Petrogenesis of Early Cretaceous Chibaisong Granitoid Dyke (Stock) from Tonghua Area, Jilin Province: Evidences from Zircon U-Pb Geochronology, Hf Isotope and Whole-Rock Geochemistry
-
摘要: 中国吉林省通化县赤柏松地区早白垩世花岗质岩脉(株)的锆石U-Pb年代学、Hf同位素和全岩地球化学特征,为探讨华北克拉通东北部中生代时期大陆下地壳的属性和构造演化历史提供了重要依据.研究区花岗质岩脉(株)中的锆石普遍发育振荡生长环带,并具有较高的Th/U比值(0.53~1.94),表明其为岩浆成因.对采自花岗质岩脉(株)中4个样品的锆石U-Pb测年结果表明,它们的206Pb/238U加权平均年龄分别为116 Ma、124 Ma、127 Ma和130 Ma,即早白垩世早期和早白垩世晚期.这些花岗质岩石具有变化的SiO2(60.61%~76.07%)和MgO(0.01%~2.48%)含量、富碱(K2O+Na2O=6.26%~9.14%)及富Al2O3(11.99%~16.13%)的特征,总体属于高钾钙碱性系列岩石.微量元素上富集轻稀土和大离子亲石元素,亏损重稀土和Ba、Sr、P、Ti和Eu等元素(Eu/Eu*=0.05~0.30),暗示其主要来自地壳岩石的部分熔融,并在演化过程中经历了斜长石、碱性长石、磷灰石和钛铁矿等矿物的分离结晶作用和围岩的同化混染作用.与早白垩世早期花岗质岩石相比,早白垩世晚期岩石的碱性程度提高.样品中锆石εHf(t)值介于-21.84~-10.74之间,两阶段亏损地幔模式年龄为1.86~2.56 Ga.上述地球化学特征暗示,赤柏松地区下地壳以古元古代地壳物质为主,存在少量新太古代地壳物质.早白垩世时期研究区以双峰式岩石组合为特征,进一步结合区域上已有的火成岩和区域构造演化的研究成果,认为早白垩世时期研究区处于俯冲背景下的伸展环境.与早白垩世早期相比,早白垩世晚期伸展作用增强.Abstract: LA-ICP-MS zircon U-Pb geochronology, whole-rock geochemistry and Hf isotope of zircons of Early Cretaceous Chibaisong granitoids in Tonghua area, southern Jilin Province, northeast (NE) China provide the insights into the nature of the lower crust and tectonic evolution of the eastern North China Craton (NCC). Zircons from the Chibaisong granitoid dyke (stock) show fine-scale oscillatory zoning, and relatively high Th/U ratios (0.53~1.94), indicative a magmatic origin. The weighted mean of 206Pb/238U ages for four samples from four granitoids are 116 Ma, 124 Ma, 127 Ma and 130 Ma, respectively. The Chibaisong granitoids have variable content of SiO2 (60.61%-76.07%) and MgO (0.01%-2.48%), high content of total-alkali (K2O+Na2O=6.26%-9.14%) and Al2O3 (11.99%-16.13%), characterized by the nature of high-K calc-alkaline series.Additionally, they show enrichment of LREEs and LILEs, depletion of HREEs and HFSEs, Ba, Sr, P, Ti and Eu (Eu/Eu*=0.05-0.30), suggesting that they were derived from the partial melting of the lower crust, and suffered from the fractional crystallization of plagioclase, alkali feldspar, apatite and ilmenite. Furthermore, they were assimilated by the country rock according to their variable major element contents and zircon εHf(t)values. Granitoids were more alkaline in the early stage of the Early Cretaceous and Mg# was increased, which may be attributed to mantle material. The zircon εHf(t) values in the samples ranged from -21.84 to -10.74, and the two-stage model ages of zircon Hf isotope of granite porphyry yield 1.86-2.56 Ga, which imply that the accretion of the lower crust within the Tonghua area mainly happened in the Paleoproterozoic, with small amounts during Neoproterozoic. The bimodal rock associationin the Early Cretaceous, together with the results from the contemporaneous volcanic rocks and regional evolution history in this area, indicate that the granitoid dykes may formed in an extensional setting, and more strongly extension happened during the late stage of Early Cretaceous associated with the subduction of the Paleo-Pacific Plate beneath the Eurasian continent.
-
Key words:
- Early Cretaceous /
- Chibaisong /
- granitoid dyke (stock) /
- geochemistry /
- zircon Hf isotope
-
图 5 (a)通化赤柏松地区早白垩世花岗质岩石SiO2 vs. (Na2O+K2O)图解; (b)SiO2vs.K2O图解
据Peccerillo and Taylor(1976),Middlemost(1994);数据裴福萍等(2009), Pei et al.(2011a), 杨凤超等,(2017), 秦亚等(2013)
Fig. 5. Plots of SiO2 vs. (Na2O+K2O) (a), SiO2 vs K2O (b) for the Early Cretaceous granitoids in the Chibaisong area, Tonghua
图 6 通化赤柏松地区早白垩世花岗质岩石球粒陨石标准化稀土元素配分型式(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石标准数据Preston et al.(1985); 原始地幔标准化数据Sun and McDonough (1984); 图例同图 5
Fig. 6. (a) Chondrite-normalized REE patterns and (b) primitive mantle (PM)-normalized trace element spider diagrams for the Early Cretaceous granitoids in the Chibaisong area, Tonghua
图 7 通化赤柏松地区早白垩世花岗质岩石的Hf同位素组成
据Yang et al.(2006);CAOB.中亚造山带;YFTB.燕山褶皱带;数据杨凤超等(2017),Zhang et al.(2018)
Fig. 7. Correlations between Hf isotopic compositions and ages of zircons for the Early Cretaceous granitoids in the Chibaisong area, Tonghua
图 8 通化赤柏松地区早白垩世花岗质岩石Ba-Sr和Rb/Sr-Sr图解(图例同图 5)
Fig. 8. Ba-Sr and Rb/Sr-Sr diagram for the Early Cretaceous granitoids in the Chibaisong area, Tonghua
图 9 通化赤柏松地区早白垩世花岗质岩石的成因类型判别图解(a)Zr+Nb+Ce+Y-(Na2O+K2O)/CaO;(b)Zr+Nb+Ce+Y-FeO*/MgO(据Whalen et al., 1987)
Fig. 9. (a) (Na2O+K2O)/CaO vs. (Zr+Nb+Ce+Y) and (b) FeO*/MgO vs. (Zr+Nb+Ce+Y) discrimination diagrams
-
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Barbarin, B., 1996. Genesis of the Two Main Types of Peraluminous Granitoids. Geology, 24(4): 295-298. https://doi.org/10.1130/0091-7613(1996)0240295:gottmt > 2.3.co; 2 doi: 10.1130/0091-7613(1996)0240295:gottmt>2.3.co;2 [3] Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. https://doi.org/10.1007/s004100050159 [4] Chang, R.H., Li, W.M., Liu, Y.J., et al., 2017. Structural Properties and Kinematic Analysis of Lianshanguan Ductile Shear Zone in Northern Liao-Ji Rift Zone, Northeastern North China Craton. Earth Science, 42(12): 2193-2207(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201712006 [5] Chen, Y. J., Sun, C. L., Sun, Y. W., et al., 2008. Cretaceous Volcanic Events in Southeastern Jilin Province, China: Evidence from Single Zircon U-Pb Ages. Acta Geologica Sinica-English Edition, 82(6): 1194-1200. https://doi.org/10.1111/j.1755-6724.2008.tb00721.x [6] Black, L. P., Kamo, S. L., Allen, C. M., et al., 2004. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology, 205(1/2): 115-140. https://doi.org/10.1016/j.chemgeo.2004.01.003 [7] Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162 [8] Gao, S., Rudnick, R. L., Xu, W. L., et al., 2008. Recycling Deep Cratonic Lithosphere and Generation of Intraplate Magmatism in the North China Craton. Earth and Planetary Science Letters, 270(1/2): 41-53. https://doi.org/10.1016/j.epsl.2008.03.008 [9] Ge, W. C., Zhao, G. C., Sun, D. Y., et al., 2003. Metamorphic P-T Path of the Southern Jilin Complex: Implications for Tectonic Evolution of the Eastern Block of the North China Craton. International Geology Review, 45(11): 1029-1043. https://doi.org/10.2747/0020-6814.45.11.1029 [10] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012a. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h [11] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012b. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007 [12] Irber, W., 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3/4): 489-508. https://doi.org/10.1016/s0016-7037(99)00027-7 [13] Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1 [14] Koschek, G., 1993. Origin and Significance of the SEM Cathodoluminescence from Zircon. Journal of Microscopy, 171(3): 223-232. https://doi.org/10.1111/j.1365-2818.1993.tb03379.x [15] Lackey, J. S., Valley, J. W., Hinke, H. J., 2006. Deciphering the Source and Contamination History of Peraluminous Magmas Using δ18O of Accessory Minerals: Examples from Garnet-Bearing Plutons of the Sierra Nevada Batholith. Contributions to Mineralogy and Petrology, 151(1): 20-44. https://doi.org/10.1007/s00410-005-0043-6 [16] Li, C.W., Guo, F., Zhao, L., et al., 2010. Geochemical Constraints on Petrogenesis of Late Mesozoic Intermediate-felsic Volcanic Rocks from the Southeastern Jilin Province, NE China. Acta Petrologica Sinica, 26(4): 1074-1088(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201004006 [17] Li, J.Y., Guo, F., Li, C.W., et al., 2014. Neodymium Isotopic Variations of Late Paleozoic to Mesozoic Ⅰ-and Atype Granitoids in NE China: Implications for Tectonic Evolution. Acta Petrologica Sinica, 30(7): 1995-2008(in Chinese with English abstract). [18] Lu, X.P., Wu, F.Y., Zhang, Y.B., et al., 2004. Emplacement Age and Tectonic Setting of the Paleoproterozoic Liaoji Granites in Tonghua Area, Southern Jilin Province. Acta Petrologica Sinica, 20(3): 381-392(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200403002 [19] Lu, X.P., Wu, F.Y., Guo, J.H., et al., 2005. Late Paleoproterozoic Granitic Magmatism and Crustal Evolution in the Tonghua Region, Northeast China. Acta Petrologica Sinica, 21(3): 721-736.(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200503013 [20] Ma, Q., Xu, Y. G., Zheng, J. P., et al., 2016. Coexisting Early Cretaceous High-Mg Andesites and Adakitic Rocks in the North China Craton: The Role of Water in Intraplate Magmatism and Cratonic Destruction. Journal of Petrology, 57(7): 1279-1308. https://doi.org/10.1093/petrology/egw040 [21] Masuda, A., Akagi, T., 1989. Lanthanide Tetrad Effect Observed in Leucogranites from China. Geochemical Journal, 23(5): 245-253. https://doi.org/10.2343/geochemj.23.245 [22] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [23] Miller, C. F., 1985. Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources? The Journal of Geology, 93(6): 673-689. https://doi.org/10.1086/628995 [24] Monecke, T., Kempe, U., Trinkler, M., et al., 2011. Unusual Rare Earth Element Fractionation in a Tin-Bearing Magmatic-Hydrothermal System. Geology, 39(4): 295-298. https://doi.org/10.1130/g31659.1 [25] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745 [26] Pei, F.P., Xu, W.L., Yang, D.B., et al., 2009. Heterogeneity of Late Mesozoic Deep Lithosphere beneath the Northeastern North China Craton: Evidence from Elemental and Sr-Nd Isotopic Geochemistry of Mesozoic Volcanic Rocks in the Southern Jilin Province, China. Acta Petrologica Sinica, 25(8): 1962-1974(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200908022.htm [27] Pei, F. P., Xu, W. L., Yang, D. B., et al., 2011a. Petrogenesis of Late Mesozoic Granitoids in Southern Jilin Province, Northeastern China: Geochronological, Geochemical, and Sr-Nd-Pb Isotopic Evidence. Lithos, 125(1/2): 27-39. https://doi.org/10.1016/j.lithos.2011.01.004 [28] Pei, F. P., Xu, W. L., Yang, D. B., et al., 2011b. Geochronology and Geochemistry of Mesozoic Mafic-Ultramafic Complexes in the Southern Liaoning and Southern Jilin Provinces, NE China: Constraints on the Spatial Extent of Destruction of the North China Craton. Journal of Asian Earth Sciences, 40(2): 636-650. https://doi.org/10.1016/j.jseaes.2010.10.015 [29] Preston, R. M. F., 1985. Rare Earth Element Geochemistry. Earth-Science Reviews, 22(3): 242-243. https://doi.org/10.1016/0012-8252(85)90064-9 [30] Qin, Y., Liang, Y.H., Hu, Z.C., et al., 2013. Confirmation of Aluminous A-Type Granite Emplacement and Its Tectonic Significance during Early Cretaceous in the Laoling Area, South of Jilin Province. Earth Science, 38(4): 677-688(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201304002 [31] Rottura, A., Caggianelli, A., Campana, R., et al., 1993. Petrogenesis of Hercynian Peraluminous Granites from the Calabrian Arc, Italy. European Journal of Mineralogy, 5(4): 737-754. https://doi.org/10.1127/ejm/5/4/0737 [32] Santosh, M., 2010. Assembling North China Craton within the Columbia Supercontinent: The Role of Double-Sided Subduction. Precambrian Research, 178(1/2/3/4): 149-167. https://doi.org/10.1016/j.precamres.2010.02.003 [33] Sui, Z.M., Chen, Y.J, 2012. Petrogenesis of Volcanic Rocks from Jilin: Evidences from Zircon Sankeyushu Formation in Southern U-Pb Ages and Hf Isotopes. Earth Science, 26(4): 627-634(in Chinese with English abstract). [34] Sun, J.F., Yang, J.H, 2009. Early Cretaceous A-Type Granites in the Eastern North China Block with Relation to Destruction of the Craton. Earth Science, 34(1): 137-147(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200901013 [35] Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4):29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 [36] Tang, L., Santosh, M., Teng, X. M., 2015. Paleoproterozoic (ca. 2.1-2.0Ga) Arc Magmatism in the Fuping Complex: Implications for the Tectonic Evolution of the Trans-North China Orogen. Precambrian Research, 268(Supplement C): 16-32. https://doi.org/10.1016/j.precamres.2015.07.001 [37] Windley, B. F., Maruyama, S., Xiao, W. J., 2010. Delamination/thinning of Sub-Continental Lithospheric Mantle under Eastern China: The Role of Water and Multiple Subduction. American Journal of Science, 310(10): 1250-1293. https://doi.org/10.2475/10.2010.03 [38] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 [39] Wu, F.Y., Ge, W.C., Sun, D.Y., et al., 1997. The Sm Nd, Rb Sr Isotopic Ages of the Archean Granites in Southern Jilin Province. Acta Petrologica Sinica, 13(4): 499-506(in Chinese with English abstract). [40] Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth: U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 328(1/2): 89-113. https://doi.org/10.1016/s0040-1951(00)00179-7 [41] Wu, F.Y., Yang, J.H., Liu, X.M, 2005. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 11(3): 305-317(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503003 [42] Wu, F., Lin, J., Wilde, S., et al., 2005a. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2): 103-119. https://doi.org/10.1016/j.epsl.2005.02.019 [43] Wu, F. Y., Yang, J. H., Wilde, S. A., et al., 2005b. Geochronology, Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1/2): 127-156. https://doi.org/10.1016/j.chemgeo.2005.04.010 [44] Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China-Earth Sciences, 60(7): 1201-1219. https://doi.org/10.1007/s11430-016-5139-1 [45] Xu, W. L., Gao, S., Wang, Q. H., et al., 2006. Mesozoic Crustal Thickening of the Eastern North China Craton: Evidence from Eclogite Xenoliths and Petrologic Implications. Geology, 34(9): 721-724. https://doi.org/10.1130/g22551.1 [46] Xu, W. L., Pei, F. P., Wang, F., et al., 2013. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 74: 167-193. https://doi.org/10.1016/j.jseaes.2013.04.003 [47] Xu, Y. G., 2007. Diachronous Lithospheric Thinning of the North China Craton and Formation of the Daxin'anling-Taihangshan Gravity Lineament. Lithos, 96(1/2): 281-298. https://doi.org/10.1016/j.lithos.2006.09.013 [48] Xu, Y. G., Blusztajn, J., Ma, J. L., et al., 2008. Late Archean to Early Proterozoic Lithospheric Mantle beneath the Western North China Craton: Sr-Nd-Os Isotopes of Peridotite Xenoliths from Yangyuan and Fansi. Lithos, 102(1/2): 25-42. https://doi.org/10.1016/j.lithos.2007.04.005 [49] Yang, F.C., Song, Y.H., Zhao, Y.Y, 2017. Zircon SHRIMP U-Pb Age and Hf Isotope of Granite in Panling Ore Concentration Area in Liaoning and Its Geological Significance. Journal of Jilin University(Earth Science Edition), 47(5): 1429-1441(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201705008 [50] Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2004. Multiple Sources for the Origin of Granites: Geochemical and Nd/Sr Isotopic Evidence from the Gudaoling Granite and Its Mafic Enclaves, Northeast China. Geochimica et Cosmochimica Acta, 68(21): 4469-4483. https://doi.org/10.1016/j.gca.2004.04.015 [51] Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1/2): 89-106. https://doi.org/10.1016/j.lithos.2005.10.002 [52] Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2007. Rapid Exhumation and Cooling of the Liaonan Metamorphic Core Complex: Inferences from 40Ar/39Ar Thermochronology and Implications for Late Mesozoic Extension in the Eastern North China Craton. Geological Society of America Bulletin, 119(11/12):1405-1414. https://doi.org/10.1130/b26085.1 [53] Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2008. The Extensional Geodynamic Setting of Early Cretaceous Granitic Intrusions in the Eastern North China Craton: Evidence from Laser Ablation 40Ar/39 Ar Dating of K-Bearing Minerals. Acta Petrologica Sinica, 24(6): 1175-1184(in Chinese with English abstract). http://xueshu.baidu.com/usercenter/paper/show?paperid=1f168a64a5e5dfda7a49ed148f56d17c&site=xueshu_se&hitarticle=1 [54] Yang, Q. Y., Santosh, M., 2015. Paleoproterozoic Arc Magmatism in the North China Craton: No Siderian Global Plate Tectonic Shutdown. Gondwana Research, 28(1): 82-105. https://doi.org/10.1016/j.gr.2014.08.005 [55] Yu, Y., Xu, W. L., Pei, F. P., et al., 2009. Chronology and Geochemistry of Mesozoic Volcanic Rocks in the Linjiang Area, Jilin Province and Their Tectonic Implications. Acta Geologica Sinica-English Edition, 83(2): 245-257. https://doi.org/10.1111/j.1755-6724.2009.00039.x [56] Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x [57] Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: a Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005 [58] Zhang, H. F., Ying, J. F., Tang, Y. J., et al., 2011. Phanerozoic Reactivation of the Archean North China Craton through Episodic Magmatism: Evidence from Zircon U-Pb Geochronology and Hf Isotopes from the Liaodong Peninsula. Gondwana Research, 19(2): 446-459. https://doi.org/10.1016/j.gr.2010.09.002 [59] Zhang, Y., Xing, S. W., Wang, Y., et al., 2014. Palaeoproterozoic Chibaisong Mafic Intrusion and Mineralization (Northeast China), the Oldest Cu-Ni Sulphide Deposit in China: Evidence from Re-Os Dating of Pyrrhotite. International Geology Review, 56(14): 1783-1791. https://doi.org/10.1080/00206814.2014.956818 [60] Zhang, Y., Xing, S. W., Song, Q. H., et al., 2015. Re-Os and U-Pb Geochronology of Porphyry and Skarn Types Copper Deposits in Jilin Province, NE China. Resource Geology, 65(4): 394-404. https://doi.org/10.1111/rge.12074 [61] Zhang, Y., Xing, S. W., Wang, Y., et al., 2018. Geochronological and Geochemical Constraints on the Genesis of the Huanren Skarn Cu-Zn Deposit, Northeast China. Ore Geology Reviews, 92: 366-378. https://doi.org/10.1016/j.oregeorev.2017.11.031 [62] Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1/2): 45-73. https://doi.org/10.1016/s0301-9268(00)00154-6 [63] Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002 [64] Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016 [65] Zheng, J. P., Dai, H. K., 2018. Subduction and Retreating of the Western Pacific Plate Resulted in Lithospheric Mantle Replacement and Coupled Basin-Mountain Respond in the North China Craton. Science China Earth Sciences, 61(4): 406-424. https://doi.org/10.1007/s11430-017-9166-8 [66] Zheng, J., Griffin, W. L., O'Reilly, S. Y., et al., 2006. Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere: Constraints on Mantle Evolution beneath Eastern China. Journal of Petrology, 47(11):2233-2256. https://doi.org/10.1093/petrology/egl042 [67] Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2007. Mechanism and Timing of Lithospheric Modification and Replacement beneath the Eastern North China Craton: Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis. Geochimica et Cosmochimica Acta, 71(21): 5203-5225. https://doi.org/10.1016/j.gca.2007.07.028 [68] 常瑞虹, 李伟民, 刘永江, 等, 2017.辽吉裂谷带北缘连山关韧性剪切带的构造属性和运动学分析.地球科学, 42(12): 2193-2207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201712006 [69] 李超文, 郭锋, 赵亮, 等, 2010.吉林东南部晚中生代中酸性火山作用成因的地球化学制约.岩石学报, 26(4): 1074-1088. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004006 [70] 李竞妍, 郭锋, 李超文, 等, 2014.东北地区晚古生代-中生代Ⅰ型和A型花岗岩Nd同位素变化趋势及其构造意义.岩石学报, 30(7): 1995-2008. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407013 [71] 路孝平, 吴福元, 张艳斌, 等, 2004.吉林南部通化地区古元古代辽吉花岗岩的侵位年代与形成构造背景.岩石学报, 20(3): 381-392. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403002 [72] 路孝平, 吴福元, 郭敬辉, 等, 2005.通化地区古元古代晚期花岗质岩浆作用与地壳演化.岩石学报, 21(3): 721-736. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200503013 [73] 裴福萍, 许文良, 杨德彬, 等, 2009.华北克拉通东北缘岩石圈深部物质组成的不均一性:来自吉林南部中生代火山岩元素及Sr-Nd同位素地球化学的证据.岩石学报, 25(8): 1962-1974. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200908020 [74] 秦亚, 梁一鸿, 胡兆初, 等, 2013.吉南老岭地区早白垩世铝质A型花岗岩的厘定及其构造意义.地球科学, 38(4): 677-688. doi: 10.3799/dqkx.2013.068 [75] 隋振民, 陈跃军, 2012.吉林南部三棵榆树组火山岩的成因:锆石U-Pb年龄和Hf同位素证据.现代地质, 26(4): 627-634. doi: 10.3969/j.issn.1000-8527.2012.04.001 [76] 孙金凤, 杨进辉, 2009.华北东部早白垩世A型花岗岩与克拉通破坏.地球科学, 34(1): 137-147. doi: 10.3321/j.issn:1000-2383.2009.01.013 [77] 吴福元, 葛文春, 孙德有, 等, 1997.吉林南部太古代花岗岩Sm-Nd, Rb-Sr同位素年龄测定.岩石学报, 13(4): 499-506. doi: 10.3321/j.issn:1000-0569.1997.04.004 [78] 吴福元, 杨进辉, 柳小明, 2005.辽东半岛中生代花岗质岩浆作用的年代学格架.高校地质学报, 11(3): 305-317. doi: 10.3969/j.issn.1006-7493.2005.03.003 [79] 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷, 2017.高分异花岗岩的识别与研究.中国科学:地球科学47(7): 745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001 [80] 杨凤超, 宋运红, 赵玉岩, 2017.辽宁盘岭矿集区花岗岩锆石SHRIMP U-Pb年龄、Hf同位素组成及地质意义.吉林大学学报(地球科学版), 47(5): 1429-1441. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201705008 [81] 杨进辉, 吴福元, 钟孙霖, 等, 2008.华北东部早白垩世花岗岩侵位的伸展地球动力学背景:激光40Ar/39Ar年代学证据.岩石学报, 24(6): 1175-1184. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200806002 -
dqkx-45-2-519-Table1-3.pdf