21 0.03 0.03 HS4-86 13 0.10 0.11 0.08 0.08 0.61 0.02 0.13 0.07 0.01 0.29 0.22 0.02 0.19 0.05 0.03 HS4-52 14 0.11 0.11 0.10 0.08 0.58 0.03 0.15 0.06 0.01 0.36 0.14 0.02 0.22 0.01 0.02 HS4-196 15 0.11 0.11 0.10 0.07 0.59 0.02 0.11 0.08 0.03 0.22 0.28 0.04 0.13 0.05 0.05 HS4-21 16 0.10 0.11 0.09 0.08 0.60 0.02 0.15 0.06 0.01 0.33 0.17 0.03 0.19 0.03 0.03 HS4-77 17 0.10 0.11 0.09 0.08 0.60 0.03 0.15 0.03 0.01 0.38 0.13 0.01 0.26 0.02 0.01 HS4-120 18 0.10 0.11 0.09 0.09 0.59 0.03 0.13 0.08 0.02 0.23 0.27 0.05 0.14 0.04 0.03 HS4-175 19 0.11 0.12 0.10 0.08 0.57 0.02 0.10 0.16 0.02 0.13 0.32 0.07 0.09 0.05 0.06 HS4-64 20 0.10 0.11 0.09 0.08 0.60 0.03 0.12 0.08 0.01 0.29 0.20 0.03 0.19 0.03 0.04 HS4-174 21 0.11 0.11 0.09 0.07 0.60 0.02 0.16 0.06 0.02 0.19 0.30 0.05 0.12 0.06 0.05 HS4-130 22 0.09 0.10 0.09 0.08 0.61 0.03 0.13 0.06 0.01 0.26 0.23 0.03 0.20 0.05 0.02 HS4-168 23 0.12 0.12 0.09 0.09 0.56 0.02 0.14 0.05 0.01 0.25 0.21 0.02 0.24 0.05 0.03 HS4-132 24 0.09 0.09 0.08 0.08 0.62 0.03 0.14 0.05 0.01 0.32 0.17 0.02 0.25 0.03 0.01 HS4-16 25 0.09 0.10 0.09 0.08 0.60 0.03 0.14 0.07 0.01 0.29 0.20 0.03 0.19 0.03 0.03 HS4-60 26 0.10 0.09 0.10 0.07 0.59 0.05 0.15 0.04 0.00 0.43 0.09 0.01 0.26 0.01 0.01 HS4-119 27 0.11 0.11 0.09 0.09 0.58 0.02 0.13 0.10 0.02 0.24 0.26 0.04 0.14 0.04 0.04 表 2 2017年测试获得的石笋样品中各化合物占总GDGTs百分比
Table 2. The percentage of each GDGT compound in total GDGTs fromstalagmite samplesin the 2017 data set
样品名称 样品编号 GDGT-0 GDGT-1 GDGT-2 GDGT-3 Crenarchaeol Crenarchaeol' Ia Ib Ic IIa IIb IIc IIIa IIIb IIIc HS4-112 1 0.16 0.13 0.14 0.10 0.45 0.02 0.19 0.07 0.01 0.27 0.21 0.03 0.16 0.03 0.02 HS4-9 2 0.13 0.10 0.12 0.08 0.53 0.03 0.20 0.04 0.01 0.34 0.12 0.02 0.24 0.02 0.01 HS4-15 3 0.13 0.11 0.12 0.09 0.53 0.02 0.22 0.07 0.02 0.26 0.18 0.03 0.16 0.03 0.02 HS4-71 4 0.14 0.12 0.09 0.07 0.54 0.04 0.17 0.05 0.01 0.39 0.14 0.00 0.23 0.01 0.00 HS4-198 5 0.12 0.11 0.10 0.09 0.55 0.02 0.11 0.08 0.05 0.15 0.30 0.09 0.11 0.05 0.05 HS4-83 6 0.13 0.12 0.09 0.09 0.56 0.02 0.18 0.06 0.00 0.29 0.18 0.03 0.19 0.04 0.02 HS4-204 7 0.14 0.10 0.09 0.07 0.57 0.03 0.13 0.07 0.03 0.20 0.31 0.08 0.11 0.04 0.03 HS4-179 8 0.13 0.12 0.11 0.08 0.54 0.02 0.17 0.07 0.02 0.21 0.26 0.03 0.14 0.06 0.04 HS4-144 9 0.15 0.12 0.09 0.08 0.53 0.03 0.18 0.04 0.01 0.37 0.09 0.02 0.26 0.02 0.01 HS4-165 10 0.12 0.12 0.09 0.08 0.57 0.03 0.16 0.09 0.02 0.21 0.28 0.04 0.11 0.05 0.04 HS4-128 11 0.13 0.11 0.08 0.08 0.56 0.03 0.16 0.08 0.01 0.28 0.21 0.03 0.18 0.03 0.01 HS4-30 12 0.12 0.13 0.10 0.08 0.55 0.02 0.19 0.07 0.02 0.29 0.17 0.03 0.17 0.04 0.02 HS4-86 13 0.13 0.12 0.10 0.08 0.55 0.02 0.16 0.05 0.01 0.30 0.22 0.02 0.17 0.05 0.02 HS4-52 14 0.14 0.12 0.09 0.07 0.55 0.03 0.22 0.05 0.00 0.39 0.14 0.00 0.20 0.00 0.00 HS4-196 15 0.13 0.12 0.10 0.08 0.56 0.02 0.13 0.08 0.03 0.24 0.26 0.05 0.14 0.03 0.03 HS4-21 16 0.12 0.12 0.11 0.08 0.55 0.02 0.15 0.05 0.02 0.33 0.16 0.03 0.19 0.03 0.03 HS4-77 17 0.14 0.13 0.08 0.09 0.55 0.00 0.16 0.03 0.00 0.27 0.17 0.09 0.18 0.00 0.00 HS4-120 18 0.14 0.12 0.09 0.08 0.54 0.03 0.16 0.09 0.00 0.24 0.26 0.05 0.14 0.03 0.03 HS4-175 19 0.13 0.12 0.09 0.09 0.54 0.02 0.16 0.07 0.03 0.18 0.30 0.05 0.11 0.05 0.04 HS4-64 20 0.15 0.12 0.11 0.08 0.52 0.03 0.19 0.03 0.00 0.23 0.11 0.01 0.21 0.02 0.18 HS4-174 21 0.14 0.14 0.10 0.08 0.53 0.02 0.19 0.07 0.03 0.19 0.27 0.05 0.10 0.06 0.04 HS4-130 22 0.12 0.11 0.09 0.09 0.57 0.03 0.15 0.07 0.01 0.27 0.23 0.03 0.18 0.04 0.02 HS4-168 23 0.15 0.14 0.09 0.09 0.51 0.02 0.17 0.06 0.01 0.26 0.21 0.02 0.20 0.04 0.03 HS4-132 24 0.13 0.12 0.09 0.08 0.55 0.03 0.16 0.06 0.01 0.32 0.17 0.02 0.22 0.03 0.01 HS4-16 25 0.14 0.12 0.10 0.08 0.53 0.03 0.20 0.05 0.00 0.31 0.18 0.00 0.21 0.06 0.00 HS4-60 26 0.13 0.10 0.10 0.08 0.56 0.04 0.17 0.04 0.00 0.44 0.09 0.00 0.26 0.00 0.00 HS4-119 27 0.13 0.12 0.10 0.09 0.54 0.02 0.18 0.08 0.02 0.24 0.25 0.04 0.13 0.03 0.03 表 3 石笋样品GDGTs各指标值
Table 3. GDGT-based proxies for the stalagmite samples
样品名称 样品编号 TEX86 MBT CBT BIT Ri/b 2012年 2017年 2012年 2017年 2012年 2017年 2012年 2017年 2012年 2017年 HS4-112 1 0.63 0.66 0.22 0.27 0.13 0.20 0.63 0.70 0.57 0.34 HS4-9 2 0.68 0.70 0.19 0.25 0.43 0.52 0.61 0.78 0.77 0.40 HS4-15 3 0.66 0.67 0.23 0.31 0.17 0.28 0.35 0.45 1.78 1.53 HS4-71 4 0.67 0.63 0.19 0.23 0.47 0.46 0.62 0.66 0.79 0.79 HS4-198 5 0.63 0.65 0.23 0.25 -0.26 -0.18 0.09 0.13 4.72 4.89 HS4-83 6 0.65 0.62 0.20 0.24 0.26 0.30 0.54 0.56 0.92 0.94 HS4-204 7 0.69 0.65 0.23 0.23 -0.10 -0.07 0.28 0.36 1.31 1.38 HS4-179 8 0.63 0.62 0.25 0.26 0.00 0.06 0.23 0.30 2.86 2.21 HS4-144 9 0.66 0.63 0.18 0.23 0.53 0.62 0.72 0.76 0.52 0.48 HS4-165 10 0.67 0.63 0.24 0.27 0.00 0.01 0.34 0.40 1.58 1.30 HS4-128 11 0.66 0.63 0.21 0.25 0.15 0.18 0.57 0.70 0.79 0.46 HS4-30 12 0.65 0.60 0.23 0.29 0.24 0.29 0.40 0.56 1.65 0.94 HS4-86 13 0.64 0.63 0.20 0.22 0.16 0.23 0.40 0.51 1.54 1.14 HS4-52 14 0.65 0.62 0.22 0.27 0.41 0.52 0.52 0.64 1.17 0.84 HS4-196 15 0.63 0.62 0.22 0.24 -0.03 0.05 0.11 0.16 5.99 4.71 HS4-21 16 0.64 0.64 0.22 0.23 0.32 0.36 0.43 0.52 1.46 1.14 HS4-77 17 0.65 0.56 0.22 0.24 0.17 0.23 0.42 0.56 1.44 0.73 HS4-120 18 0.65 0.62 0.24 0.25 0.00 0.07 0.48 0.55 0.93 0.84 HS4-175 19 0.64 0.63 0.28 0.26 -0.30 -0.24 0.16 0.25 2.93 2.56 HS4-64 20 0.67 0.64 0.19 0.25 0.51 0.75 0.68 0.69 0.64 0.55 HS4-174 21 0.62 0.59 0.25 0.29 0.00 0.05 0.25 0.32 2.34 1.94 HS4-130 22 0.68 0.66 0.20 0.23 0.12 0.15 0.63 0.68 0.57 0.51 HS4-168 23 0.62 0.60 0.20 0.24 0.19 0.22 0.57 0.58 0.87 0.89 HS4-132 24 0.67 0.64 0.19 0.23 0.32 0.33 0.80 0.84 0.29 0.25 HS4-16 25 0.66 0.65 0.22 0.23 0.19 0.38 0.31 0.47 2.25 1.50 HS4-60 26 0.71 0.68 0.19 0.20 0.64 0.65 0.67 0.74 0.71 0.54 HS4-119 27 0.65 0.63 0.24 0.28 0.02 0.10 0.31 0.44 1.93 1.31 -
[1] Beck, J. W., Zhou, W. J., Li, C., et al., 2018. A 550, 000-Year Record of East Asian Monsoon Rainfall from 10Be in Loess. Science, 360(6391):877-881. https://doi.org/10.1126/science.aam5825 [2] Dang, X. Y., Yang, H., Naafs, B. D. A., et al., 2016. Evidence of Moisture Control on the Methylation of Branched Glycerol Dialkyl Glycerol Tetraethers in Semi-Arid and Arid Soils. Geochimica et Cosmochimica Acta, 189:24-36. https://doi.org/10.1016/j.gca.2016.06.004 [3] Ding, W. H., Yang, H., He, G. Q., et al., 2013. Effects of Oxidative Degradation by Hydrogen Peroxide on Tetraethers-Based Organic Proxies. Quaternary Sciences, 33(1):39-47 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201301005 [4] Hoefs, M. J. L., Rijpstra, W. I. C., Sinninghe Damsté, J. S., 2002. The Influence of Oxic Degradation on the Sedimentary Biomarker Record I:Evidence from Madeira Abyssal Plain Turbidites. Geochimica et Cosmochimica Acta, 66(15):2719-2735. https://doi.org/10.1016/s0016-7037(02)00864-5 [5] Hopmans, E. C., Weijers, J. W. H., Schefuß, E., et al., 2004. A Novel Proxy for Terrestrial Organic Matter in Sediments Based on Branched and Isoprenoid Tetraether Lipids. Earth and Planetary Science Letters, 224(1-2):107-116. https://doi.org/10.1016/j.epsl.2004.05.012 [6] Hu, C. Y., Henderson, G. M., Huang, J. H., et al., 2008. Quantification of Holocene Asian Monsoon Rainfall from Spatially Separated Cave Records. Earth and Planetary Science Letters, 266(3-4):221-232. https://doi.org/10.1016/j.epsl.2007.10.015 [7] Huguet, A., Fosse, C., Laggoun-Défarge, F., et al., 2013. Effects of a Short-Term Experimental Microclimate Warming on the Abundance and Distribution of Branched GDGTs in a French Peatland. Geochimica et Cosmochimica Acta, 105(3):294-315. https://doi.org/10.1016/j.gca.2012.11.037 [8] Huguet, C., de Lange, G. J., Gustafsson, Ö., et al., 2008. Selective Preservation of Soil Organic Matter in Oxidized Marine Sediments (Madeira Abyssal Plain). Geochimica et Cosmochimica Acta, 72(24):6061-6068. https://doi.org/10.1016/j.gca.2008.09.021 [9] Huguet, C., Hopmans, E. C., Febo-Ayala, W., et al., 2006. An Improved Method to Determine the Absolute Abundance of Glycerol Dibiphytanyl Glycerol Tetraether Lipids. Organic Geochemistry, 37(9):1036-1041. https://doi.org/10.1016/j.orggeochem.2006.05.008 [10] Huguet, C., Kim, J. H., de Lange, G. J., et al., 2009. Effects of Long Term Oxic Degradation on the U37K', TEX86 and BIT Organic Proxies. Organic Geochemistry, 40(12):1188-1194. https://doi.org/10.1016/j.orggeochem.2009.09.003 [11] Jia, G. D., Rao, Z. G., Zhang, J., et al., 2013. Tetraether Biomarker Records from a Loess-Paleosol Sequence in the Western Chinese Loess Plateau. Frontiers in Microbiology, 4:1-9. https://doi.org/10.3389/fmicb.2013.00199 [12] Lengger, S. K., Kraaij, M., Tjallingii, R., et al., 2013. Differential Degradation of Intact Polar and Core Glycerol Dialkyl Glycerol Tetraether Lipids upon Post-Depositional Oxidation. Organic Geochemistry, 65:83-93. https://doi.org/10.1016/j.orggeochem.2013.10.004 [13] Liu, W. G., Wang, H. Y., Zhang, C. L., et al., 2013. Distribution of Glycerol Dialkyl Glycerol Tetraether Lipids Along an Altitudinal Transect on Mt. Xiangpi, Ne Qinghai-Tibetan Plateau, China. Organic Geochemistry, 57(4):76-83. https://doi.org/10.1016/j.orggeochem.2013.01.011 [14] Loomis, S. E., Russell, J. M., Sinninghe Damsté, J. S., 2011. Distributions of Branched GDGTs in Soils and Lake Sediments from Western Uganda:Implications for a Lacustrine Paleothermometer. Organic Geochemistry, 42(7):739-751. https://doi.org/10.1016/j.orggeochem.2011.06.004 [15] Luo, G. M., Yang, H., Algeo, T. J., et al., 2019. Lipid Biomarkers for the Reconstruction of Deep-Time Environmental Conditions. Earth-Science Reviews, 189:99-124. https://doi.org/10.1016/j.earscirev.2018.03.005 [16] Peterse, F., Prins, M. A., Beets, C. J., et al., 2011. Decoupled Warming and Monsoon Precipitation in East Asia over the Last Deglaciation. Earth and Planetary Science Letters, 301(1-2):256-264. https://doi.org/10.1016/j.epsl.2010.11.010 [17] Powers, L., Werne, J. P., Vanderwoude, A. J., et al., 2010. Applicability and Calibration of the TEX86 Paleothermometer in Lakes. Organic Geochemistry, 41(4):404-413. https://doi.org/10.1016/j.orggeochem.2009.11.009 [18] Robinson, S. A., Ruhl, M., Astley, D. L., et al., 2017. Early Jurassic North Atlantic Sea-Surface Temperatures from TEX86 Palaeothermometry. Sedimentology, 64(1):215-230. https://doi.org/10.1111/sed.12321 [19] Schouten, S., Hopmans, E. C., Schefuß, E., et al., 2002. Distributional Variations in Marine Crenarchaeotal Membrane Lipids:A New Tool for Reconstructing Ancient Sea Water Temperatures? Earth and Planetary Science Letters, 204(1-2):265-274. https://doi.org/10.1016/s0012-821x(02)00979-2 [20] Schouten, S., Hopmans, E. C., Sinninghe Damsté, J. S., 2004. The Effect of Maturity and Depositional Redox Conditions on Archaeal Tetraether Lipid Palaeothermometry. Organic Geochemistry, 35(5):567-571. https://doi.org/10.1016/j.orggeochem.2004.01.012 [21] Schouten, S., Hopmans, E. C., Sinninghe Damsté, J. S., 2013. The Organic Geochemistry of Glycerol Dialkyl Glycerol Tetraether Lipids:A Review. Organic Geochemistry, 54:19-61. https://doi.org/10.1016/j.orggeochem.2012.09.006 [22] Sinninghe Damsté, J. S., Hopmans, E. C., Pancost, R. D., et al., 2000. Newly Discovered Non-Isoprenoid Glycerol Dialkyl Glycerol Tetraether Lipids in Sediments. Chemical Communications, (17):1683-1684. https://doi.org/10.1039/b004517i [23] Sinninghe Damsté, J. S., Rijpstra, W. I. C., Reichart, G. J., 2002. The Influence of Oxic Degradation on the Sedimentary Biomarker Record II. Evidence from Arabian Sea Sediments. Geochimica et Cosmochimica Acta, 66(15):2737-2754. https://doi.org/10.1016/s0016-7037(02)00865-7 [24] Tang, C. Y., Yang, H., Dang, X. Y., et al., 2017. Comparison of Paleotemperature Reconstructions Using Microbial Tetraether Thermometers of the Chinese Loess-Paleosol Sequence for the Past 350 000 Years. Science China Earth Sciences, 60(6):1159-1170. https://doi.org/10.1007/s11430-016-9035-y [25] Tierney, J. E., Russell, J. M., 2009. Distributions of Branched GDGTs in a Tropical Lake System:Implications for Lacustrine Application of the MBT/CBT Paleoproxy. Organic Geochemistry, 40(9):1032-1036. https://doi.org/10.1016/j.orggeochem.2009.04.014 [26] Verschuren, D., Sinninghe Damsté, J. S., et al., 2009. Half-Precessional Dynamics of Monsoon Rainfall near the East African Equator. Nature, 462(7273):637-641. https://doi.org/10.1038/nature08520 [27] Wang, H. Y., Liu, W. G., Zhang, C. L., et al., 2013. Branched and Isoprenoid Tetraether (BIT) Index Traces Water Content along Two Marsh-Soil Transects Surrounding Lake Qinghai:Implications for Paleo-Humidity Variation. Organic Geochemistry, 59:75-81. https://doi.org/10.1016/j.orggeochem.2013.03.011 [28] Wang, M. D., Liang, J., Hou, J. Z., et al., 2016. Distribution of GDGTs in Lake Surface Sediments on the Tibetan Plateau and Its Influencing Factors. Science China Earth Sciences, 59(5):961-974. https://doi.org/10.1007/s11430-015-5214-3 [29] Weijers, J. W. H., Schouten, S., Sluijs, A., et al., 2007a. Warm Arctic Continents during the Palaeocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 261(1-2):230-238. https://doi.org/10.1016/j.epsl.2007.06.033 [30] Weijers, J. W. H., Schouten, S., van den Donker, J. C., et al., 2007b. Environmental Controls on Bacterial Tetraether Membrane Lipid Distribution in Soils. Geochimica et Cosmochimica Acta, 71(3):703-713. https://doi.org/10.1016/j.gca.2006.10.003 [31] Weijers, J. W. H., Schouten, S., Spaargaren, O. C., et al., 2006. Occurrence and Distribution of Tetraether Membrane Lipids in Soils:Implications for the Use of the TEX86 Proxy and the BIT Index. Organic Geochemistry, 37(12):1680-1693. https://doi.org/10.1016/j.orggeochem.2006.07.018 [32] Weijers, J. W. H., Steinmann, P., Hopmans, E. C., et al., 2011. Bacterial Tetraether Membrane Lipids in Peat and Coal:Testing the MBT-CBT Temperature Proxy for Climate Reconstruction. Organic Geochemistry, 42(5):477-486. https://doi.org/10.1016/j.orggeochem.2011.03.013 [33] Wu, W. C., Ruan, J. P., Ding, S., et al., 2014. Source and Distribution of Glycerol Dialkyl Glycerol Tetraethers along Lower Yellow River-Estuary-Coast Transect. Marine Chemistry, 158:17-26. https://doi.org/10.1016/j.marchem.2013.11.006 [34] Xie, S. C., Huang, X. Y., Yang, H., et al., 2013. An Overview on Microbial Proxies for the Reconstruction of Past Global Environmental Change. Quaternary Sciences, 33(1):1-19 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201301001 [35] Xie, S. C., Pancost, R. D., Chen, L., et al., 2012. Microbial Lipid Records of Highly Alkaline Deposits and Enhanced Aridity Associated with Significant Uplift of the Tibetan Plateau in the Late Miocene. Geology, 40(4):291-294. https://doi.org/10.1130/g32570.1 [36] Yang, G. F., Chen, Z. H., Zhang, H. J., et al., 2018.Paleoclimatic Variations in Ningjinpo Area since Late Pleistocene as Indicated by n-Alkanes. Earth Science, 43(11):4001-4007 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811016 [37] Yang, H., Ding, W. H., Zhang, C. L., et al., 2011. Occurrence of Tetraether Lipids in Stalagmites:Implications for Sources and GDGT-Based Proxies. Organic Geochemistry, 42(1):108-115. https://doi.org/10.1016/j.orggeochem.2010.11.006 [38] Yang, H., Pancost, R. D., Dang, X. Y., et al., 2014a. Correlations between Microbial Tetraether Lipids and Environmental Variables in Chinese Soils:Optimizing the Paleo-Reconstructions in Semi-Arid and Arid Regions. Geochimica et Cosmochimica Acta, 126:49-69. https://doi.org/10.1016/j.gca.2013.10.041 [39] Yang, H., Pancost, R. D., Tang, C. Y., et al., 2014b. Distributions of Isoprenoid and Branched Glycerol Dialkanol Diethers in Chinese Surface Soils and a Loess-Paleosol Sequence:Implications for the Degradation of Tetraether Lipids. Organic Geochemistry, 66:70-79. https://doi.org/10.1016/j.orggeochem.2013.11.003 [40] Yang, H., Pancost, R. D., Jia, C. L., et al., 2016. The Response of Archaeal Tetraether Membrane Lipids in Surface Soils to Temperature:A Potential Paleothermometer in Paleosols. Geomicrobiology Journal, 33(2):98-109. https://doi.org/10.1080/01490451.2014.1002956 [41] Zhang, C. L., Wang, J. X., Wei, Y. L., et al., 2012. Production of Branched Tetraether Lipids in the Lower Pearl River and Estuary:Effects of Extraction Methods and Impact on bGDGT Proxies. Frontiers in Microbiology, 2:1. https://doi.org/10.3389/fmicb.2011.00274 [42] Zhang, H. J., Yang, G. F., Chen, Z. H., et al., 2018. Distribution of n-Alkane Indicative of Paleoclimatic Change in Paleolake of Yanqing, Beijing. Earth Science, 43(11):4120-4127 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811027 [43] Zheng, Y. H., Pancost, R. D., Liu, X. D., et al., 2017. Atmospheric Connections with the North Atlantic Enhanced the Deglacial Warming in Northeast China. Geology, 45(11):1031-1034. https://doi.org/10.1130/g39401.1 [44] 丁伟华, 杨欢, 何钢强, 等, 2013.实验模拟氧化条件对微生物四醚脂的环境替代指标的影响.第四纪研究, 33(1):39-47. doi: 10.3969/j.issn.1001-7410.2013.01.05 [45] 谢树成, 黄咸雨, 杨欢, 等, 2013.示踪全球环境变化的微生物代用指标.第四纪研究, 33(1):1-19. doi: 10.3969/j.issn.1001-7410.2013.01.01 [46] 杨桂芳, 陈正洪, 张慧娟, 等, 2018.宁晋泊晚更新世以来气候变化的正构烷烃分子记录.地球科学, 43(11): 4001-4007. doi: 10.3799/dqkx.2018.575 [47] 张慧娟, 杨桂芳, 陈正洪, 等, 2018.北京延庆古湖正构烷烃分布特征及古气候意义.地球科学, 43(11):4120-4127. doi: 10.3799/dqkx.2018.512