Petrogeochemistry, Zircon U-Pb Dating and Geological Significance of Two-Mica Granites from Wuduoshan Granite in Nanzhao County, Eastern Qinling Mountains
-
摘要: 秦岭造山带地处华北板块与扬子板块结合带,经历了复杂的构造演化过程,其板块拼合机制及碰撞时限一直备受争议.对东秦岭南召县五朵山岩体二云母花岗岩进行岩石地球化学和LA-ICP-MS锆石U-Pb年代学研究,结果表明岩石具有高硅(SiO2=69.32%~74.28%)、高铝(Al2O3=14.14~17.28)、高碱含量(Na2O+K2O=7.68%~9.03%)等特征,且相对富钾贫钠,在岩石类型上属于强过铝质"S"型花岗岩类.岩石具有中等的稀土元素含量,呈现轻稀土富集、重稀土亏损的右倾配分模式,中等的负Eu异常,富集K、Rb、Th等大离子亲石元素,亏损Ba、Nb、Sr、P、Ti等元素,表明南召县二云母花岗岩可能形成于陆陆碰撞所导致的陆壳加厚环境.LA-ICP-MS锆石U-Pb分析结果表明,二云母花岗岩锆石均具有明显的韵律环带,Th/U比值均大于0.4,暗示岩浆成因特征,206Pb/238U加权平均年龄为433±2 Ma;结合构造环境特征,表明东秦岭南召地区在早志留世末期由俯冲环境转换为陆陆碰撞环境.Abstract: The Qinling orogenic belt, located in the suture zone of the North China Plate and the Yangtze Plate, has undergone a complicated tectonic evolution process however, its plate combination mechanism and collision time limit have been controversial. In this study, petrogeochemistry analyses and LA-ICP-MS zircon U-Pb dating are undertaken for the two-mica granites from Wuduoshan in Nanzhao County, eastern Qinling mountains. Results show that the two-mica granites have SiO2=69.32%-74.28%, Al2O3=14.14%-17.28%, Na2O+K2O=7.68%-9.03%, and belong chemically to peraluminous series of S type. Meanwhile, the two-mica granites have a moderate amount of rare earth elements, with medium fractionation characteristics between light rare earth elements and heavy rare earth elements and medium negative Eu anomalies. The trace elements diagram shows enrichment of large ion lithophile elements (LILEs) and depletion of Ba, Nb, Sr, P and Ti, indicating that the two-mica granites may have been formed in the thickened crust caused by the collision between continents. Zircons from the two-mica granites in this study display fine-scale oscillatory growth and high ratios of Th/U (> 0.4), indicating a magmatic origin. The dating of the two-mica granites yields a LA-ICP-MS zircon U-Pb age of 433±2 Ma. Combined with constructional environment, it is concluded that it was transformed from plate subduction to continental collision in the Nanzhao County at late of Early Silurian.
-
图 3 研究区二云母花岗岩SiO2-K2O图解(a)和A/CNK-A/NK图解(b)
图a据Peccerillo and Taylor(1976);图b据Maniar and Piccoli(1989)
Fig. 3. Plot of SiO2 vs. K2O (a) and A/CNK vs. A/NK in the study area (b)
图 4 研究区二云母花岗岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔蛛网图(b)
Fig. 4. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements spider (b)
图 7 南召县二云母花岗岩A(Al-Na-K)-C(Ca)-F(Mg+Fe2+)图解
Fig. 7. Plot of A(Al-Na-K)-C(Ca)-F(Mg+Fe2+) of the two-mica granite from the Nanzhao County
图 9 研究区二云母花岗岩R1-R2构造判别图解
Fig. 9. R1-R2 tectonic discrimination diagram for two-mica granites
表 1 南召县二云母花岗岩主量元素(%)、微量元素及稀土元素(10-6)分析结果
Table 1. Major (%), trace elements and rare earth elements (10-6) compositions for two-mica granites in Nanzhao County
样品号 005/7 006/3 1038/3 2021/1 209/4 210/1 6010/1 SiO2 70.13 70.55 74.28 72.07 70.17 72.37 69.32 TiO2 0.14 0.18 0.06 0.14 0.22 0.25 0.29 Al2O3 17.28 16.18 14.64 15.58 14.14 14.34 15.41 Fe2O3 0.45 0.59 0.23 0.77 3.14 1.17 1.72 FeO 0.57 0.80 0.38 0.35 1.83 1.15 1.52 MnO 0.13 0.05 0.04 0.05 0.08 0.09 0.13 MgO 0.23 0.36 0.13 0.26 0.18 0.46 0.82 CaO 0.48 1.46 1.08 1.07 1.07 1.44 1.29 Na2O 4.69 4.58 4.24 3.83 2.94 3.23 3.38 K2O 4.34 3.80 4.03 4.49 5.22 4.45 4.30 P2O5 0.05 0.06 0.04 0.07 0.10 0.11 0.15 LOI 1.24 1.07 0.64 1.06 0.50 0.55 1.28 H2O+ 1.24 1.20 0.64 1.01 0.63 0.36 1.27 Total 99.75 99.68 99.79 99.74 99.58 99.59 99.61 A/CNK 1.30 1.13 1.10 1.19 1.14 1.12 1.22 Rb 217.8 153.2 165.6 168.6 156.8 184.9 143.5 Ba 538.7 808.0 430.5 714.4 813.6 1386 809.1 Th 8.16 10.26 13.39 9.95 47.49 21.15 8.55 U 1.20 1.45 1.09 1.27 2.10 1.05 1.11 Ta 1.71 1.62 1.37 1.21 0.61 0.96 1.12 Nb 11.88 10.75 9.19 9.32 5.31 8.50 9.32 Sr 243.1 420.5 224.4 363.5 186.9 316.1 305.0 Hf 3.4 3.7 2.5 3.1 5.6 4.8 3.12 Zr 72.6 95.2 42.3 72.4 210.3 177.0 110.7 La 11.93 17.67 8.52 13.65 67.52 32.72 28.27 Ce 22.99 31.91 16.22 26.79 132.3 56.55 52.76 Pr 2.74 3.71 1.80 3.00 13.00 6.68 6.83 Nd 9.72 13.25 6.57 10.71 42.94 22.58 24.87 Sm 2.25 2.43 1.42 2.21 7.85 3.96 4.83 Eu 0.44 0.60 0.36 0.58 0.86 0.87 1.07 Gd 1.91 1.88 1.40 1.81 6.80 3.37 3.51 Tb 0.34 0.27 0.27 0.31 0.96 0.52 0.56 Dy 1.86 1.28 1.74 1.53 4.52 2.74 2.85 Ho 0.33 0.21 0.34 0.26 0.83 0.57 0.52 Er 0.84 0.53 0.99 0.70 2.13 1.54 1.36 Tm 0.12 0.08 0.15 0.10 0.27 0.22 0.21 Yb 0.78 0.48 0.87 0.60 1.75 1.38 1.24 Lu 0.11 0.07 0.13 0.09 0.25 0.20 0.18 Y 9.71 6.28 10.91 7.71 21.90 15.64 15.22 δEu 0.62 0.83 0.78 0.86 0.35 0.71 0.76 总和 66.08 80.65 51.70 70.05 303.84 149.53 144.28 表 2 南召县下桐扒二云母花岗岩LA-ICP-MS锆石U-Pb年龄测试数据
Table 2. LA-ICP-MS zircon dating results for two-mica granite in Nanzhao County
点号 U(10-6) Th(10-6) Th/U 同位素比值 年龄(Ma) 谐和度
(%)207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 1 249 1 240 0.99 0.056 5 0.000 9 0.543 2 0.010 2 0.069 8 0.000 7 471 36 441 8 435 4 99 2 184 195 1.06 0.056 3 0.001 1 0.541 1 0.011 6 0.069 7 0.000 7 463 45 439 9 435 4 99 3 658 406 0.62 0.057 0 0.000 9 0.552 0 0.009 2 0.070 2 0.000 8 493 33 446 7 438 5 98 4 485 219 0.45 0.055 7 0.000 9 0.528 8 0.009 2 0.068 9 0.000 7 439 36 431 7 430 4 100 5 517 535 1.04 0.056 3 0.000 9 0.529 2 0.008 9 0.068 2 0.000 7 464 35 431 7 425 4 99 6 1 299 633 0.49 0.056 7 0.000 8 0.540 5 0.008 5 0.069 1 0.000 7 481 32 439 7 431 4 98 7 325 176 0.54 0.055 9 0.001 0 0.542 0 0.010 4 0.070 2 0.000 7 450 40 440 8 438 4 100 8 371 194 0.52 0.056 3 0.001 0 0.543 9 0.010 0 0.070 1 0.000 7 463 38 441 8 437 4 99 9 534 328 0.61 0.056 5 0.000 9 0.547 3 0.009 9 0.070 2 0.000 7 470 36 443 8 437 4 99 10 588 90 0.15 0.056 9 0.000 9 0.543 5 0.009 1 0.069 3 0.000 7 488 34 441 7 432 4 98 11 1 448 607 0.42 0.055 8 0.000 8 0.539 6 0.008 5 0.070 1 0.000 7 446 32 438 7 437 4 100 12 1 421 591 0.42 0.056 6 0.000 8 0.545 6 0.008 5 0.069 9 0.000 7 476 32 442 7 436 4 99 13 304 194 0.64 0.056 4 0.001 3 0.540 4 0.013 7 0.069 1 0.000 7 469 50 439 11 431 5 98 14 337 135 0.40 0.056 6 0.001 0 0.539 8 0.010 3 0.069 2 0.000 7 474 40 438 8 431 4 98 15 996 418 0.42 0.056 8 0.000 8 0.545 6 0.008 6 0.069 6 0.000 7 482 32 442 7 434 4 98 16 802 337 0.42 0.056 5 0.000 8 0.539 0 0.008 7 0.069 0 0.000 7 471 33 438 7 430 4 98 17 1 062 475 0.45 0.055 7 0.000 8 0.532 8 0.008 6 0.069 1 0.000 7 439 33 434 7 431 4 99 -
[1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that Do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Barbarin, B., 1999.A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments.Lithos, 46(3):605-626. https://doi.org/10.1016/s0024-4937(98)00085-1 [3] Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [4] Chang, Q.L., Lu, X.X., Liu, D.H., et al., 2006.The Relation between Gold Deposits and Wuduoshan Granite in Eastern Qinling.Journal of Jilin University (Earth Science Edition), 36(3):319-325 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200603002 [5] Chen, D.L., Liu, L., Sun, Y., 2004.LA-ICP-MS Zircon U-Pb Dating for High-Pressure Basic Granulite from North Qinling and Its Geological Significance.Chinese Science Bulletin, 49(18):1901-1908 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW20042100C.htm [6] Chen, Y.J., 2010.Indosinian Tectonic Setting, Magmatism and Metallogenesis in Qinling Orogen, Central China.Geology in China, 37(4):854-866 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201004003 [7] Dostal, J., Chatterjee, A.K., 1995.Origin of Topaz-Bearing and Related Peraluminous Granites of the Late Devonian Davis Lake Pluton, Nova Scotia, Canada:Crystal Versus Fluid Fractionation.Chemical Geology, 123(1-4):67-88. https://doi.org/10.1016/0009-2541(95)00047-p [8] Dostal, J., Chatterjee, A.K., 2000.Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada).Chemical Geology, 163(1-4):207-218. https://doi.org/10.1016/s0009-2541(99)00113-8 [9] Hou, H.X., Zhang, D.H., Zhang, R.Z., 2016.The Chronology, Geochemical Characteristics and Geological Significance of the Mesozoic Shiyaogou Hidden Granite at East Qinling.Earth Science, 41(10):1665-1682 (in Chinese with English abstract).https://doi.10.3799/dqkx.2016.122 doi: 10.3799/dqkx.2016.122 [10] Lei, M., 2010.Petrogenesis of Granites and Their Relation to Tectonic Evolution of Orogen in the East Part of Qinling Orogenic Belt (Dissertation).Chinese Academy of Geological Sciences, Beijing, 28-48 (in Chinese with English abstract). [11] Li, T., 1985.The Abundance of Chemical Elements in the Lithosphere and Its Structural Layers.Acta Geologica Sinica, 59(3):219-227 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE198503004.htm [12] Liu, B.X., 2014.Magmatism and Crustal Evolution in the Eastern North Qinling Terrain (Dissertation).University of Science and Technology of China, Hefei, 57-93 (in Chinese with English abstract). [13] Liu, Q.Q., Shao, Y.J., Chen, X.M., et al., 2016.Petrogeochemistry Geochronology and Hf Isotopes of the Monzogranite from Xinxian, Southern Region in Henan Province.Earth Science, 41(8):1275-1294 (in Chinese with English abstract).https://doi.10.3799/dqkx.2016.507 doi: 10.3799/dqkx.2016.507 [14] Ludwig, K.R., 2003.ISOPLOT: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley. [15] Ma, C.Q., Ming, H.L., Yang, K.G., 2004.An Ordovician Magmatic Arc at the Northern Foot of Dabie Mountains:Evidence from Geochronology and Geochemistry of Intrusive Rocks.Acta Petrologica Sinica, 20(3):393-402 (in Chinese with English abstract). [16] Maniar, P.D., Piccoli, P.M., 1989.Tectonics Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101 [17] Mattauer, M., Matte, P., Malavieille, J., et al., 1985.Tectonics of the Qinling Belt:Build-Up and Evolution of Eastern Asia.Nature, 317(6037):496-500. https://doi.org/10.1038/317496a0 [18] Meng, Q.R., Zhang, G.W., 2000.Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China.Tectonophysics, 323(3-4):183-196. https://doi.org/10.1016/s0040-1951(00)00106-2 [19] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [20] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [21] Ratschbacher, L., Hacker, B.R., Calvert, A., et al., 2003.Tectonics of the Qinling (Central China):Tectonostratigraphy, Geochronology, and Deformation History.Tectonophysics, 366(1-2):1-53. https://doi.org/10.1016/s0040-1951(03)00053-2 [22] Rubatto, D., 2002.Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism.Chemical Geology, 184(1-2):123-138. https://doi.org/10.1016/s0009-2541(01)00355-2 [23] Shi, Y., Yu, J.H., Xu, X.S., et al., 2009.Geochronology and Geochemistry of the Qinling Group in the Eastern Qinling Orogen.Acta Petrologica Sinica, 25(10):2651-2670 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200910029.htm [24] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [25] Wang, T., Pei, X.Z., Wang, X.X., et al., 2005.Orogen-Parallel Westward Oblique Uplift of the Qinling Basement Complex in the Core of the Qinling Orogen (China):An Example of Oblique Extrusion of Deep-Seated Metamorphic Rocks in a Collisional Orogen.The Journal of Geology, 113(2):181-200. https://doi.org/10.1086/427668 [26] Wang, T., Wang, X.X., Tian, W., et al., 2009.North Qinling Paleozoic Granite Associations and Their Variation in Space and Time:Implications for Orogenic Processes in the Orogens of Central China.Science in China (Series D), 39(7):949-971 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200909009.htm [27] Wang, T., Zhang, G.W., Wang, X.X., et al., 1999.Growth Patterns of Granitoid Plutons and Their Implications for Tectonics, Kinematics and Dynamics Examples from Granitoid Plutons in the Core of the Qinling Orogenic Belt, China.Scientia Geologica Sinica, 34(3):326-335 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900082912 [28] Wang, X.X., Wang, T., Zhang, C.L., 2015.Granitoid Magmatism in the Qinling Orogen, Central China and Its Bearing on Orogenic Evolution.Science in China (Series D), 45(8):1109-1125 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201509003.htm [29] Wang, Z.Q., Yan, Q.Q., Yan, Z., et al., 2009.New Division of the Main Tectonic Unites of the Qinling Orogenic Belt, Central China.Acta Geologica Sinica, 83(11):1527-1546 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200911003.htm [30] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x [31] White, A.J.R., Chappell, B.W., 1977.Ultrametamorphism and Granitoid Genesis.Tectonophysics, 43(1-2):7-22. https://doi.org/10.1016/0040-1951(77)90003-8 [32] Williams, I.S., Claesson, S., 1987.Isotopic Evidence for the Precambrian Provenance and Caledonian Metamorphism of High Grade Paragneisses from the Seve Nappes, Scandinavian Caledonides.Contributions to Mineralogy and Petrology, 97(2):205-217. https://doi.org/10.1007/bf00371240 [33] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW200415001.htm [34] Xue, F., Kröner, A., Reischmann, T., et al., 1996a.Palaeozoic Pre-and Post-Collision Calc-Alkaline Magmatism in the Qinling Orogenic Belt, Central China, as Documented by Zircon Ages on Granitoid Rocks.Journal of the Geological Society, 153(3):409-417. https://doi.org/10.1144/gsjgs.153.3.0409 [35] Xue, F., Lerch, M.F., Kröner, A., et al., 1996b.Tectonic Evolution of the East Qinling Mountains, China, in the Palaeozoic:A Review and New Tectonic Model.Tectonophysics, 253(3-4):271-284. https://doi.org/10.1016/0040-1951(95)00060-7 [36] Yan, Q.R., Wang, Z.Q., Yan, Z., et al., 2009.Timing of the Transformation from Seafloor Spreading on the South Margin of the North China Block to Subduction within the North Qinling Orogenic Belt.Acta Geologica Sinica, 83(11):1565-1583. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200911003 [37] Yang, J.S., Liu, F.L., Wu, C.L., et al., 2003.Two Ultrahigh Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China:Evidence from the U-Pb Dating of Coesite-Bearing Zircon.Acta Geologica Sinica, 77(4):463-477 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200304002.htm [38] Zhang, C.L., Liu, L., Wang, T., et al., 2013.Granitite Magmatism Related to Early Paleozoic Continental Collision in the North Qinling Belt.Chinese Science Bulletin, 58(23):2323-2329 (in Chinese). [39] Zhang, G.W., Meng, Q.Q., Yu, Z.P., et al., 1996.Orogenesis and Dynamics of the Qinling Orogen.Science in China (Series D), 26(3):193-200 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600264788 [40] Zhang, G.W., Zhang, B.R., Yuan, X.C., et al., 2001.Qinling Orogen and Continental Dynamics.Science Press, Beijing, 236-451 (in Chinese). [41] Zhao, J., 2012.Studies on Geochemical and Zircon Dating of Volcacanics from Erlangping Group of the North Qinling, Eastern Qinling Mountains (Dissertation).Northwest University, Xi'an, 11-47 (in Chinese with English abstract). [42] Zhu, J.C., Zhang, P.H., Xie, C.F., et al., 2006.The Huashan-Guposhan A-Type Granitoid Belt in the Western Part of the Nanling Mountains:Petrology, Geochemistry and Genetic Interpretations.Acta Geologica Sinica, 80(4):529-542 (in Chinese with English abstract). [43] Zhu, Y., Zhou, H.W., Li, S.L., et al., 2015.Late Paleoproterozoic Crustal Anatexis and Its Tectonic Significance:Evidence from Petrology and Zircon U-Pb Ages of Migmatite.Earth Science, 40(5):824-839 (in Chinese with English abstract).https://doi.10.3799/dqkx.2015.067 doi: 10.3799/dqkx.2015.067 [44] 常秋玲, 卢欣祥, 刘东华, 等, 2006.秦岭五朵山花岗岩体及金矿关系探讨.吉林大学学报(地球科学版), 36(3):319-325. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200603002 [45] 陈丹玲, 刘良, 孙勇, 等, 2004.北秦岭松树沟高压基性麻粒岩锆石的LA-ICP-MS U-Pb定年及其地质意义.科学通报, 49(18):1901-1908. doi: 10.3321/j.issn:0023-074X.2004.18.014 [46] 陈衍景, 2010.秦岭印支期构造背景、岩浆活动及成矿作用.中国地质, 37(4):854-866. doi: 10.3969/j.issn.1000-3657.2010.04.003 [47] 侯红星, 张德会, 张荣臻, 2016.东秦岭中生代瑶沟隐伏花岗岩年代学、地球化学特征及地质意义.地球科学, 41(10):1665-1682. http://earth-science.net/WebPage/Article.aspx?id=3370 [48] 雷敏, 2010.秦岭造山带东部花岗岩成因及其与造山带构造演化的关系(硕士学位论文).北京: 中国地质科学院, 28-48. http://cdmd.cnki.com.cn/Article/CDMD-82501-2011012326.htm [49] 黎彤, 1985.岩石圈及其结构层的元素丰度.地质学报, 59(3):219-227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000377773 [50] 刘丙祥, 2014.北秦岭地体东段岩浆作用与地壳演化(博士学位论文).合肥: 中国科学技术大学, 57-93. http://cdmd.cnki.com.cn/Article/CDMD-10358-1014299883.htm [51] 刘清泉, 邵拥军, 陈昕梦, 等, 2016.豫南新县岩体地球化学、年代学和Hf同位素特征及地质意义.地球科学, 41(8):1275-1294. http://earth-science.net/WebPage/Article.aspx?id=3337 [52] 马昌前, 明厚利, 杨坤光, 2004.大别山北麓的奥陶纪岩浆弧:侵入岩年代学和地球化学证据.岩石学报, 20(3):393-402. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403003 [53] 时毓, 于津海, 徐夕生, 等, 2009.秦岭造山带东段秦岭岩群的年代学和地球化学研究.岩石学报, 25(10):2651-2670. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200910029 [54] 王涛, 王晓霞, 田伟, 等, 2009.北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示.中国科学(D辑), 39(7):949-971. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200901195408 [55] 王涛, 张国伟, 王晓霞, 等, 1999.花岗岩生长方式及构造运动学、动力学意义——以秦岭造山带核部花岗岩为例.地质科学, 34(3):326-335. http://www.cnki.com.cn/Article/CJFDTotal-DZKX199903007.htm [56] 王晓霞, 王涛, 张成立, 2015.秦岭造山带花岗质岩浆作用与造山带演化.中国科学:地球科学, 45(8):1109-1125. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508003.htm [57] 王宗起, 闰全人, 闫臻, 等, 2009.秦岭造山带主要大地构造单元的新划分.地质学报, 83(11):1527-1546. doi: 10.3321/j.issn:0001-5717.2009.11.001 [58] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [59] 闫全人, 王宗起, 闫臻, 等, 2009.从华北陆块南缘大洋扩张到北秦岭造山带板块俯冲的转换时限.地质学报, 83(11):1565-1583. doi: 10.3321/j.issn:0001-5717.2009.11.003 [60] 杨经绥, 刘福来, 吴才来, 等, 2003.中央碰撞造山带中两期超高压变质作用:来自含柯石英锆石的定年证据.地质学报, 77(4):463-477. doi: 10.3321/j.issn:0001-5717.2003.04.003 [61] 张成立, 刘良, 王涛, 等, 2013.北秦岭早古生代大陆碰撞过程中的花岗质岩浆作用.科学通报, 58(23):2323-2329. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201323015.htm [62] 张国伟, 孟庆任, 于在平, 等, 1996.秦岭造山带的造山过程及其动力学特征.中国科学(D辑), 26(3):193-200. doi: 10.3321/j.issn:1006-9267.1996.03.001 [63] 张国伟, 张本仁, 袁学诚, 等, 2001.秦岭造山带与大陆动力学.北京:科学出版社, 236-451. [64] 赵姣, 2012.北秦岭东段二郎坪群火山岩的地球化学及年代学研究(硕士学位论文).西安: 西北大学, 11-47. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7414834 [65] 朱金初, 张佩华, 谢才富, 等, 2006.南岭西段花山-姑婆山A型花岗质杂岩带:岩石学、地球化学和岩石成因.地质学报, 80(4):529-542. doi: 10.3321/j.issn:0001-5717.2006.04.007 [66] 朱越, 周汉文, 李少林, 等, 2015.豫西小秦岭地区晚古元古代地壳深熔作用及构造意义:岩石学和锆石U-Pb年代学证据.地球科学, 40(5):824-839. http://earth-science.net/WebPage/Article.aspx?id=3092