Geochemistry Characteristics and 40Ar-39Ar Age of Biotite from the Saima Aegirine-Nepheline Syenite and Its Geological Significance
-
摘要: 黑云母不仅是理想的40Ar-39Ar年代学定年矿物,其化学组成还可用来指示母岩浆物理化学条件、岩浆源区及分异演化程度、成矿潜力和成岩构造环境.本文对辽宁赛马碱性杂岩体中分布最为广泛的霓霞正长岩中的黑云母开展系统电子探针分析和40Ar-39Ar定年,结合pMELTS软件对前人全岩主量元素分析数据开展了平衡结晶计算,探讨了母岩浆物理化学性质、演化过程和成岩构造背景.电子探针分析结果表明赛马霓霞正长岩黑云母具有高铁高钛特征,属铁质黑云母.根据黑云母主量元素含量及比值估算黑云母结晶温度为770~800℃,lgfO2介于-16~-14,而pMELTS平衡结晶计算结果表明整个霓霞正长岩岩浆体系于1 300℃以上便已开始结晶,且随温度降低氧逸度呈现不断降低的趋势,这种较高温度和持续降低的氧逸度环境不利于岩浆热液的分异,使得碱金属(Na)、挥发分及铀钍稀有元素保留在岩浆房内并在后期钠质岩浆(异霞正长岩)结晶分异过程中富集成矿.部分黑云母发育完好的振荡环带,且核部较幔部具有更高的TiO2、Na2O含量和更低的SiO2含量和Fe3+/(Fe3++Fe2+)比值,也进一步证实黑云母结晶后残余岩浆具有更低氧逸度和更高Na含量.赛马碱性岩是华北克拉通北缘近东西向碱性岩带的一部分,本文获得其黑云母40Ar-39Ar年龄为222 Ma左右,形成于古亚洲洋闭合之后的后碰撞伸展构造背景.
-
关键词:
- 赛马碱性杂岩体 /
- 40Ar-39Ar定年 /
- 黑云母 /
- 地球化学 /
- 岩浆演化 /
- pMELTS平衡计算 /
- 中亚造山带
Abstract: Biotite is not only a robust 40Ar-39Ar geochronometer, but also commonly used to constrain the physico-chemical conditions, magma source and evolution process, mineralization potential and tectonic settings of the parental magma. In this study, we have obtained the 40Ar-39Ar age and major element compositions of biotite from the most widely outcropped aegirine-nepheline syenite of the Saima alkaline complex. We further discuss the physicochemical property, the evolution process and tectonic settings of the rock by the combination of equilibrium calculation using pMELTS software on previously reported data. The biotite crystals from the aegirine-nepheline syenite have high Fe and Ti contents and belong to annite in both the APSE classification diagram and Mg-(Fe3++AlⅥ+Ti)-(Fe2++Mn) diagram for biotite. On the basis of the major element compositions of the biotite, the crystallization temperatures and oxygen fugacity (lgfO2) are estimated to range from 770 to 800℃ and -16 to -14, respectively, while the equilibrium calculation by pMELTS indicates that the magmatic system crystallized at >1 300℃ and the oxygen fugacity have decreased since the crystallization begun. The high temperature and decreasing oxygen fugacity prevent the early exsolution of a fluid phase, and the alkalis and volatiles are therefore retained in the melt and finally enriched in the hydrothermal fluids related to the late sodic lujavrite. Some of the biotite plates show oscillatory zoning, high TiO2, Na2O but low SiO2 contents and low Fe3+/(Fe3++Fe2+) ratio from the core to the rim, further indicating that the residual magmas after biotite crystallization would have lower temperature, lower oxygen fugacity but higher alkalis contents. The Saima alkaline complex is part of the E-W-trending alkaline rock belt at the northern margin of the NCC, and it is formed at~222 Ma as indicated by biotite 40Ar-39Ar age in post-collisional extension tectonic settings after the closure of the palaeo-Asian Ocean. -
图 1 华北克拉通北缘三叠纪碱性岩分布(a)和赛马岩体地质简图(b)
碱性岩位置据阎国翰等(2000);图b据陈肇博等(1996)
Fig. 1. Triassic alkaline rocks at the northern margin of the North China Craton (a) and the geological map of the Saima alkaline complex (b)
图 2 赛马霓霞正长岩中主要矿物镜下特征
a.片状黑云母与霓石、霞石共生(正交偏光);b.片状黑云母与霓石、钾长石共生,内部包裹自形榍石(正交偏光);c.片状黑云母与霓石、霞石、钾长石共生,黑云母内部或边缘出现磷灰石和榍石,霞石往往蚀变成钠沸石(正交偏光);d.与霓石、钾长石等共生的黑云母呈环带结构(正交偏光);e.黑云母环带结构(BSE图像);f.针状、放射状稀土矿物与磷灰石、方解石共生(BSE图像),产于钾长石等矿物粒间;g.不规则的异性石与霓石、钾长石共生(BSE图像);h.图g中放大区域显示异性石出溶结构:灰白色仅含K(硅钾锆石?);灰黑色含Na、Ca的异性石(呈出溶叶片构成三角格架)(BSE图像);i.钾钙板锆石内极小(< 10 μm)的锆石包体(BSE图像).矿物缩写:Aeg.霓石(霓辉石);Ap.磷灰石;Bt.黑云母;Cal.方解石;Eud.异性石;Kfs.钾长石;Ne.霞石;REE.稀土矿物;Ttn.榍石;Wad.钾钙板锆石
Fig. 2. Microphotographs showing major minerals from the Saima aegirine-nepheline syenite
图 3 赛马霓霞正长岩中黑云母的APSE分类图解(a)及Mg-(Fe3++AlⅥ+Ti)-(Fe2++Mn)图解(b)
图a底图据Rieder(1999);图b底图据Foster(1960);APSE指代铁云母-金云母-铁叶云母-镁叶云母
Fig. 3. Biotite composition of the Saima aegirine-nepheline syenite rocks plotted on the APSE quadrilateral (a) and Mg-(Fe3++AlⅥ+Ti)-(Fe2++Mn) diagram (b)
图 6 赛马霓霞正长岩的Fe2+-Mg2+-Fe3+图解
Fig. 6. The Fe2+-Mg2+-Fe3+ diagram for biotite from the Saima aegirine-nepheline syenites
图 7 赛马霓霞正长岩黑云母的lgfO2-T图解
据Wones and Eugster (1965);图中数字代表黑云母-碱性长石-磁铁矿共生组合中黑云母的100×Fe/(Fe+Mg)值;HM、NNO、FMQ分别代表Fe3O4-Fe2O3、Ni-NiO、Fe2SiO4-SiO2-Fe3O4三种氧逸度缓冲对,该相图压力值为207 MPa;图中整个岩浆体系氧逸度演化曲线根据pMELTS软件计算结果绘制
Fig. 7. LgfO2-T diagram for biotite plates from the Saima aegirine-nepheline syenites
图 9 赛马霓霞正长岩岩浆体系自1 300 ℃至800 ℃氧逸度演化趋势(a)和不同矿物/熔体含量变化(b)
TOli.橄榄石初始结晶温度;TOlf.橄榄石消失温度;TCpxi.霓石(霓辉石)初始结晶温度;TBti.黑云母初始结晶温度;TFsi.长石初始结晶温度;TNei.霞石初始结晶温度;TLei.白榴石初始结晶温度;Sp.尖晶石;Olv.橄榄石;Aeg.霓石;Bt.黑云母;Fs.长石;Ne.霞石;Le.白榴石
Fig. 9. LgfO2-T diagram showing the fO2 changes (a) and mineral/melt contents (b) in the Saima aegirine-nepheline syenite magmatic system from 1 300 ℃ to 800 ℃
图 10 赛马霓霞正长岩的FeOT-MgO-Al2O3图解
底图据Abdel-Rahman (1994);A.非造山构造背景下碱性岩浆岩;C.造山带钙碱性岩浆岩;P.过铝质花岗岩
Fig. 10. FeOT-MgO-Al2O3 diagram of the Saima nepheline syenite
-
[1] Abdel-Rahman, A. F. M., 1994. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2):525-541. https://doi.org/10.1093/petrology/35.2.525 [2] Andersen, T., Erambert, M., Larsen, A. O., et al., 2010. Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway:Zirconium Silicate Mineral Assemblages as Indicators of Alkalinity and Volatile Fugacity in Mildly Agpaitic Magma. Journal of Petrology, 51(11):2303-2325. https://doi.org/10.1093/petrology/egq058 [3] Borodina, N. S., Fershtater, G. B., Votyakov, S. L., 1999. The Oxidation Ratio of Iron in Coexisting Biotite and Hornblende from Granitic and Metamorphic Rocks:The Role of P, T and fO2. The Canadian Mineralogist, 37(6):1423-1429. [4] Chakhmouradian, A. R., Mitchell, R. H., 2002. The Mineralogy of Ba- and Zr-Rich Alkaline Pegmatites from Gordon Butte, Crazy Mountains (Montana, USA):Comparisons between Potassic and Sodic Agpaitic Pegmatites. Contributions to Mineralogy and Petrology, 143(1):93-114. https://doi.org/10.1007/s00410-001-0333-6 [5] Chen, B., Jahn, B. M., Tian, W., 2009. Evolution of the Solonker Suture Zone:Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction- and Collision-Related Magmas and Forearc Sediments. Journal of Asian Earth Sciences, 34(3):245-257. https://doi.org/10.1016/j.jseaes.2008.05.007 [6] Chen, B., Niu, X. L., Wang, Z. Q., et al., 2013. Geochronology, Petrology, and Geochemistry of the Yaojiazhuang Ultramafic-Syenitic Complex from the North China Craton. Science in China (Series D), 43:1073-1087 (in Chinese). [7] Chen, Y. J., Chen, H. Y., Zaw, K., et al., 2007. Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China:An Overview. Ore Geology Reviews, 31(1-4):139-169. https://doi.org/10.1016/j.oregeorev.2005.01.001 [8] Chen, Y. J., Zhang, C., Li, N., et al., 2012. Geology of the Mo Deposits in Northeast China. Journal of Jilin University (Earth Science Edition), 42(5):1223-1268 (in Chinese with English abstract). [9] Chen, Y. J., Zhang, C., Wang, P., et al., 2016. The Mo Deposits of Northeast China:A Powerful Indicator of Tectonic Settings and Associated Evolutionary Trends. Ore Geology Reviews, 81:602-640. https://doi.org/10.1016/j.oregeorev.2016.04.017 [10] Chen, Z. B., Fan, J., Guo, Z. T., 1996. Saima Alkaline Rocks and Relevant Metallogenesis. Atomic Energy Press, Beijing (in Chinese). [11] Deng, X. H., Wang, J. B., Santosh, M., et al., 2016. New 40Ar/39Ar Ages from the Kalatag District in the Eastern Tianshan, NW China:Constraints on the Timing of Cu Mineralization and Stratigraphy. Ore Geology Reviews, 100:250-262. https://doi.org/10.1016/j.oregeorev.2016.08.006 [12] Douce, A. E. P., 1993. Titanium Substitution in Biotite:An Empirical Model with Applications to Thermometry, O2 and H2O Barometries, and Consequences for Biotite Stability. Chemical Geology, 108(1-4):133-162. https://doi.org/10.1016/0009-2541(93)90321-9 [13] Erić, S., Logar, M., Milovanović, D., et al., 2009. Ti-In-Biotite Geothermometry in Non-Graphitic, Peraluminous Metapelites from Crni Vrh and Resavski Humovi (Central Serbia). Geologica Carpathica, 60(1):3-14. https://doi.org/10.2478/v10096-009-0003-6 [14] Foster, M.D., 1960. Interpretation of the Composition of Trioctahedral Micas. United States Geological Survey, Washington. [15] Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W., et al., 2002. The pMELTS:A Revision of MELTS for Improved Calculation of Phase Relations and Major Element Partitioning Related to Partial Melting of the Mantle to 3 GPa. Geochemistry, Geophysics, Geosystems, 3(5):1-35. https://doi.org/10.1029/2001gc000217 [16] Harrison, T. M., 1983. Some Observations on the Interpretation of 40Ar/39Ar Age Spectra. Chemical Geology, 41:319-338. https://doi.org/10.1016/s0009-2541(83)80027-8 [17] Henry, D. J., Guidotti, C. V., Thomsom, J. A., 2005. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites:Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 90(2-3):316-328. https://doi.org/10.2138/am.2005.1498 [18] Jacobs, D. C., Parry, W. T., 1979. Geochemistry of Biotite in the Santa Rita Porphyry Copper Deposit, New Mexico. Economic Geology, 74(4):860-887. https://doi.org/10.2113/gsecongeo.74.4.860 [19] Jing, L. Z., Guo, Y. J., Ding, C. X., 1995. Geochronology and Origin of Saima Alkaline Rocks in Liaoning Province. Geology in Liaoning, 4:257-271 (in Chinese with English abstract). [20] Khomyakov, A. P., 1995. Mineralogy of Hyperagpaitic Alkaline Rocks. Clarendon Press, Oxford. [21] Kogarko, L. N., Williams, C. T., Woolley, A. R., 2002. Chemical Evolution and Petrogenetic Implications of Loparite in the Layered, Agpaitic Lovozero Complex, Kola Peninsula, Russia. Mineralogy and Petrology, 74(1):1-24. https://doi.org/10.1007/s710-002-8213-2 [22] Koppers, A. A. P., 2002. ArArCALC-Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5):605-619. https://doi.org/10.1016/s0098-3004(01)00095-4 [23] Le Maitre, R. W., 2002. Igneous Rocks:A Classification and Glossary of Terms. Cambridge University Press, Cambridge. [24] Mann, U., Marks, M., Markl, G., 2006. Influence of Oxygen Fugacity on Mineral Compositions in Peralkaline Melts:The Katzenbuckel Volcano, Southwest Germany. Lithos, 91(1-4):262-285. https://doi.org/10.1016/j.lithos.2005.09.004 [25] Marks, M. A. W., Schilling, J., Coulson, I. M., et al., 2008. The Alkaline-Peralkaline Tamazeght Complex, High Atlas Mountains, Morocco:Mineral Chemistry and Petrological Constraints for Derivation from a Compositionally Heterogeneous Mantle Source. Journal of Petrology, 49(6):1097-1131. https://doi.org/10.1093/petrology/egn019 [26] Nadeau, O., Stevenson, R., Jébrak, M., 2016. Evolution of Montviel Alkaline-Carbonatite Complex by Coupled Fractional Crystallization, Fluid Mixing and Metasomatism-Part I:Petrography and Geochemistry of Metasomatic Aegirine-Augite and Biotite:Implications for REE-Nb Mineralization. Ore Geology Reviews, 72:1143-1162. https://doi.org/10.1016/j.oregeorev.2015.09.022 [27] Niu, X. L., Chen, B., Liu, A. K., et al., 2012. Petrological and Sr-Nd-Os Isotopic Constraints on the Origin of the Fanshan Ultrapotassic Complex from the North China Craton. Lithos, 149:146-158. https://doi.org/10.1016/j.lithos.2012.05.017 [28] Niu, X. L., Yang, J. S., Feng, G. Y., et al., 2015. Mineral Chemistry of Biotites from the Fanshan Ultramafic-Syenitic Complex and Its Petrogenetic Significance. Acta Geologica Sinica, 89(6):1108-1119 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201506009 [29] Niu, X. L., Yang, J. S., Liu, F., et al., 2016. Origin of Baotoudong Syenites in North China Craton:Petrological, Mineralogical and Geochemical Evidence. Science in China (Series D), 46(3):374-391 (in Chinese). [30] Rieder, M., 1999. Nomenclature of the Micas. Mineralogical Magazine, 63(2):267-279. https://doi.org/10.1180/002646199548385 [31] Robinson, P. T., Zhou, M. F., Hu, X. F., et al., 1999. Geochemical Constraints on the Origin of the Hegenshan Ophiolite, Inner Mongolia, China. Journal of Asian Earth Sciences, 17(4):423-442. https://doi.org/10.1016/s1367-9120(99)00016-4 [32] Shabani, A. A. T., Lalonde, A. E., Whalen, J. B., 2003. Composition of Biotite from Granitic Rocks of the Canadian Appalachian Orogen:A Potential Tectonomagmatic Indicator?. The Canadian Mineralogist, 41(6):1381-1396. https://doi.org/10.2113/gscanmin.41.6.1381 [33] Song, W. L., Xu, C., Smith, M. P., et al., 2016. Origin of Unusual HREE-Mo-Rich Carbonatites in the Qinling Orogen, China. Scientific Reports, 6(1):37377. https://doi.org/10.1038/srep37377 [34] Sørensen, H., 1997. The Agpaitic Rocks-An Overview. Mineralogical Magazine, 61(407):485-498. https://doi.org/10.1180/minmag.1997.061.407.02 [35] Tan, D. J., Lin, J. Q., Shan, X. L., 1999. On Magma Origin of Saima-Bailinchuan Alkaline Volcanic-Intrusive Complex. Geological Review, 45(S1):474-481 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000002169 [36] Thompson, R. N., Gibson, S. A., 1994. Magmatic Expression of Lithospheric Thinning across Continental Rifts. Tectonophysics, 233(1-2):41-68. https://doi.org/10.1016/0040-1951(94)90219-4 [37] Wang, J., Sun, F. Y., Jiang, H. F., et al., 2018. Age, Petrogenesis and Tectonic Implications of High-Mg Diorite in Chayong Region, Yushu, Qinghai. Earth Science, 43(3):733-752 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201803006 [38] Wang, Z. Q., Chen, Ma, X. H.B., 2014. Petrogenesis of the Late Mesozoic Guposhan Composite Plutons from the Nanling Range, South China:Implications for W-Sn Mineralization. American Journal of Science, 314(1):235-277. https://doi.org/10.2475/01.2014.07 [39] Wilson, M., Downes, H., Cebriá, J. M., 1995. Contrasting Fractionation Trends in Coexisting Continental Alkaline Magma Series; Cantal, Massif Central, France. Journal of Petrology, 36:1729-1753. https://doi.org/10.1093/oxfordjournals.petrology.a037272 [40] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022 [41] Wones, D. R., Eugster, H. P., 1965. Stability of Biotite:Experiment Theory and Application. American Mineralogist, 59(9):1228-1271. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1304.3805 [42] Wu, B., Wang, R. C., Yang, J. H., et al., 2015. Wadeite (K2ZrSi3O9), an Alkali-Zirconosilicate from the Saima Agpaitic Rocks in Northeastern China:Its Origin and Response to Multi-Stage Activities of Alkaline Fluids. Lithos, 224-225:126-142. https://doi.org/10.1016/j.lithos.2015.02.008 [43] Wu, B., Wang, R. C., Yang, J. H., et al., 2016. Zr and REE Mineralization in Sodic Lujavrite from the Saima Alkaline Complex, Northeastern China:A Mineralogical Study and Comparison with Potassic Rocks. Lithos, 262:232-246. https://doi.org/10.1016/j.lithos.2016.07.013 [44] Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1):1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 [45] Wu, F. Y., Yang, J. H., Liu, X. M., 2005. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 11(3):305-317 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503003 [46] Wu, F. Y., Yang, Y. H., Marks, M. A. W., et al., 2010. In Situ U-Pb, Sr, Nd and Hf Isotopic Analysis of Eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273(1-2):8-34. https://doi.org/10.1016/j.chemgeo.2010.02.007 [47] Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt. Tectonics, 22(6):1069-1076. https://doi.org/10.1029/2002tc001484 [48] Xu, C., Campbell, I. H., Allen, C. M., et al., 2008. U-Pb Zircon Age, Geochemical and Isotopic Characteristics of Carbonatite and Syenite Complexes from the Shaxiongdong, China. Lithos, 105(1-2):118-128. https://doi.org/10.1016/j.lithos.2008.03.002 [49] Xu, C., Zhang, H., Huang, Z. L., et al., 2004. Genesis of the Carbonatite-Syenite Complex and REE Deposit at Maoniuping, Sichuan Province, China:Evidence from Pb Isotope Geochemistry. Geochemical Journal, 38(1):67-76. https://doi.org/10.2343/geochemj.38.67 [50] Yan, G. H., Mou, B. L., Xu, B. L., et al., 2000. Geochronology, Sr, Nd, Pb Isotopes and Their Significance of the Triassic Alkaline Intrusive Rocks in the Yan'liao-Yinshan Region. Science in China (Series D), 30(4):383-387 (in Chinese). [51] Yang, J. H., Sun, J. F., Zhang, M., et al., 2012. Petrogenesis of Silica-Saturated and Silica-Undersaturated Syenites in the Northern North China Craton Related to Post-Collisional and Intraplate Extension. Chemical Geology, 328:149-167. https://doi.org/10.1016/j.chemgeo.2011.09.011 [52] Zhang, C., Li, N., 2014. Geology, Geochemistry and Tectonic Setting of the Indosinian Mo Deposits in Southern Great Hinggan Range, NE China. Geological Journal, 49(6):537-558. https://doi.org/10.1002/gj.2568 [53] Zhang, S. H., Zhao, Y., Song, B., et al., 2009. Contrasting Late Carboniferous and Late Permian-Middle Triassic Intrusive Suites from the Northern Margin of the North China Craton:Geochronology, Petrogenesis, and Tectonic Implications. Geological Society of America Bulletin, 120(1-2):181-200. https://doi.org/10.1130/b26157.1 [54] Zhang, S. H., Zhao, Y., Ye, H., et al., 2012. Early Mesozoic Alkaline Complexes in the Northern North China Craton:Implications for Cratonic Lithospheric Destruction. Lithos, 155(2):1-18. https://doi.org/10.1016/j.lithos.2012.08.009 [55] Zheng, Q. R., 1983. Calculation of the Fe3+ and Fe2+ Contents in Silicate and Ti-Fe Oxide Minerals from EPMA Data. Acta Mineralogica Sinica, 1:55-62 (in Chinese with English abstract). [56] Zheng, Y., Chen, Y. J., Cawood, P. A., et al., 2017. Late Permian-Triassic Metallogeny in the Chinese Altay Orogen:Constraints from Mica 40Ar/39Ar Dating on Ore Deposits. Gondwana Research, 43:4-16. https://doi.org/10.1016/j.gr.2015.08.018 [57] Zhong, J., Chen, Y. J., Pirajno, F., 2017. Geology, Geochemistry and Tectonic Settings of the Molybdenum Deposits in South China:A Review. Ore Geology Reviews, 81:829-855. https://doi.org/10.1016/j.oregeorev.2016.04.012 [58] Zhong, J., Chen, Y. J., Pirajno, F., et al., 2014. Geology, Geochronology, Fluid Inclusion and H-O Isotope Geochemistry of the Luoboling Porphyry Cu-Mo Deposit, Orefield Zijinshan, Province Fujian, China. Ore Geology Reviews, 57:61-77. https://doi.org/10.1016/j.oregeorev.2013.09.004 [59] Gong, L., Chen, H.Y., Wang, Y.F., et al., 2018. Petrogenesis and Mineralization of Yuhai and Sanchakou Copper Deposit:Constraints from Mineral Chemistry of Biotite in Xinjiang, Northwestern China. Earth Science, 43(9):2929-2942 (in Chinese with English abstract). [60] Zhou, Z. X., 1988. Chemical Characteristics of Mafic Mica in Intrusive Rocks and Its Geological Meaning. Acta Petrologica Sinica, 4(3):63-73 (in Chinese with English abstract). [61] Zhu, Y. S., Yang, J. H., Sun, J. F., et al., 2016. Petrogenesis of Coeval Silica-Saturated and Silica-Undersaturated Alkaline Rocks:Mineralogical and Geochemical Evidence from the Saima Alkaline Complex, NE China. Journal of Asian Earth Sciences, 117:184-207. https://doi.org/10.1016/j.jseaes.2015.12.014 [62] 陈斌, 牛晓露, 王志强, 等, 2013.华北克拉通北缘姚家庄镁铁岩-正长岩杂岩体的锆石U-Pb年代学、岩石学和地球化学特征.中国科学(D辑), 43:1073-1087. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201307001 [63] 陈衍景, 张成, 李诺, 等, 2012.中国东北钼矿床地质.吉林大学学报(地球科学版), 42(5):1223-1269. [64] 陈肇博, 范军, 郭智添, 1996.赛马碱性岩与成矿作用.北京:原子能出版社. [65] 景立珍, 郭裕嘉, 丁彩霞, 1995.辽宁赛马碱性岩的年代学及碱性岩浆的形成.辽宁地质, 4:257-271. http://d.old.wanfangdata.com.cn/Thesis/Y158131 [66] 牛晓露, 杨经绥, 冯光英, 等, 2015.河北矾山超镁铁岩-正长岩杂岩体中黑云母的特征及其成岩指示意义.地质学报, 89(6):1108-1119. doi: 10.3969/j.issn.0001-5717.2015.06.009 [67] 牛晓露, 杨经绥, 刘飞, 等, 2016.华北克拉通北缘包头东正长岩的成因:来自岩石矿物学和地球化学的证据.中国科学(D辑), 46(3):374-391. [68] 谭东娟, 林景仟, 单玄龙, 1999.赛马-柏林川碱性火山-侵入杂岩体岩浆成因.地质论评, 45 (S1):474-481. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=250087 [69] 王键, 孙丰月, 姜和芳, 等, 2018.青海玉树查涌地区高镁闪长岩年龄、岩石成因及构造背景.地球科学, 43(3):733-752. doi: 10.3799/dqkx.2018.904 [70] 吴福元, 杨进辉, 柳小明, 2005.辽东半岛中生代花岗质岩浆作用的年代学格架.高校地质学报, 11(3):305-317. doi: 10.3969/j.issn.1006-7493.2005.03.003 [71] 阎国翰, 牟保垒, 许保良, 等, 2000.燕辽-阴山三叠纪碱性侵入岩年代学和Sr, Nd, Pb同位素特征及意义.中国科学(D辑), 30(4):383-387. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200004006 [72] 郑巧荣, 1983.由电子探针分析值计算Fe3+和Fe2+.矿物学报, 1:55-62. doi: 10.3321/j.issn:1000-4734.1983.01.009 [73] 龚林, 陈华勇, 王云峰, 等, 2018.新疆玉海-三岔口铜矿黑云母矿物化学特征及成岩成矿意义.地球科学, 43(9):2929-2942. doi: 10.3799/dqkx.2018.145 [74] 周作侠, 1988.侵入岩的铁云母化学成分特征及其地质意义.岩石学报, 4(3):63-73. doi: 10.3321/j.issn:1000-0569.1988.03.007 -
dqkx-45-1-131-Table1-2.pdf