• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    怀安杂岩中含BIF岩石组合的形成时代及产出构造背景

    田辉 张家辉 王惠初 任云伟 王权

    田辉, 张家辉, 王惠初, 任云伟, 王权, 2019. 怀安杂岩中含BIF岩石组合的形成时代及产出构造背景. 地球科学, 44(1): 37-51. doi: 10.3799/dqkx.2018.301
    引用本文: 田辉, 张家辉, 王惠初, 任云伟, 王权, 2019. 怀安杂岩中含BIF岩石组合的形成时代及产出构造背景. 地球科学, 44(1): 37-51. doi: 10.3799/dqkx.2018.301
    Tian Hui, Zhang Jiahui, Wang Huichu, Ren Yunwei, Wang Quan, 2019. Formation Age and Tectonic Setting of Iron-Bearing Formation in Huai'an Complex, North China Craton. Earth Science, 44(1): 37-51. doi: 10.3799/dqkx.2018.301
    Citation: Tian Hui, Zhang Jiahui, Wang Huichu, Ren Yunwei, Wang Quan, 2019. Formation Age and Tectonic Setting of Iron-Bearing Formation in Huai'an Complex, North China Craton. Earth Science, 44(1): 37-51. doi: 10.3799/dqkx.2018.301

    怀安杂岩中含BIF岩石组合的形成时代及产出构造背景

    doi: 10.3799/dqkx.2018.301
    基金项目: 

    中国地质调查局二级项目 DD20160042

    详细信息
      作者简介:

      田辉(1985-), 男, 硕士, 工程师, 主要从事前寒武纪地质调查与研究

    • 中图分类号: P581

    Formation Age and Tectonic Setting of Iron-Bearing Formation in Huai'an Complex, North China Craton

    • 摘要: 华北克拉通北部的怀安杂岩中分布着一些呈团块状、透镜状或似层状产出的含BIF岩石组合.相对于华北克拉通绿岩带,研究区内的含BIF岩石组合具有规模小、岩性复杂多样以及后期叠加强烈的变质-变形改造等特点,其研究程度较低.在野外地质填图的基础上,通过岩石学、同位素年代学、地球化学研究表明:(1)天镇-怀安地区的含BIF岩石组合主要由条带状(含辉石/角闪)磁铁石英岩、变质基性火山岩(二辉麻粒岩/含辉石斜长角闪岩/高压麻粒岩)、石榴黑云斜长片麻岩和少量石榴石英岩条带或团块组成,这些岩石彼此呈夹层或互层状伴生产出;天镇-怀安地区BIF矿体规模小、与变质火山岩密切共生等特征表明其属于Algoma型.(2)条带状(含辉石/角闪)磁铁石英岩中残留的中-基性火成岩锆石年龄(2 489±19 Ma)可代表含BIF岩石组合的形成时代,并经历了1 800~1 850 Ma变质作用叠加改造.(3)含BIF岩石组合中火山岩地球化学特征显示Rb、Ba、U、Pb等元素富集和Nb、Ta等元素亏损,结合微量元素蛛网图和稀土配分模式对比认为其产出构造背景为弧后盆地,铁矿石PAAS标准化稀土配分图解具有明显Eu正异常,表明与海底热液活动密切相关.

       

    • 图  1  天镇-怀安地区地质简图

      图据Han et al.(2017)张家辉等(2019)修改

      Fig.  1.  Geological sketch of the Tianzhen-Huai'an area

      图  2  BIF在TTG围岩中的产出形态以及BIF岩石组合的主要岩石特征

      a.条带状磁铁石英岩呈透镜体产出;b.条带状磁铁石英岩呈似层状产出;c.残留的长条状铁矿采坑;d.石榴黑云斜长片麻岩中夹层状BIF铁矿;e.二辉麻粒岩的“石香肠”构造;f.含BIF岩石组合与围岩的构造接触界线;g.条带状磁铁石英岩;h.二辉麻粒岩;i.高压麻粒岩;j.石榴黑云斜长片麻岩;k.磁铁石英岩中角闪石呈填隙状分布于磁铁矿条带中;l.磁铁石英岩中的紫苏辉石

      Fig.  2.  Occurrence of BIF in TTG and petrographic characteristics of the main lithology of BIF-bearing assemblage

      图  3  TTG及含BIF岩石组合主要岩石的镜下特征

      a.含辉石英云闪长质片麻岩镜下特征(+);b.二辉麻粒岩镜下特征(+);c.斜长角闪岩镜下特征(+);d.含辉石角闪磁铁石英岩(弱定向);e.条带状含辉石角闪磁铁石英岩;f.强条带状含辉石角闪磁铁石英岩

      Fig.  3.  Microscopic characteristics of TTG and main lithology of BIF-bearing assemblage

      图  4  样品16YG-2、16LJG-1、16YG-3锆石CL照相及测试点位

      图中比例尺为50μm

      Fig.  4.  CL images and laser-ablated spots of zircons from samples 16YG-2, 16LJG-1 and 16YG-3

      图  5  样品16YG-2、16LJG-1、16YG-3锆石U-Pb谐和图

      Fig.  5.  Zircon U-Pb concodia diagrams for samples 16YG-2, 16LJG-1 and 16YG-3

      图  6  与铁矿共生的变质火山岩Nb/Yb-Zr/TiO2图解(a)、Fe2O3T/TiO2-Al2O3-MgO图解(b)以及原始地幔标准化微量元素蛛网图(c)、球粒陨石标准化稀土元素配分图解(d)

      图a据Winchester and Floyd(1977);图b据Jensen(1976);图c据Sun and McDonough(1989);图d据Sun and McDonough(1989)

      Fig.  6.  Nb/Yb-Zr/TiO2 diagram (a), Fe2O3T/TiO2-Al2O3-MgO diagram (b), primitive mantle-normalized spidergrams (c) and chondrite-normalized REE patterns (d) for the metamorphic volcanic rocks of BIF-bearing rock assemblage

      图  7  铁矿石稀土元素PAAS标准化配分图解

      PAAS标准化值据McLennan(1989)

      Fig.  7.  PAAS-normalized REE patterns for the ores of BIF-bearing rock assemblage

      图  8  来自16YG-2样品中部分火山岩锆石年龄测点

      Fig.  8.  Cathodoluminscene image and laser-ablated spots of zircons from volcanic rocks from sample 16YG-2

      图  9  与铁矿共生的变质火山岩样品Th/Yb-Ta/Yb图解(a)和Y/15-La/10-Nb/8图解(b)

      图a据Pearce(1982);图b据Cabanis and Lecolle(1989)

      Fig.  9.  Th/Yb-Ta/Yb diagram (a) and Y/15-La/10-Nb/8 diagram (b) for the metamorphic volcanic rocks of BIF-bearing rock assemblage

    • [1] Barley, M.E., Pickard, A.L., Sylvester, P.J., 1997.Emplacement of a Large Igneous Province as a Possible Cause of Banded Iron Formation 2.45 Billion Years Ago.Nature, 385(6611):55-58. https://doi.org/10.1038/385055a0
      [2] Bau, M., 1996.Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems:Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect.Contributions to Mineralogy and Petrology, 123(3):323-333. https://doi.org/10.1007/s004100050159
      [3] Bau, M., Dulski, P., 1996.Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa.Precambrian Research, 79(1-2):37-55. https://doi.org/10.1016/0301-9268(95)00087-9
      [4] Bekker, A., Krapez, B., Slack, J.F., et al., 2010.Iron Formation:The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes-A Reply.Economic Geology, 107(2):379-380. https://doi.org/10.2113/econgeo.107.2.379
      [5] Cabanis, B., Lecolle, M., 1989.Le Diagramme La/10-Y/15-Nb/8:Unoutil Pour la Discrimination des Series Volcaniques et la Mise en Evidence des Processus de Melange et/ou de Contamination Crustale.Comptes Rendus de l'Academie des Sciences, Seri 2, Mecanique, Physique, Chimie, Sciences de l'Univers, Sciences de la Terre, 309:2023-2029.
      [6] Cai, J., Liu, P.H., Ji, L., et al., 2017.Zircon Geochronology of the Paleoproterozoic High-Grade Supracrustal Rocks from the Huai'an Terrane, Northwestern Hebei.Acta Petrologica Sinica, 33(9):2811-2826 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201709011
      [7] Campbell, A.C., Palmer, M.R., Klinkhammer, G.P., et al., 1988.Chemistry of Hot Springs on the Mid-Atlantic Ridge.Nature, 335(6190):514-519. doi: 10.1038/335514a0
      [8] Cannon, W.F., Schulz, K.J., Horton, J.W., et al., 2010.The Sudbury Impact Layer in the Paleoproterozoic Iron Ranges of Northern Michigan, USA.Geological Society of America Bulletin, 122(1-2):50-75. https://doi.org/10.1130/b26517.1
      [9] Dai, Y.P., Zhu, Y.D., Zhang, L.C., et al., 2016.An Overview of Studies on Precambrian Banded Iron Formations (BIFs) in China and Abroad.Geological Review, 62(3):735-757 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201603016
      [10] Geng, Y.S., Lu, S.N., 2014.Advances in the Study of Precambrian Chronostratigraphy in China:A Review.Earth Science Frontiers, 21(2):102-118 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201402009
      [11] Gross, G.A., 1980.A Classification of Iron-Formations Based on Depositional Environments.Canadian Mineralogist, 18(1):215-222. http://canmin.geoscienceworld.org/content/18/2.toc
      [12] Guo, J.H., Sun, M., Chen, F.K., et al., 2005.Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-Pressure Granulites in the Sanggan Area, North China Craton:Timing of Paleoproterozoic Continental Collision.Journal of Asian Earth Sciences, 24(5):629-642. https://doi.org/10.1016/j.jseaes.2004.01.017
      [13] Guo, J.H., Zhai, M.G., Zhang, Y.G., et al., 1993.Early Precambrian Manjinggou Highpressure Granulite Melange Belt on the South Edge of the Huaian Complex, North China Craton:Geological Features, Petrology and Isotopic Geochronology.Acta Petrologica Sinica, 9(4):329-341 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199304001.htm
      [14] Han, C.M., Xiao, W.J., Su, B.X., et al., 2017.Neoarchean Algoma-Type Banded Iron Formation from the Northern Shanxi, the Trans-North China Orogen:SIMS U-Pb Age, Origin and Tectonic Setting.Precambrian Research, 303:548-572. https://doi.org/10.1016/j.precamres.2017.06.023
      [15] Hawkins, J.W., Lonsdale, P.F., Macdougall, J.D., et al., 1990.Petrology of the Axial Ridge of the Mariana Trough Backarc Spreading Center.Earth and Planetary Science Letters, 100(1-3):226-250. https://doi.org/10.1016/0012-821x(90)90187-3
      [16] Huston, D.L., Logan, G.A., 2004.Barite, BIFs and Bugs:Evidence for the Evolution of the Earth's Early Hydrosphere.Earth and Planetary Science Letters, 220(1-2):41-55. https://doi.org/10.1016/s0012-821x(04)00034-2
      [17] Jensen, L.S., 1976.A New Plot for Classifying Subalkalic Volcanic Rocks.Ontario Division of Mines Miscellaneous Paper, 1-66.
      [18] Klein, C., 2005.Some Precambrian Banded Iron-Formations (BIFs) from around the World:Their Age, Geologic Setting, Mineralogy, Metamorphism, Geochemistry, and Origins.American Mineralogist, 90(10):1473-1499. https://doi.org/10.2138/am.2005.1871
      [19] Klein, E.M., Langmuir, C.H., 1987.Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth and Crustal Thickness.Journal of Geophysical Research Solid Earth, 92(B8):8089-8115. doi: 10.1029/JB092iB08p08089
      [20] Kröner, A., Wilde, S.A., Li, J.H., et al., 2005.Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrain of Northern China.Journal of Asian Earth Sciences, 24(5):577-595. https://doi.org/10.1016/j.jseaes.2004.01.001
      [21] Li, H.M., Zhang, Z.J., Li, L.X., et al., 2014.Types and General Characteristics of the BIF-Related Iron Deposits in China.Ore Geology Reviews, 57:264-287. https://doi.org/10.1016/j.oregeorev.2013.09.014
      [22] Liu, F., Guo, J.H., Peng, P., et al., 2012.Zircon U-Pb Ages and Geochemistry of the Huai'an TTG Gneisses Terrane:Petrogenesis and Implications for~2.5 Ga Crustal Growth in the North China Craton.Precambrian Research, 212-213:225-244. https://doi.org/10.1016/j.precamres.2012.06.006
      [23] Liu, L., Zhang, L.C., Dai, Y.P., et al., 2012.Formation Age, Geochemical Signatures and Geological Significance of the Sanheming BIF-Type Iron Deposit in the Guyang Greenstone Belt, Inner Mongolia.Acta Petrologica Sinica, 28(11):3623-3637 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211014
      [24] Lu, L.Z., Xu, X.C., Liu, F.L., et al., 1996.Early Precambrian Khondalite Series in the North China.Changchun Press, Changchun, 16-118 (in Chinese).
      [25] Martin, H., Moyen, J.F., 2002.Secular Changes in Tonalite-Trondhjemite-Granodiorite Composition as Markers of the Progressive Cooling of Earth.Geology, 30(4):319-322.https://doi.org/10.1130/0091-7613(2002)030<0319:scittg>2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0319:scittg>2.0.co;2
      [26] Mclennan, S.M., 1989.Rare Earth Elements in Sedimentary Rocks:Influence of Provenance and Sedimentary Processes.Reviews in Mineralogy, 21(8):169-200.
      [27] Pearce, J.A., 1982.Trace Element Characteristics of Lavas from Destructive Plate Boundaries.In: Thorpe, R.S., ed., Andesites: Orogenic Andesites and Related Rocks.Willy, Chichester, 528-548.
      [28] Rao, T.G., Naqvi, S.M., 1995.Geochemistry, Depositional Environment and Tectonic Setting of the BIF's of the Late Archaean Chitradurga Schist Belt, India.Chemical Geology, 121(1-4):217-243. https://doi.org/10.1016/0009-2541(94)00116-p
      [29] Shi, Z.Q., Shi, Y.R., 2016.SHRIMP U-Pb Ages of Zircons from Banded Magnetite Quartzite of Shachang Formation in Miyun Area of Beijing and Their Significance.Journal of Earch Sciences and Environment, 38(4):547-557 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201604010
      [30] Smithies, R.H., 2000.The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite.Earth and Planetary Science Letters, 182(1):115-125. https://doi.org/10.1016/s0012-821x(00)00236-3
      [31] Su, Y.P., Zheng, J.P., Griffin, W.L., et al., 2014.Zircon U-Pb Ages and Hf Isotope of Gneissic Rocks from the Huai'an Complex:Implications for Crustal Accretion and Tectonic Evolution in the Northern Margin of the North China Craton.Precambrian Research, 255:335-354. https://doi.org/10.1016/j.precamres.2014.10.007
      [32] Sun, S.S., Mcdonough, W.F., 1989, Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society London Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      [33] Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2012.Formation Ages of Early Precambrian BIFs in the North China Craton:SHRIMP Zircon U-Pb Dating.Acta Geologica Sinica, 86(9):1447-1478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201209010.htm
      [34] Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2018.Formation Age of BIF-Bearing Anshan Group Supracrustal Rocks in Anshan-Benxi Area:New Evidence from SHRIMP U-Pb Zircon Dating.Earth Science, 43 (1):57-81 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.004
      [35] Wan, Y.S., Liu, D.Y., 1993.Ages of Zircons from Mid-Archaean Gneissic Granite and Fuchsite Quartzite in the Gongchangling Area, Liaoning.Geological Review, 39(2):124-129 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000371972
      [36] Wan, Y.S., Song, B., Liu, D.Y., et al., 2006.SHRIMP U-Pb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton:Evidence for a Major Late Palaeoproterozoic Tectonothermal Event.Precambrian Research, 149(3-4):249-271. https://doi.org/10.1016/j.precamres.2006.06.006
      [37] Wang, H.C., Kang, J.L., Xiao, Z.B., et al., 2018.Neoarchean Subduction in North China Craton:New Evidence from the Metamorphic High-Mg Igneous Assemblage in Yunzhognshan Area, Shanxi Province.Acta Petrologica Sinica, 34(4):1099-1118 (in Chinese with English abstract).
      [38] Wang, Z.H., Wilde, S.A., Wang, K.Y., et al., 2004.A MORB-Arc Basalt-Adakite Association in the 2.5 Ga Wutai Greenstone Belt:Late Archean Magmatism and Crustal Growth in the North China Craton.Precambrian Research, 131(3-4):323-343. https://doi.org/10.1016/j.precamres.2003.12.014
      [39] Wilde, S.A., Cawood, P.A., Wang, K.Y., et al., 2005.Granitoid Evolution in the Late Archean Wutai Complex, North China Craton.Journal of Asian Earth Sciences, 24(5):597-613. https://doi.org/10.1016/j.jseaes.2003.11.006
      [40] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20(4):325-343. doi: 10.1016-0009-2541(77)90057-2/
      [41] Yang, J., Wang, J.R., Zhang, Q., et al., 2016.Back-Arc Basin Basalt (BABB) Data Mining:Comparison with MORB and IAB.Advances in Earth Science, 31(1):66-77 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201601006
      [42] Zhai, M.G., Santosh, M., 2011.The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview.Gondwana Research, 20(1):6-25. https://doi.org/10.1016/j.gr.2011.02.005
      [43] Zhai, M.G., Windley, B.F., 1990.The Archaean and Early Proterozoic Banded Iron Formations of North China:Their Characteristics, Geotectonic Relations, Chemistry and Implications for Crustal Growth.Precambrian Research, 48(3):267-286. https://doi.org/10.1016/0301-9268(90)90012-f
      [44] Zhang, H.F., Wang, H.Z., Santosh, M., et al., 2016.Zircon U-Pb Ages of Paleoproterozoic Mafic Granulites from the Huai'an Terrane, North China Craton (NCC):Implications for Timing of Cratonization and Crustal Evolution History.Precambrian Research, 272:244-263. https://doi.org/10.1016/j.precamres.2015.11.004
      [45] Zhang, H.F., Zhai, M.G., Santosh, M., et al., 2011.Geochronology and Petrogenesis of Neoarchean Potassic Meta-Granites from Huai'an Complex:Implications for the Evolution of the North China Craton.Gondwana Research, 20(1):82-105. https://doi.org/10.1016/j.gr.2011.01.009
      [46] Zhang, J.H., Tian, H., Wang, H.C., et al., 2019.Re-Definition of the Two-Stage Early-Precambrian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton:Evidences from Petrology and Zircon U-Pb Geochronology.Earth Science, 44(1):1-22 (in Chinese with English abstract)
      [47] Zhang, L.C., Zhai, M.G., Wan, Y.S., et al., 2012.Study of the Precambrian BIF-Iron Deposits in the North China Craton:Progresses and Questions.Acta Petrologica Sinica, 28(11):3431-3445 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211001
      [48] Zhang, L.C., Zhai, M.G., Zhang, X.J., et al., 2012.Formation Age and Tectonic Setting of the Shirengou Neoarchean Banded Iron Deposit in Eastern Hebei Province:Constraints from Geochemistry and SIMS Zircon U-Pb Dating.Precambrian Research, 222-223:325-338. https://doi.org/10.1016/j.precamres.2011.09.007
      [49] Zhang, Z.C., Hou, T., Santosh, M., et al., 2014.Spatio-Temporal Distribution and Tectonic Settings of the Major Iron Deposits in China:An Overview.Ore Geology Reviews, 57:247-263. https://doi.org/10.1016/j.oregeorev.2013.08.021
      [50] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited.Journal of Asian Earth Sciences, 24(5):519-522. http://dx.doi.org/10.1016/j.precamres.2004.10.002
      [51] Zhao, G.C, Wilde, S.A., Sun, M., et al., 2008.SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex:Constraints on Late Archean to Paleoproterozoic Magmatic and Metamorphic Events in the Trans-North China Orogen.American Journal of Science, 308(3):270-303. https://doi.org/10.2475/03.2008.04
      [52] 蔡佳, 刘平华, 冀磊, 等, 2017.冀西北怀安地体高级变质表壳岩的锆石年代学研究.岩石学报, 33(9):2811-2826. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201709011
      [53] 代堰锫, 朱玉娣, 张连昌, 等, 2016.国内外前寒武纪条带状铁建造研究现状.地质论评, 62(3):735-757. http://d.old.wanfangdata.com.cn/Periodical/dzlp201603016
      [54] 耿元生, 陆松年, 2014.中国前寒武纪地层年代学研究的进展和相关问题.地学前缘, 21(2):102-118. http://d.old.wanfangdata.com.cn/Periodical/dxqy201402009
      [55] 郭敬辉, 翟明国, 张毅刚, 等, 1993.怀安蔓菁沟早前寒武纪高压麻粒岩混杂岩带地质特征、岩石学和同位素年代学.岩石学报, 9(4):329-341. doi: 10.3321/j.issn:1000-0569.1993.04.007
      [56] 刘利, 张连昌, 代堰锫, 等, 2012.内蒙古固阳绿岩带三合明BIF型铁矿的形成时代、地球化学特征及地质意义.岩石学报, 28(11):3623-3637. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211014
      [57] 卢良兆, 徐学纯, 刘福来, 1996.中国北方早前寒武纪孔兹岩系.长春:长春出版社, 16-118.
      [58] 史志强, 石玉若, 2016.北京密云地区沙厂组条带状磁铁石英岩SHRIMP锆石U-Pb年龄及其地质意义.地球科学与环境学报, 38(4):547-557. doi: 10.3969/j.issn.1672-6561.2016.04.010
      [59] 万渝生, 董春艳, 颉颃强, 等, 2012.华北克拉通早前寒武纪条带状铁建造形成时代——SHRIMP锆石U-Pb定年.地质学报, 86(9):1447-1478. doi: 10.3969/j.issn.0001-5717.2012.09.008
      [60] 万渝生, 董春艳, 颉颃强, 等, 2018.鞍山-本溪地区鞍山群含BIF表壳岩形成时代新证据:锆石SHRIMP U-Pb定年.地球科学, 43(1):57-81. http://www.earth-science.net/WebPage/Article.aspx?id=3727
      [61] 万渝生, 刘敦一, 1993.辽宁弓长岭中太古代片麻状花岗岩和铬云母石英岩的锆石年龄.地质论评, 39(2):124-129. doi: 10.3321/j.issn:0371-5736.1993.02.005
      [62] 王惠初, 康健丽, 肖志斌, 等, 2018.华北克拉通新太古代板块俯冲作用:来自山西云中山地区变质高镁火成岩组合的证据.岩石学报, 34(4):1099-1118. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201804013
      [63] 杨婧, 王金荣, 张旗, 等, 2016.弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比.地球科学进展, 31(1):66-77. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201601006
      [64] 张家辉, 田辉, 王惠初, 等, 2019.华北克拉通怀安杂岩中早前寒武纪两期表壳岩的重新厘定:岩石学及锆石U-Pb年代学证据.地球科学, 44(1):1-22. http://www.earth-science.net/WebPage/Article.aspx?id=4103
      [65] 张连昌, 翟明国, 万渝生, 等, 2012.华北克拉通前寒武纪BIF铁矿研究:进展与问题.岩石学报, 28(11):3431-3445. http://d.old.wanfangdata.com.cn/Conference/7895390
    • 加载中
    图(9)
    计量
    • 文章访问数:  4819
    • HTML全文浏览量:  1541
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-06-25
    • 刊出日期:  2019-01-15

    目录

      /

      返回文章
      返回