• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东秦岭丹凤地区伟晶岩型铀矿矿化特征与成矿模式

    王江波 侯晓华 李万华 张良 赵友东 陈宏斌 李卫红

    王江波, 侯晓华, 李万华, 张良, 赵友东, 陈宏斌, 李卫红, 2020. 东秦岭丹凤地区伟晶岩型铀矿矿化特征与成矿模式. 地球科学, 45(1): 61-71. doi: 10.3799/dqkx.2018.302
    引用本文: 王江波, 侯晓华, 李万华, 张良, 赵友东, 陈宏斌, 李卫红, 2020. 东秦岭丹凤地区伟晶岩型铀矿矿化特征与成矿模式. 地球科学, 45(1): 61-71. doi: 10.3799/dqkx.2018.302
    Wang Jiangbo, Hou Xiaohua, Li Wanhua, Zhang Liang, Zhao Youdong, Chen Hongbin, Li Weihong, 2020. Metallogenic Characteristics and Metallogenic Model of the Pegmatite Type Uranium Deposit in Danfeng Area, Eastern Qinling Mountains. Earth Science, 45(1): 61-71. doi: 10.3799/dqkx.2018.302
    Citation: Wang Jiangbo, Hou Xiaohua, Li Wanhua, Zhang Liang, Zhao Youdong, Chen Hongbin, Li Weihong, 2020. Metallogenic Characteristics and Metallogenic Model of the Pegmatite Type Uranium Deposit in Danfeng Area, Eastern Qinling Mountains. Earth Science, 45(1): 61-71. doi: 10.3799/dqkx.2018.302

    东秦岭丹凤地区伟晶岩型铀矿矿化特征与成矿模式

    doi: 10.3799/dqkx.2018.302
    基金项目: 

    国防预研项目 3210402

    中国地质调查局地质矿产调查项目 DD2016013623

    陕西省青年科技新星专项 2017KJXX-94

    中国核工业地质局铀矿地质项目 201621

    中国核工业地质局铀矿地质项目 201572

    详细信息
      作者简介:

      王江波(1982-), 男, 高级工程师, 博士研究生, 矿物学、岩石学、矿床学专业

    • 中图分类号: P619.1

    Metallogenic Characteristics and Metallogenic Model of the Pegmatite Type Uranium Deposit in Danfeng Area, Eastern Qinling Mountains

    • 摘要: 伟晶岩型铀矿是北秦岭成矿带东段重要的铀矿类型,本文介绍了该类型铀矿的矿体特征、矿石特征、副矿物特征和年代学特征.铀矿体产于淡色含榴花岗岩体内外接触带伟晶岩脉中,围绕花岗岩体产出,形态复杂,随伟晶岩脉的形态而变化,呈似脉状、透镜状和不规则状,晶质铀矿为最主要的工业矿物.通过LA-ICP-MS锆石U-Pb定年获得含铀伟晶岩年龄为404.3±1.4 Ma,略晚于淡色含榴花岗岩体年龄,矿岩时差小,显示了岩浆成矿的特征.综合分析表明早泥盆世丹凤地区进入后碰撞构造环境,秦岭岩群发生部分熔融形成富铝含榴花岗质岩浆,随着岩浆结晶分异演化的不断进行,铀元素以U4+形式与O2-结合形成晶质铀矿,在岩体内外接触带黑云母富集部位沉淀成矿.三叠纪后接受长期隆升剥蚀,侵入岩呈岩株出露地表,围绕岩株外带产出的含铀伟晶岩脉,表现为光石沟式铀矿床.随着隆升剥蚀作用的进一步加剧,侵入岩顶部相遭受剥蚀之后以岩基出露地表,在岩体的内接触带不规则形态的含铀伟晶岩出露地表,表现为陈家庄式铀矿床.依据成矿模式,预测伟晶岩型铀矿成矿远景区2片,分别为大毛沟地区和纸房沟地区.

       

    • 图  1  东秦岭丹凤地区伟晶岩脉密集区分布示意

      图 1aLai et al.(2008)修改;图 1b孙圭和赵致和(1998)修改

      Fig.  1.  Geological sketch of pegmatite Danfeng area, East Qinling

      图  2  丹凤地区伟晶岩岩石学特征

      a.内带岩瘤状伟晶岩;b.外带岩脉状伟晶岩;c.侵入接触关系;d.黑云母伟晶岩

      Fig.  2.  The petrology characteristics of granitic pegmatites of Danfeng area

      图  3  陈家庄矿床13号(a)和光石沟铀矿床0号(b)勘探线剖面

      Fig.  3.  Cross sections of No. 13 exploration line in Chenjiazhuang deposit and No. 0 exploration line in Guangshigou deposit

      图  4  陈家庄矿床伟晶岩中晶质铀矿二次电子图像

      Q.石英;Ab.钠长石;Ur.晶质铀矿;Py.黄铁矿;Zr.锆石

      Fig.  4.  Secondary electron image showing uraninite in pegmatite of Chenjiazhuang deposit

      图  5  岩屋沟黑云母花岗伟晶岩典型锆石CL图像和U-Pb年龄协和图

      Fig.  5.  Zircon CL images and U-Pb concordia diagram of biotite pegmatite, Yanwugou area

      图  6  丹凤地区伟晶岩型铀矿成矿模式

      Fig.  6.  Uranium metallogenic model of pegmatite type uranium deposit, Danfeng area

      表  1  丹凤地区内带和外带含铀伟晶岩特征对比

      Table  1.   Geological characteristics of the inner and outer uranium bearing pegmatite in Danfeng area

      伟晶岩类型 内带伟晶岩 外带伟晶岩
      相同 岩石类型 黑云母伟晶岩
      铀矿物 晶质铀矿
      年龄 416~404 Ma
      差异 围岩 淡色含榴花岗岩 片麻岩
      接触关系 渐变过渡接触 侵入接触
      结构 粗粒-伟晶结构 伟晶结构
      形态 复杂:囊状、团块状、不规则状 简单:脉状
      规模 小:几十米,大者数百米 大:最大可达3 km以上
      矿化特征 连续性差,不稳定 连续性好,矿化延伸稳定
      下载: 导出CSV

      表  2  晶质铀矿在矿石中的产出部位分布(%)

      Table  2.   The distribution (%) of uraninite in different formed position of ore-body

      产出部位 Pl Q Mi Bi Grt Ap Bi-Ms 总计
      矿物中 6 7 13 12 1 / 1 17
      边缘 11 14 13 76 / 1 / 49
      粒间 80 34
      注:Pl.斜长石;Q.石英;Mi.微斜长石;Bi.黑云母;Grt.石榴子石;Ap.磷灰石;Bi-Ms.黑云母白云母化.
      下载: 导出CSV

      表  3  含铀黑云母伟晶岩副矿物含量(10-6)

      Table  3.   Accessory minerals of bearing uranium Bt-pegmatite(10-6)

      样品编号 Grt Mnz Zr Ap Py Lm Ilm Mo Fl Ur Au 采样位置
      91-29 7 554 543 316 9 少量 / / 少量 / 57 / 桑树坪
      91-3 少量 117 450 26 / 13 1 022 11 少量 588 / 华银坪
      91-12 15 67 134 少量 / 61 / / / 21 / 王佛堂
      91-11 少量 29 少量 323 12 205 28 / / 68 / 王佛堂
      91-20 少量 17 20 47 < 1 / / < 1 / 1 664 / 狮子坪
      91-23 39 258 86 < 1 1 / 378 < 1 / 547 / 骑马河
      90-13 少量 8 微量 / 微量 / / 微量 / 5 753 / 小花岔
      91-34 3 856 16 少量 840 / / / / 8 031 / 小花岔
      91-8 152 326 65 / 少量 / / / / 356 / 李家湾
      90-28 微量 1 627 微量 / 1 117 / / 微量 / 1 600 0.023 光石沟
      90-16 21 905 微量 95 / 24 / / 微量 / 143 0.011 李家湾
      90-24 23 363 微量 23 / 297 / / / / 283 0.049 大东沟
      注:Grt.石榴石;Mnz.独居石;Zr.锆石;Ap.磷灰石;Py.黄铁矿;Lm.褐铁矿;Ilm.钛铁矿;Mo.辉钼矿;Fl.萤石;Ur.晶质铀矿;Au.自然金;据孙圭和赵致和(1998).
      下载: 导出CSV

      表  4  丹凤地区花岗岩、伟晶岩主要副矿物对比(10-6)

      Table  4.   Accessory minerals of pegmatite and granite of Danfeng area(10-6)

      岩性矿物 Mag Ttn Aln Mnz Zr Ap Ur Grt
      片麻状花岗岩 1 883 56.6 63.0 4.7 17.7 739 1.8 /
      1 938 28.8 32.4 / 3.0 176 / /
      淡色含榴花岗岩 1 396 51.5 少量 39 3.9 155 少量 2.9
      黑云母伟晶岩 少量 少量 少量 438 107 14.8 2 421 102
      28.8 少量 少量 1 627 微量 少量 1 600 153
      注:Mag.磁铁矿;Ttn.榍石;Aln.褐帘石;Mnz.独居石;Zr.锆石;Ap.磷灰石;Ur.晶质铀矿;Grt.石榴石;据孙圭和赵致和(1998).
      下载: 导出CSV

      表  5  丹凤地区含铀黑云母伟晶岩LA-ICP-MS锆石U-Pb测年数据

      Table  5.   LA-ICP-MS zircon U-Pb age dates of Bi-Pegmatite of Danfeng area

      测点 同位素含量(10-6) Th/U 同位素比值 同位素年龄(Ma)
      Total Pb 232Th 238U 207Pb/ 206Pb 1σ 207Pb/ 235U 1σ 206Pb/ 238U 1σ 207Pb/ 206Pb 1σ 207Pb/ 235U 1σ 206Pb/ 238U 1σ
      D4850-01 249 135 6 031 0.02 0.061 8 0.000 8 0.553 6 0.010 3 0.064 9 0.000 6 733 28 447 7 405 3
      D4850-02 276 65 6 661 0.01 0.061 3 0.000 3 0.548 0 0.005 8 0.064 8 0.000 3 650 11 444 4 405 2
      D4850-03 203 51 5 253 0.01 0.058 0 0.000 4 0.518 7 0.005 3 0.065 0 0.000 4 528 10 424 4 406 2
      D4850-04 239 90 6 177 0.01 0.059 1 0.000 4 0.536 3 0.013 6 0.065 6 0.001 3 569 17 436 9 409 8
      D4850-05 259 60 6 856 0.01 0.057 0 0.000 3 0.506 9 0.005 3 0.064 6 0.000 3 500 11 416 4 403 2
      D4850-06 292 171 7 442 0.02 0.058 3 0.000 9 0.507 1 0.009 1 0.063 2 0.000 5 543 33 417 6 395 3
      D4850-07 248 199 6 323 0.03 0.055 1 0.000 3 0.496 1 0.006 5 0.065 4 0.000 5 417 19 409 4 408 3
      D4850-08 245 162 6 184 0.03 0.058 2 0.000 4 0.517 2 0.006 6 0.064 4 0.000 4 600 15 423 4 403 2
      D4850-09 177 173 4 695 0.04 0.056 5 0.000 3 0.507 6 0.005 1 0.065 1 0.000 3 472 11 417 3 406 2
      D4850-10 500 554 11 396 0.05 0.060 0 0.000 5 0.528 4 0.009 1 0.063 9 0.001 0 606 17 431 6 399 6
      D4850-11 185 29 5 045 0.01 0.055 6 0.000 4 0.498 7 0.005 6 0.065 0 0.000 4 435 15 411 4 406 2
      D4850-12 246 149 6 179 0.02 0.059 6 0.000 5 0.538 1 0.007 3 0.065 3 0.000 4 587 19 437 5 408 2
      D4850-13 225 118 6 151 0.02 0.055 2 0.000 3 0.493 9 0.005 2 0.064 7 0.000 4 420 11 408 4 404 2
      D4850-14 239 158 6 333 0.03 0.057 0 0.000 3 0.507 5 0.005 1 0.064 5 0.000 4 500 11 417 3 403 2
      D4850-15 233 471 6 067 0.08 0.055 9 0.000 3 0.499 9 0.005 1 0.064 7 0.000 2 456 11 412 3 404 1
      D4850-16 308 44 7 920 0.01 0.058 4 0.000 3 0.521 6 0.007 3 0.064 4 0.000 3 546 -23 426 5 403 2
      下载: 导出CSV
    • [1] Bader, T., Ratschbacher, L., Franz, L., et al., 2013. The Heart of China Revisited, Ⅰ. Proterozoic Tectonics of the Qin Mountains in the Core of Supercontinent Rodinia. Tectonics, 32(3): 661-687. https://doi.org/10.1002/tect.20024
      [2] Chen, Y. W., Bi, X. W., Hu, R. Z., et al., 2013. Mineral Chemistry of Biotite and Its Implications for Uranium Mineralization in Guangshigou Pegmatite Type Uranium Deposit, South Shaanxi Province. Journal of Mineralogy and Petrology, 33(4):17-28 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201304003
      [3] Feng, M. Y., 1996. Discussion on the Genesis of Uranium-Producing Pegmatite in Shangdan Area. Uranium Geology, 12(1):30-36 (in Chinese with English abstract).
      [4] Ge, Y, 2017. Geological Geochemistry Characteristics of the Biotite in Granite-Pegmatite-Type Uranium Deposit in Danfeng (Dissertation). East China University of Technology, Nanchang (in Chinese with English abstract).
      [5] Lai, S. C., Qin, J. F., Chen, L., et al., 2008. Geochemistry of Ophiolites from the Mian-Lue Suture Zone: Implications for the Tectonic Evolution of the Qinling Orogen, Central China. International Geology Review, 50(7): 650-664. https://doi.org/10.2747/0020-6814.50.7.650
      [6] Ling, H. F., 2011. Origin of Hydrothermal Fluids of Granite-Type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2):193-206 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000003807
      [7] Liu, D. C., 1991. Isotolpe Geochronologic Characteristics of Uranium Deposit from Chenjiazhuang. Journal of Mineralogy and Petrology, 11(1):173-79 (in Chinese with English abstract).
      [8] Lu, X. X., Zhu, C. H., Gu, D. M., et al., 2010. The Main Geological and Metallogenic Characteristics of Granitic Pegmatite in Eastern Qinling Belt. Geological Review, 56(1):21-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201001004
      [9] Mao, J. W., Xie, G. Q., Pirajno, F., et al., 2010. Late Jurassic-Early Cretaceous Granitoid Magmatism in Eastern Qinling, Central-Eastern China: SHRIMP Zircon U-Pb Ages and Tectonic Implications. Australian Journal of Earth Sciences, 57(1): 51-78. https://doi.org/10.1080/08120090903416203
      [10] Rong, J. Y., 1997. The Research Overview of Granite Pegmatites. World Nuclear Geoscience, 14(2):97-108 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=95ef0fed3eea6eb1ce89aa64f7dccfaa
      [11] Sha, Y. Z., Zuo, W. Q., Zhang, Z. S., et al., 2011. Difference of Ore-Bearing and Non-Ore-Bearing Pegmatite in the Guangshigou Area and Its Research Significance. Journal of East China Institute of Technology (Natural Science Edition), 34(3):215-223 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb201103003
      [12] Sun, G., Zhao, Z. H., 1998. Uranium Geology in Northwest China. Northwest Geological Bureau of Nuclear Industry, Xi'an (in Chinese).
      [13] Wan, J., Gao, L. B., Wang, L. X., 1992. Metallogenic Environmental Study and Prospect Assessment of the Granite-Pegmatite-Type Uranium Deposit in Shangxian-Danfeng Triangle Area, Shaanxi. Uranium Geology, 8(5):257-265 (in Chinese with English abstract).
      [14] Wang, J. B., Li, W. H., Zhang, L., 2015. The Geological Characteristics of Pegmatite on the North Side of the Shangdan Zone in the East Qinling and Their Relationship with Uranium Mineralization. Geological Review, 61(Suppl.):542-543 (in Chinese with English abstract).
      [15] Wang, T., Wang, X. X., Tian, W., et al., 2009. North Qinling Paleozoic Granite Associations and Their Variation in Space and Time: Implications for Orogenic Processes in the Orogens of Central China. Science in China (Series D), 39(7): 949-971 (in Chinese).
      [16] Wang, X. X., Wang, T., Zhang, C. L., 2013. Neoproterozoic, Paleozoic, and Mesozoic Granitoid Magmatism in the Qinling Orogen, China: Constraints on Orogenic Process. Journal of Asian Earth Sciences, 72: 129-151. https://doi.org/10.1016/j.jseaes.2012.11.037
      [17] Yang, J. S., Liu, F. L., Wu, C. L., et al., 2003. Two Ultrahigh Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-Bearing Zircons. Acta Geologica Sinica, 77(4):463-477 (in Chinese with English abstract).
      [18] Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003
      [19] Yuan, H. L., Liu, X., Bao, Z. A., et al., 2018. A Fast Separation Method for Isotope Analysis Based on Compressed Nitrogen Gas and Ion-Exchange Chromatography Technique—A Case Study of Sr-Nd Isotope Measurement. Journal of Earth Science, 29(1): 223-229. https://doi.org/10.1007/s12583-017-0944-0
      [20] Zeng, L. J., Jin, J. F., 1994. Discussion on the Migration and Precipitation Mechanism of the Uranium in Some Granite-Pegmatite Type Uranium Deposit. Journal of East China Geological Institute, 17(3):264-269 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400184948
      [21] Zhang, G. W., Guo, A. L., 2019. Thoughts on Continental Tectonics. Earth Science, 44(5): 1464-1475 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201905005
      [22] Zhang, S. M., Jiang, G. L., Liu, K. F., et al., 2014. Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in Qinling-Dabie Orogenic Belt. Earth Science, 39(8):1085-1119 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201408019
      [23] Zhang, Z. Q., Zhang, G. W., Liu, D. Y., et al., 2006. Isotopic Geochronology and Geochemistry of Ophiolites, Granites and Clastic Sedimentary Rocks in the Qinling Orogenic Belt. Geological Publishing House, Beijing (in Chinese with English abstract).
      [24] Zhao, R. Y., Li, W. H., Jiang, C. Y., et al., 2014. The LA-ICP-MS Zircon U-Pb Dating, Petro-Geochemical Characteristics of Huanglongmiao Monzogranite in Danfeng Area in Eastern Qingling Mts. and Their Geological Significance. Geological Review, 60(5):1123-1132 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201405017
      [25] Zuo, W. Q., Sha, Y. Z., Chen, B., et al., 2010. U-Pb Isotopic Dating of Zircon from Damaogou Granite Stock in Guangshigou Uranium Deposit in Danfeng Areas and It Significance. Uranium Geology, 26(4):222-227 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz201004005
      [26] 陈佑纬, 毕献武, 胡瑞忠, 等, 2013.陕南光石沟伟晶岩型铀矿床黑云母矿物化学研究及其对铀成矿的启示.矿物岩石, 33(4):17-28. doi: 10.3969/j.issn.1001-6872.2013.04.003
      [27] 冯明月, 1996.商丹地区产铀伟晶岩成因讨论.铀矿地质, 12(1):30-36.
      [28] 葛瑶, 2017.丹凤花岗伟晶岩型铀矿床中黑云母的地质地球化学特征(硕士学位论文).南昌: 东华理工大学.
      [29] 凌洪飞, 2011.论花岗岩型铀矿床热液来源——来自氧逸度条件的制约.地质论评, 57(2):193-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201102005
      [30] 刘德成, 1991.陈家庄铀矿同位素地质年代学特征.矿物岩石, 11(1):173-79.
      [31] 卢欣祥, 祝朝辉, 谷德敏, 等, 2010.东秦岭花岗伟晶岩的基本地质矿化特征.地质论评, 56(1): 21-30. http://d.old.wanfangdata.com.cn/Periodical/dzlp201001004
      [32] 戎嘉树, 1997.花岗伟晶岩研究概况.世界核地质科学, 14(2):97-108.
      [33] 沙亚洲, 左文乾, 张展适, 等, 2011.陕西秦岭光石沟陕西秦岭光石沟铀矿床含矿与非含矿伟晶岩差异性及其研究意义.东华理工大学学报(自然科学版), 34(3):215-223. doi: 10.3969/j.issn.1674-3504.2011.03.003
      [34] 孙圭, 赵致和, 1998.中国北西部铀矿地质.西安: 核工业西北地质局.
      [35] 万吉, 高立宝, 王莲香, 1992.商丹三角地区花岗伟晶岩型铀矿成矿环境研究及远景评价.铀矿地质, 8(5):257-265.
      [36] 王江波, 李卫红, 张良, 2015.东秦岭商丹带北侧伟晶岩地质特征与铀成矿关系探讨.地质论评, 61(增刊):542-543. http://d.old.wanfangdata.com.cn/Conference/9142108
      [37] 王涛, 王晓霞, 田伟, 等, 2009.北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示.中国科学(D辑), 39(7): 949-971. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200901195408
      [38] 杨经绥, 刘福来, 吴才来, 等, 2003.中央碰撞造山带中两期超高压变质作用:来自含柯石英锆石的定年证据.地质学报, 77(4):463-477. doi: 10.3321/j.issn:0001-5717.2003.04.003
      [39] 曾令交, 金景福, 1994.某花岗伟晶岩型铀矿铀迁移沉淀机制探讨.华东地质学院学报, 17(3):264-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400184948
      [40] 张国伟, 郭安林, 2019.关于大陆构造研究的一些思考与讨论.地球科学, 44(5): 1464-1475. doi: 10.3799/dqkx.2019.971
      [41] 张思敏, 姜高磊, 柳坤峰, 等, 2014.秦岭-大别新元古代-中生代沉积盆地演化.地球科学, 39(8):1085-1119. doi: 10.3799/dqkx.2014.094
      [42] 张宗清, 张国伟, 刘敦一, 等, 2006.秦岭造山带蛇绿岩、花岗岩和碎肩沉积岩同位素年代学和地球化学.北京:地质出版社.
      [43] 赵如意, 李卫红, 姜常义, 等, 2014.东秦岭丹凤地区黄龙庙二长花岗岩LA-ICP-MS锆石U-Pb年龄、岩石地球化学特征及其地质意义.地质论评, 60(5):1123-1132. http://d.old.wanfangdata.com.cn/Periodical/dzlp201405017
      [44] 左文乾, 沙亚洲, 陈冰, 等, 2010.丹凤地区光石沟铀矿床大毛沟岩株锆石U-Pb同位素定年及其地质意义.铀矿地质, 26(4):222-227. doi: 10.3969/j.issn.1000-0658.2010.04.005
    • 加载中
    图(6) / 表(5)
    计量
    • 文章访问数:  2342
    • HTML全文浏览量:  867
    • PDF下载量:  75
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-07-28
    • 刊出日期:  2020-01-15

    目录

      /

      返回文章
      返回