Geochronology and Geological Significance of the Pulang High-K Intermediate-Acid Intrusive Rocks in the Zhongdian Area, Northwest Yunnan Province
-
摘要: 普朗铜矿床是格咱岛弧产出的超大型斑岩型铜矿床,以往较多关注于含矿的石英二长斑岩,而对矿区出露的闪长岩、花岗闪长斑岩研究相对薄弱.对普朗矿区的闪长岩和花岗闪长斑岩开展了地球化学和锆石年代学分析,结果显示,闪长岩SiO2含量为62.46%~62.25%,K2O含量为5.53%~6.27%,MgO含量为3.58%~3.69%,(Na2O+K2O)总碱含量为7.93%~8.72%,K2O/Na2O>2,属中性超钾质碱性岩;花岗闪长斑岩SiO2含量为66.00%~66.98%,K2O含量为4.06%~4.19%,MgO含量为2.04%~2.17%,(Na2O+K2O)总碱含量为7.60%~7.81%,K2O/Na2O>1,属酸性钾质碱性岩.花岗闪长斑岩与中甸地区火山岩具有一致的Sr-Nd同位素特征,而闪长岩εNd(t)值变化范围大,二阶段模式年龄分散(369 Ma、913 Ma、1 138 Ma),指示有富集组分的混入.闪长岩LA-ICPMS锆石U-Pb年龄为227.0±2.9 Ma;花岗闪长斑岩LA-ICPMS锆石U-Pb年龄为211.5±3.7 Ma.结合岩石主量、微量元素、全岩Sr-Nd同位素及锆石U-Pb年龄,提出甘孜-理塘洋在长时期的西向俯冲(约25 Ma)过程中,普朗矿区(局部)可能发生过由挤压向伸展构造体制的转换,激发幔源的岩浆活动,导致钾质碱性小岩体侵位,该过程对该超大型斑岩铜多金属矿的形成具有重要意义.Abstract: The Pulang copper deposit is a super-large porphyry deposit located in Geza island arc in Yunnan Province.Previous studies were mostly concentrated on the ore-bearing quartz-monzonite porphyry, while the research on the diorite and granodiorite porphyry was relatively weak.In this paper, we present geochemistry and zircon chronology analysis on the diorite and granodiorite porphyry in Pulang mine, northwest of Yunnan Province.The diorite is characterized by low SiO2 (62.46%-62.65%), high K2O (5.53%-6.27%) and total alkali(K2O+Na2O=7.93%-8.72%), K2O (5.53%-6.27%), MgO (3.58%-3.69%), and K2O/Na2O is bigger than 2.Likewise, the granodiorite-porphyry is characterized by medium SiO2 (66.00%-66.98%) and high total alkali (7.60%-7.81%), with MgO (2.04%-2.17%), and the K2O/Na2O is bigger than 1.They are enriched in large-ion lithophile and light earth elements, but depleted in high field-strength and heavy rare earth elements, and with weak to negative Eu anomalies.Furthermore, diorite yields lower (87Sr/86Sr)i ratios (0.705 24-0.705 31) than granodiorite-porphyry ((87Sr/86Sr)i 0.705 58-0.705 62), and the granodiorite-porphyry yields negative εNd(t) values from -3.34 to -1.01, while the diorite yields variable εNd(t) values from -1.65 to 7.78.New U-Pb dating of zircons of diorite and granodiorite-porphyry are 227.0±2.9 Ma and 211.5±3.7 Ma respectively.Comprehensively, we propose that a transformation from compression to extension process may have occurred in the Pulang area during the long period of westward subduction of Garze-litang ocean (about 25 Ma), which has triggered the mantle source magmatic activity, and has resulted in the emplacement of deep source (ultra)potassium alkaline.And the transformation process is crucial to the formation of super-large porphyry deposit.
-
Key words:
- high-K /
- intermediate-acid alkaline rocks /
- zircon U-Pb dating /
- geochronology /
- geochemistry /
- Pulang
-
图 1 普朗斑岩型铜矿床地质简图
据刘学龙等(2013)修改.Ⅰ.扬子板块;Ⅱ.甘孜-理塘结合带;Ⅲ.义敦岛弧带;Ⅳ.中咱微陆块;Ⅴ.金沙江结合带;Ⅵ.江达-维西火山弧;Ⅶ.昌都-兰坪陆块;Ⅷ.三达山-景洪火山弧;Ⅸ.澜沧江结合带;Ⅹ.保山地块
Fig. 1. Geological map of the Pulang copper deposit
图 6 普朗矿区闪长岩和花岗闪长斑岩(Na2O+K2O)-SiO2图解(a)和K2O-SiO2图解(b)
图a底图据Middlemost(1994);图b底图据Peccerillo and Taylor(1976);石英闪长玢岩、石英二长斑岩数据引自Cao et al.(2018)
Fig. 6. TAS diagram (a) and K2O-SiO2 diagram (b) of Pulang diorite and granodiorite-porphyry
图 7 普朗矿区闪长岩和花岗闪长斑岩稀土元素球粒陨石标准化模式(a)和微量元素原始地幔标准化蛛网图(b)
标准化值据Sun and McDonough(1989)和Taylor and Mclennan(1985).石英闪长玢岩、石英二长斑岩数据引自Cao et al.(2018)
Fig. 7. Chondrite-normalized REE pattern (a) and primitive-mantle normalized trace element spider diagram (b) of Pulang diorite and granodiorite-porphyry
图 9 普朗矿区闪长岩和花岗闪长斑岩的εNd(t)-(87Sr/86Sr)i图解
石英闪长玢岩、石英二长斑岩、部分闪长岩数据及底图引自Cao et al.(2018)
Fig. 9. εNd(t)-(87Sr/86Sr)i diagram for Pulang diorite and granodiorite-porphyry
图 10 碱性花岗岩构造环境判别图解
Fig. 10. Tectonic setting discrimination diagrams for alkaline granites
表 1 普朗矿区闪长岩和花岗闪长斑岩LA-ICP-MS锆石U-Pb分析数据
Table 1. LA-ICP-MS zircon U-Pb data of Pulang diorite and granodiorite-porphyry
测点号 元素含量(10-6) Th/U 同位素比值 年龄(Ma) 谐和度(%) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 闪长岩(D017) 1 14.8 222.1 299.5 0.74 0.053 13 0.006 54 0.254 80 0.028 31 0.034 88 0.001 03 344.5 281.4 230.5 22.9 221.0 6.4 95 2 8.6 115.6 169.0 0.68 0.053 53 0.008 90 0.256 52 0.032 04 0.035 86 0.001 10 350.1 350.0 231.9 25.9 227.1 6.9 97 3 14.1 215.8 277.4 0.78 0.048 72 0.006 34 0.238 21 0.028 37 0.034 99 0.001 18 200.1 212.9 217.0 23.3 221.7 7.3 97 4 13.2 182.0 256.4 0.71 0.053 27 0.006 71 0.275 70 0.028 61 0.037 85 0.001 00 338.9 288.9 247.2 22.8 239.5 6.2 96 5 12.2 174.6 247.9 0.70 0.053 28 0.007 73 0.264 94 0.033 58 0.035 60 0.001 10 338.9 300.0 238.6 27.0 225.5 6.9 94 6 21.6 370.5 392.3 0.94 0.055 35 0.006 88 0.283 18 0.031 81 0.037 14 0.000 78 427.8 281.4 253.2 25.2 235.1 4.9 92 7 21.0 343.5 392.5 0.88 0.051 60 0.006 09 0.268 66 0.034 23 0.036 77 0.000 88 333.4 183.3 241.6 27.4 232.8 5.5 96 8 8.8 122.1 182.3 0.67 0.052 82 0.007 10 0.282 11 0.033 55 0.037 50 0.001 21 320.4 290.7 252.3 26.6 237.3 7.5 93 9 13.3 200.9 289.3 0.69 0.050 16 0.006 21 0.240 02 0.025 07 0.034 88 0.000 83 211.2 266.6 218.4 20.5 221.0 5.2 98 10 20.0 322.7 395.3 0.82 0.050 78 0.005 58 0.257 49 0.024 18 0.036 05 0.001 12 231.6 233.3 232.6 19.5 228.3 7.0 98 11 14.6 233.6 300.3 0.78 0.048 74 0.004 67 0.242 48 0.020 73 0.035 77 0.000 96 200.1 146.3 220.5 16.9 226.5 6.0 97 12 20.4 387.0 395.5 0.98 0.052 89 0.005 28 0.249 86 0.023 19 0.034 20 0.000 80 324.1 260.2 226.5 18.8 216.8 5.0 95 13 13.1 197.1 255.5 0.77 0.049 68 0.006 54 0.256 81 0.027 80 0.037 50 0.001 07 189.0 272.2 232.1 22.5 237.3 6.6 97 14 13.9 236.1 248.7 0.95 0.052 33 0.007 49 0.274 04 0.034 94 0.037 90 0.001 31 298.2 300.0 245.9 27.8 239.8 8.1 97 15 20.6 329.6 407.4 0.81 0.050 62 0.005 76 0.261 27 0.027 14 0.036 40 0.000 97 233.4 244.4 235.7 21.8 230.5 6.0 97 16 15.1 257.7 291.8 0.88 0.051 32 0.006 61 0.258 21 0.029 66 0.037 09 0.000 98 253.8 274.0 233.2 23.9 234.7 6.1 99 17 19.9 348.8 368.2 0.95 0.051 77 0.005 48 0.262 77 0.024 28 0.035 58 0.001 04 276.0 244.4 236.9 19.5 225.3 6.5 95 18 21.7 334.8 442.6 0.76 0.053 53 0.005 45 0.257 03 0.022 10 0.034 99 0.001 03 350.1 231.5 232.3 17.8 221.7 6.4 95 19 24.7 448.4 441.4 1.02 0.051 97 0.006 15 0.253 92 0.026 06 0.034 73 0.000 88 283.4 316.6 229.8 21.1 220.1 5.5 95 20 18.7 285.6 334.0 0.9 0.052 33 0.005 75 0.268 95 0.026 76 0.036 59 0.001 08 298.2 251.8 241.9 21.4 231.6 6.7 95 21 15.7 268.3 284.7 0.86 0.050 38 0.005 58 0.256 84 0.025 26 0.036 12 0.001 03 213.0 237.0 232.1 20.4 228.7 6.4 98 22 14.5 241.1 273.0 0.94 0.053 67 0.007 09 0.265 28 0.030 18 0.035 96 0.001 08 366.7 301.8 238.9 24.2 227.8 6.7 95 23 20.4 290.2 383.8 0.88 0.052 37 0.005 46 0.256 76 0.025 32 0.035 40 0.000 78 301.9 234.2 232.1 20.5 224.2 4.8 96 24 25.1 421.5 456.8 0.76 0.051 58 0.004 63 0.251 67 0.023 12 0.034 78 0.000 70 264.9 202.8 227.9 18.8 220.4 4.4 96 花岗闪长斑岩(D018) 1 25.3 362.2 523.3 0.69 0.048 57 0.004 36 0.243 39 0.021 89 0.035 60 0.000 78 127.9 196.3 221.2 17.9 225.5 4.9 98 2 24.9 382.6 517.2 0.74 0.050 09 0.004 25 0.248 47 0.022 57 0.035 15 0.001 08 198.2 188.9 225.3 18.4 222.7 6.7 98 3 27.8 422.0 597.1 0.71 0.048 32 0.004 66 0.231 98 0.020 35 0.034 31 0.000 81 122.3 205.5 211.8 16.8 217.5 5.1 97 4 19.4 319.6 391.7 0.82 0.050 02 0.005 24 0.238 15 0.025 38 0.033 95 0.001 07 194.5 238.9 216.9 20.8 215.2 6.6 99 5 34.9 593.4 720.5 0.82 0.050 33 0.004 25 0.235 40 0.020 02 0.033 29 0.000 84 209.3 -2.8 214.6 16.5 211.1 5.2 98 6 19.1 277.9 448.6 0.62 0.051 21 0.006 06 0.235 67 0.025 68 0.033 98 0.001 17 250.1 251.8 214.9 21.1 215.4 7.3 99 7 15.7 212.5 332.8 0.64 0.050 97 0.005 83 0.254 63 0.025 59 0.035 65 0.001 00 239.0 244.4 230.3 20.7 225.8 6.2 98 8 66.8 1 479.4 1 260.9 1.17 0.051 48 0.004 00 0.234 39 0.017 51 0.032 82 0.000 74 261.2 179.6 213.8 14.4 208.2 4.6 97 9 29.8 442.5 703.5 0.63 0.050 97 0.004 66 0.228 01 0.021 01 0.031 80 0.000 80 239.0 212.9 208.6 17.4 201.8 5.0 96 10 50.8 804.1 1 062.3 0.76 0.049 68 0.004 37 0.238 18 0.020 90 0.034 70 0.000 84 189.0 183.3 216.9 17.1 219.9 5.3 98 11 18.5 275.8 402.7 0.68 0.049 71 0.005 63 0.235 26 0.025 26 0.034 57 0.001 00 189.0 244.4 214.5 20.8 219.1 6.2 97 12 56.2 990.1 1187.7 0.83 0.047 88 0.003 75 0.219 12 0.016 30 0.033 40 0.000 79 100.1 233.3 201.2 13.6 211.8 4.9 94 13 26.8 468.6 522.7 0.90 0.048 13 0.004 87 0.220 04 0.019 97 0.033 76 0.001 02 105.6 222.2 201.9 16.6 214.0 6.4 94 14 31.1 428.2 694.9 0.62 0.048 54 0.004 84 0.229 45 0.022 37 0.034 12 0.000 75 124.2 222.2 209.7 18.5 216.3 4.7 96 15 33.7 514.6 706.1 0.73 0.047 68 0.003 98 0.229 93 0.018 69 0.034 51 0.000 72 83.4 250.0 210.1 15.4 218.7 4.5 97 16 35.0 566.1 750.1 0.75 0.047 45 0.004 13 0.220 07 0.019 70 0.032 56 0.000 82 77.9 187.0 202.0 16.4 206.6 5.1 97 17 35.8 603.2 812.9 0.74 0.047 42 0.003 90 0.211 24 0.017 31 0.031 29 0.000 83 77.9 175.9 194.6 14.5 198.6 5.2 97 18 23.5 306.5 488.9 0.63 0.050 54 0.004 94 0.245 04 0.022 42 0.034 39 0.000 97 220.4 211.1 222.5 18.3 217.9 6.0 97 19 31.6 528.3 662.5 0.80 0.048 22 0.003 64 0.221 45 0.016 53 0.032 34 0.000 83 109.4 170.3 203.1 13.7 205.2 5.2 98 20 39.3 602.1 898.3 0.67 0.051 12 0.003 90 0.225 87 0.016 16 0.031 58 0.000 73 255.6 175.9 206.8 13.4 200.4 4.6 96 21 25.2 462.0 517.0 0.89 0.049 47 0.005 75 0.225 28 0.024 49 0.032 10 0.000 74 168.6 251.8 206.3 20.3 203.7 4.6 98 22 29.9 442.4 710.2 0.62 0.052 81 0.005 00 0.235 76 0.021 88 0.031 63 0.000 72 320.4 212.0 214.9 18.0 200.7 4.5 93 表 2 普朗矿区闪长岩和花岗闪长岩主量元素(%)、微量元素(10-6)及Sr-Nd同位素数据
Table 2. Major elements (%), trace elements (10-6) and Sr-Nd data of Pulang diorite and granodiorite-porphyry
岩性 闪长岩 花岗闪长斑岩 样品编号 D017-1 D017-2 D017-3 D018-1 D018-2 D018-3 SiO2 61.23 61.15 61.02 66.14 65.60 65.50 TiO2 0.69 0.72 0.74 0.50 0.50 0.52 Al2O3 14.45 14.51 14.44 15.09 15.12 14.87 Fe2O3 1.02 0.71 1.63 0.76 1.25 1.60 FeO 4.22 4.36 3.72 1.99 1.85 1.99 MnO 0.04 0.05 0.04 0.03 0.03 0.03 MgO 3.61 3.50 3.57 2.01 2.08 2.15 CaO 2.28 3.06 2.19 3.18 3.25 3.25 Na2O 2.39 2.39 2.34 3.54 3.58 3.51 K2O 5.85 5.40 6.13 4.14 4.14 4.03 P2O5 0.39 0.39 0.41 0.27 0.29 0.30 LOI 1.56 1.45 1.46 1.10 1.14 1.49 Mg# 56 56 55 58 56 53 K2O/Na2O 2.45 2.26 2.62 1.17 1.16 1.15 La 43.51 41.81 45.12 23.12 33.51 34.31 Ce 81.71 78.10 85.41 46.61 65.41 66.10 Pr 9.24 8.84 9.69 5.52 7.36 7.49 Nd 36.11 34.91 37.62 22.01 28.12 28.41 Sm 6.91 6.62 7.02 4.12 4.83 4.97 Eu 1.87 1.84 1.86 1.17 1.31 1.31 Gd 5.66 5.41 5.60 3.31 3.57 3.69 Tb 0.75 0.71 0.75 0.44 0.49 0.49 Dy 3.87 3.70 3.80 2.40 2.64 2.62 Ho 0.71 0.68 0.70 0.46 0.50 0.50 Er 1.95 1.85 1.88 1.31 1.39 1.37 Tm 0.28 0.26 0.26 0.19 0.20 0.20 Yb 1.84 1.72 1.72 1.27 1.31 1.33 Lu 0.28 0.26 0.25 0.19 0.20 0.20 Y 19.62 18.54 19.31 12.82 13.82 13.21 ∑REE 214.26 205.19 220.93 124.88 164.60 166.17 δEu 0.90 0.92 0.89 0.93 0.90 0.93 δCe 0.88 0.88 0.88 0.90 0.89 0.87 Rb 264 230 277 107 107 102 Sr 761 817 740 991 1052 958 Nb 12.71 12.31 12.71 11.01 11.21 11.30 Ba 3 004 2 598 2 885 1 565 1 729 1 490 Hf 5.61 5.16 5.02 5.07 5.18 5.65 Ta 0.90 0.86 0.85 0.77 0.83 0.82 Th 16.60 16.20 15.30 15.50 17.20 17.01 Co 14.60 9.66 15.01 6.06 8.05 13.80 Ni 25.61 21.52 25.20 8.80 10.1 13.8 (87Rb/86Sr)m 1.004 0.815 1.083 0.312 0.294 0.308 (87Sr/86Sr)m 0.708 55 0.707 89 0.708 73 0.706 55 0.706 49 0.706 51 (87Sr/86Sr)i 0.705 31 0.705 26 0.705 24 0.705 62 0.705 61 0.705 58 (143Nd/144Nd)i 0.512 26 0.512 40 0.512 47 0.512 31 0.51221 0.512 19 εNd(t) -1.65 1.11 7.78 -1.01 -2.94 -3.34 tDM(Ga) 1.1 0.9 0.36 1.0 1.1 1.1 t2DM(Ga) 1.1 0.9 0.37 1.1 1.2 1.3 表 3 普朗复式斑岩体锆石U-Pb年龄
Table 3. Zircon U-Pb dating results for Pulang compound porphyries
岩性 测年方法 年龄(Ma) 资料来源 石英闪长玢岩 LA-ICPMS锆石U-Pb 221 刘学龙和李文昌(2013) 石英二长斑岩 215~216 闪长岩 SHRIMP锆石U-Pb 217 Cao et al.(2018) 石英闪长玢岩 LA-ICPMS锆石U-Pb 215 Cao et al.(2016) 石英二长斑岩 215 花岗闪长斑岩 216 石英闪长玢岩 单颗粒锆石熔融 221 Pang et al.(2014) 石英二长斑岩 212 花岗闪长斑岩 206 石英二长斑岩 SHRIMP锆石U-Pb 226~228 王守旭等(2008) 闪长岩 LA-ICPMS锆石U-Pb 227 本文 花岗闪长斑岩 211 普朗复式斑岩体 LA-ICPMS锆石U-Pb 217~212 Leng et al.(2018) 石英闪长玢岩 LA-ICPMS锆石U-Pb 216 Wang et al.(2018) 石英二长斑岩 214 花岗闪长斑岩 208 -
[1] Bingen, B., Austrheim, H., Whitehouse, M.J., et al., 2004.Trace Element Signature and U-Pb Geochronology of Eclogite-Facies Zircon, Bergen Arcs, Caledonides of W Norway.Contributions to Mineralogy and Petrology, 147(6):671-683. https://doi.org/10.1007/s00410-004-0585-z [2] Cao, D.H., Wang, A.J., Li, W.C., et al., 2009.Magma Mixing in the Pulang Porphyry Copper Deposit:Evidence from Petrology and Element Geochemistry.Acta Geologica Sinica, 83(2):166-175 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=3d5cd8f96e8d9909fa0efc606e4ca377&encoded=0&v=paper_preview&mkt=zh-cn [3] Cao, K., Xu, J.F., Chen, J.L., et al., 2016.Double-Layer Structure of the Crust beneath the Zhongdian Arc, SW China:U-Pb Geochronology and Hf Isotope Evidence.Journal of Asian Earth Sciences, 115:455-467.https://doi.org/10.13039/501100002367 doi: 10.1016/j.jseaes.2015.10.024 [4] Cao, K., Yang, Z.M., Xu, J.F., et al., 2018.Origin of Dioritic Magma and Its Contribution to Porphyry Cu-Au Mineralization at Pulang in the Yidun Arc, Eastern Tibet.Lithos, 304-307:436-449.https://doi.org/10.13039/501100001809 https://www.sciencedirect.com/science/article/pii/S0024493718300665 [5] Chen, L., 2016. The Characteristics of Ore-Forming Magma and Tectonic Setting of the Pulang Gaint Porphyry Copper Deposit in the Yunnan Province (Dissertation). Guangzhou Institute of Geochemistry of Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract). [6] Eby, G.N., 1992.Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications.Geology, 20(7):641-644.https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 [7] Feldstein, S.N., Lange, R.A., 1999.Pliocene Potassic Magmas from the Kings River Region, Sierra Nevada, California:Evidence for Melting of a Subduction-Modified Mantle.Journal of Petrology, 40(8):1301-1320. https://doi.org/10.1093/petroj/40.8.1301 [8] Fitton, J.G., Upton, B.G.J., 1987.Alkaline Igneous Rocks.Geological Society Special Publication, United States. [9] Guo, X., Du, Y.S., Pang, Z.S., et al., 2009.Characteristics of the Ore-Forming Fluids in Alteration Zones of the Pulang Porphyry Copper Deposit in Yunnan Province and Its Metallogenic Significance.Geoscience, 23(3):465-471 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200903011 [10] Hou, Z.Q., Yang, Y.Q., Qu, X.M., et al., 2004.Tectonic Evolution and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region, China.Acta Geologica Sinica, 78(1):109-120 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200401013 [11] Jiang, Y.H., Jiang, S.Y., Ling, H.F., et al., 2006.Petrogenesis of Cu-Bearing Porphyry Associated with Continent-Continent Collisional Setting:Evidence from the Yulong Porphyry Cu Ore-Belt, East Tibet.Acta Petrologica Sinica, 22(3):697-706 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603019.htm [12] LaTourrette, T., Hervig, R.L., Holloway, J.R., 1995.Trace Element Partitioning between Amphibole, Phlogopite, and Basanite Melt.Earth and Planetary Science Letters, 135(1-4):13-30.https://doi.org/10.1016/0012-821x(95)00146-4 doi: 10.1016/0012-821X(95)00146-4 [13] Leng, C.B., Gao, J.F., Chen, W.T., et al., 2018.Platinum-Group Elements, Zircon Hf-O Isotopes, and Mineralogical Constraints on Magmatic Evolution of the Pulang Porphyry Cu-Au System, SW China.Gondwana Research, in Press.https://doi.org/10.1016/j.gr.2018.03.001 [14] Leng, C.B., Huang, Q.Y., Zhang, X.C., et al., 2014.Petrogenesis of the Late Triassic Volcanic Rocks in the Southern Yidun Arc, SW China:Constraints from the Geochronology, Geochemistry, and Sr-Nd-Pb-Hf Isotopes.Lithos, 190-191:363-382. https://doi.org/10.1016/j.lithos.2013.12.018 [15] Leng, C.B., Zhang, X.C., Hu, R.Z., et al., 2012.Zircon U-Pb and Molybdenite Re-Os Geochronology and Sr-Nd-Pb-Hf Isotopic Constraints on the Genesis of the Xuejiping Porphyry Copper Deposit in Zhongdian, Northwest Yunnan, China.Journal of Asian Earth Sciences, 60:31-48. https://doi.org/10.1016/j.jseaes.2012.07.019 [16] Li, W.C., Liu, X.L., Zeng, P.S., et al., 2011.The Characteristics of Metallogenic Rocks in the Pulang Porphyry Copper Deposit of Yunnan Province.Geology in China, 38(2):403-414 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201102015 [17] Li, W.C., Yin, G.H., Lu, Y.X., et al., 2009.The Evolution and 40Ar-39Ar Isotopic Evidence of the Pulang Complex in Zhongdian.Acta Geologica Sinica, 83(10):1421-1429 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200910006 [18] Li, W.C., Yu, H.J., Yin, G.H., 2013a.Porphyry Metallogenic System of Geza Arc in the Sanjiang Region, Southwestern China.Acta Petrologica Sinica, 29(4):1129-1144 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304003 [19] Li, W.C., Yin, G.H., Yu, H.J., et al., 2013b.Characteristics of the Ore-Forming Fluid and Genesis of the Pulang Copper Deposit in Yunnan Province.Journal of Jilin University (Earth Science Edition), 43(5):1436-1447 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201305011 [20] Li, W.C., Zeng, P.S., 2007.Characteristics and Metallogenic Model of the Pulang Superlarge Porphyry Copper Deposit in Yunnan, China.Journal of Chengdu University of Technology (Science & Technology Edition), 34(4):436-446 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200704011 [21] Li, W.L., 2011.Advances in Study of Shallow Fertile Magma Chambers below Porphyry Copper Deposits.Mineral Deposits, 30(1):149-155 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201101012 [22] Liu, J.T., Yang, L.Q., Lü, L., 2013.Pulang Reduced Porphyry Copper Deposit in the Zhongdian Area, Southwest China:Constrains by the Mineral Assemblages and the Ore-Forming Fluid Compositions.Acta Petrologica Sinica, 29(11):3914-3924 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311021 [23] Liu, X.L., Li, W.C., 2013.The Indo-Chinese Epoch Magmatism in Gega Arc of Yunnan:Evidences from Zircon U-Pb Dating and Hf Isotopic Composition.Earth Science Frontiers, 20(5):57-74 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201305005.htm [24] Liu, X.L., Li, W.C., Yin, G.H., 2013.The Geochronology, Mineralogy and Geochemistry Study of the Pulang Porphyry Copper Deposits in Geza Arc of Yunnan Province.Acta Petrologica Sinica, 29(9):3049-3064 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201309008 [25] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [26] Middlemost, S.J., Tager, R., Davis, J., et al., 1994.Effectiveness of Enalapril in Combination with Low-Dose Hydrochlorothiazide Versus Enalapril Alone for Mild to Moderate Systemic Hypertension in Black Patients.The American Journal of Cardiology, 73(15):1092-1097. https://doi.org/10.1016/0002-9149(94)90289-5 [27] Pang, Z.S., Du, Y.S., Cao, Y., et al., 2014.Geochemistry and Zircon U-Pb Geochronology of the Pulang Complex, Yunnan Province, China.Journal of Earth System Science, 123(4):875-885. https://doi.org/10.1007/s12040-014-0429-9 [28] Pang, Z.S., Du, Y.S., Wang, G.W., et al., 2009.Single-Grain Zircon U-Pb Isotopic Ages, Geochemistry and Its Implication of the Pulang Complex in Ynnnan Province, China.Acta Petrologica Sinica, 25(1):159-165 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7ff576afded8a8d5aa3332b3421cfb79&encoded=0&v=paper_preview&mkt=zh-cn [29] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81.https://doi.org/10.1007/bf00384745 doi: 10.1007/BF00384745 [30] Ren, J.B., Xu, J.F., Chen, J.L., et al., 2011.Geochemistry and Petrogenesis of Pulang Porphyries in Sanjiang Region.Acta Petrologica et Mineralogica, 30(4):581-592 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201104003 [31] Richards, J.P., 2003.Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation.Economic Geology, 98(8):1515-1533.https://doi.org/10.2113/98.8.1515 doi: 10.2113/gsecongeo.98.8.1515 [32] Richards, J.P., Boyce, A.J., Pringle, M.S., 2001.Geologic Evolution of theEscondida Area, Northern Chile:A Model for Spatial and Temporal Localization of Porphyry Cu Mineralization.Economic Geology, 96(2):271-305.https://doi.org/10.2113/96.2.271 doi: 10.2113/gsecongeo.96.2.271 [33] Rubatto, D., 2002.Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism.Chemical Geology, 184(1-2):123-138.https://doi.org/10.1016/s0009-2541(01)00355-2 doi: 10.1016/S0009-2541(01)00355-2 [34] Solomon, M., 1990.Subduction, Arc Reversal, and the Origin of Porphyry Copper-Gold Deposits in Island Arcs.Geology, 18(7):630-633.https://doi.org/10.1130/0091-7613(1990)018<0630:sarato>2.3.co;2 doi: 10.1130/0091-7613(1990)018<0630:SARATO>2.3.CO;2 [35] Sun, S.S., McDonough, W.F., 1989.Chemical and IsotopicSystematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [36] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks.Blackwell Scientific Publication, Boston. [37] Wang, P., Dong, G.C., Zhao, G.C., et al., 2018.Petrogenesis of the Pulang Porphyry Complex, Southwestern China:Implications for Porphyry Copper Metallogenesis and Subduction of the Paleo-Tethys Oceanic Lithosphere.Lithos, 304-307:280-297. https://doi.org/10.1016/j.lithos.2018.02.009 [38] Wang, S.X., Zhang, X.C., Leng, C.B., et al., 2008.Zircon SHRIMP U-Pb Dating of the Pulang Porphyry Copper Deposit, Northwestern Yunnan, China:The Ore-Forming Time Limitation and Geological Significance.Acta Petrologica Sinica, 24(10):2313-2321 (in Chinese with English abstract). http://www.oalib.com/paper/1471850#.W441YfkyaDc [39] Wu, T., Xiao, L., Ma, C.Q., 2016.U-Pb Geochronology of Detrital and Inherited Zircons in the Yidun Arc Belt, Eastern Tibet Plateau and Its Tectonic Implications.Journal of Earth Science, 27(3):461-473. https://doi.org/10.1007/s12583-016-0675-5 [40] Yang, Y.Q., Hou, Z.Q., Huang, D.H., et al., 2002.Collision Orogenic Process and Magmatic Metallogenic System in Zhongdian Arc.Acta Geoscientica Sinica, 23(1):17-24 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200201004 [41] Zeng, P.S., Hou, Z.Q., Li, L.H., et al., 2004.Age of the Pulang Porphyry Copper Deposit in NW Yunnan and Its Geological Significance.Geologcal Bulletin of China, 23(11):1127-1131 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200411013 [42] Zhao, Z.H., Xiong, X.L., Wang, Q., 2008.Some Aspects on Geochemistry of Nb and Ta.Geochimica, 37(4):304-320 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=431aa3137df9e02a5f386a4414dc871a&encoded=0&v=paper_preview&mkt=zh-cn [43] 陈玲, 2016. 云南普朗超大型斑岩铜矿床成矿岩浆特征及构造背景分析(博士学位论文). 广州: 中国科学院广州地球化学研究所. [44] 曹殿华, 王安建, 李文昌, 等, 2009.普朗斑岩铜矿岩浆混合作用:岩石学及元素地球化学证据.地质学报, 83(2):166-175. doi: 10.3321/j.issn:0001-5717.2009.02.003 [45] 郭欣, 杜杨松, 庞振山, 等, 2009.云南普朗斑岩铜矿蚀变带成矿流体特征及其成矿意义.现代地质, 23(3):465-471. doi: 10.3969/j.issn.1000-8527.2009.03.011 [46] 侯增谦, 杨岳清, 曲晓明, 等, 2004.三江地区义敦岛弧造山带演化和成矿系统.地质学报, 78(1):109-120. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200401013 [47] 姜耀辉, 蒋少涌, 凌洪飞, 等, 2006.陆-陆碰撞造山环境下含铜斑岩岩石成因——以藏东玉龙斑岩铜矿带为例.岩石学报, 22(3):697-706. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603019 [48] 李万伦, 2011.斑岩铜矿浅部富矿岩浆房研究进展.矿床地质, 30(1):149-155. doi: 10.3969/j.issn.0258-7106.2011.01.012 [49] 李文昌, 刘学龙, 曾普胜, 等, 2011.云南普朗斑岩型铜矿成矿岩体的基本特征.中国地质, 38(2):403-414. doi: 10.3969/j.issn.1000-3657.2011.02.015 [50] 李文昌, 尹光候, 卢映祥, 等, 2009.中甸普朗复式斑岩体演化及40Ar-39Ar同位素依据.地质学报, 83(10):1421-1429. doi: 10.3321/j.issn:0001-5717.2009.10.006 [51] 李文昌, 余海军, 尹光侯, 2013a.西南"三江"格咱岛弧斑岩成矿系统.岩石学报, 29(4):1129-1144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201304003 [52] 李文昌, 尹光侯, 余海军, 等, 2013b.云南普朗斑岩型铜矿床成矿流体特征及矿床成因.吉林大学学报(地球科学版), 43(5):1436-1447. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201305011 [53] 李文昌, 曾普胜, 2007.云南普朗超大型斑岩铜矿特征及成矿模型.成都理工大学学报(自然科学版), 34(4):436-446. doi: 10.3969/j.issn.1671-9727.2007.04.011 [54] 刘江涛, 杨立强, 吕亮, 2013.中甸普朗还原性斑岩型铜矿床:矿物组合与流体组成约束.岩石学报, 29(11):3914-3924. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311021 [55] 刘学龙, 李文昌, 2013.云南格咱岛弧印支期岩浆作用的锆石年龄和铪同位素证据.地学前缘, 20(5):57-74. http://d.old.wanfangdata.com.cn/Periodical/dxqy201305005 [56] 刘学龙, 李文昌, 尹光侯, 等, 2013.云南格咱岛弧普朗斑岩型铜矿年代学、岩石矿物学及地球化学研究.岩石学报, 29(9):3049-3064. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201309008 [57] 庞振山, 杜杨松, 王功文, 等, 2009.云南普朗复式岩体锆石U-Pb年龄和地球化学特征及其地质意义.岩石学报, 25(1):159-165. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200901013 [58] 任江波, 许继峰, 陈建林, 等, 2011."三江"地区中甸弧普朗成矿斑岩地球化学特征及其成因.岩石矿物学杂志, 30(4):581-592. doi: 10.3969/j.issn.1000-6524.2011.04.003 [59] 王守旭, 张兴春, 冷成彪, 等, 2008.滇西北普朗斑岩铜矿锆石离子探针U-Pb年龄:成矿时限及地质意义.岩石学报, 24(10):2313-2321. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200810012 [60] 杨岳清, 侯增谦, 黄典豪, 等, 2002.中甸弧碰撞造山作用和岩浆成矿系统.地球学报, 23(1):17-24. doi: 10.3321/j.issn:1006-3021.2002.01.004 [61] 曾普胜, 侯增谦, 李丽辉, 等, 2004.滇西北普朗斑岩铜矿床成矿时代及其意义.地质通报, 23(11):1127-1131. doi: 10.3969/j.issn.1671-2552.2004.11.013 [62] 赵振华, 熊小林, 王强, 等, 2008.铌与钽的某些地球化学问题.地球化学, 37(4):304-320. doi: 10.3321/j.issn:0379-1726.2008.04.005