REE Mineralization of Epimetamorphic Rocks from an Ion-Adsorption Type REE Deposit in Southern Jiangxi Province
-
摘要: 近几年在赣南新元古代浅变质岩风化壳中发现了离子吸附型稀土矿床,对矿区及南岭科学深钻中的浅变质岩样品进行了岩石、矿物及地球化学特征研究.矿区内主要出露神山组和库里组(南华系),前者以千枚岩为主,含少量片岩,后者以厚层变质沉凝灰岩和中厚层变质砂岩为主;南岭科学深钻1 165~1 170.77 m库里组(青白口系)以变质沉凝灰岩为主夹薄层凝灰质板岩.浅变质岩类中新生变质矿物有绢云母、绿泥石、磁铁矿、堇青石、白云母、黑云母等,稀土矿物有新奇钙铈矿、独居石、磷钇矿、水独居石等;稀土含量为162×10-6~723×10-6,富集轻稀土.新奇钙铈矿是矿体中离子相稀土的主要来源;赣南青白口纪-南华纪中厚层变质沉凝灰岩和变质凝灰岩风化壳具有较好的稀土成矿前景.Abstract: An ion-adsorption type REE deposit occurs in regolith of epimetamorphic rocks formed in Neo-Proterozoic, and has been discovered in South Jiangxi Province in recent years. Petrological and geochemical characteristics of the rocks from the REE deposit and Nanling scientific drilling were studied in this paper. Shenshan Formation and Kuli Formation are widely exposed in the deposit, and the former consists mainly of phyllite and minor schist whereas the latter consists of thick-layer metatuffite, metamorphic tuff, and medium-thick-layer metasandstone. Kuli Formation is composed of metamorphic tuff with thin layer tuffaceous slate that intersected by Nanling scientific drilling from 1 165 m to 1 170.77 m. The epimetamorphic rocks with neo formation of sericite, chlorite, magnetite, cordierite, muscovite, biotite, etc. contain REE minerals such as synchysite-(Ce), monazite, xenotime and rhabdophane-(La) etc. They are enriched in REEs (162×10-6 to 723×10-6) with high LREE/HREE ratios (LREE/HREE=2-7).We suggest that Ion-adsorbed REEs in the regolithic zone of the epimetamorphic rocks are mainly sourced from REE-fluorocarbonate. Regolith of metamorphic tuff and metatuffite formed in Cryogenian in South Jiangxi Province should be included during REE-bearing properties evaluation and prospecting.
-
图 7 球粒陨石标准化的稀土矿物的REE配分曲线
球粒陨石数据引自Taylor and McLennan(1985)
Fig. 7. Chondrite-normalized REE patterns for rare earth minerals
图 8 太古界后平均澳大利亚沉积岩标准化的浅变质岩样品的REE配分曲线
PAAS数据引自McLenenan(1989)
Fig. 8. PAAS normalized REE patterns of the studied epimetamorphic rock samples
表 1 江西省宁都某离子吸附型稀土矿床浅变质岩样品的岩石学特征
Table 1. Petrological characteristics of the studied epimetamorphic rock samples
样号 层位 变质岩岩石名称 矿物和含量(%) 结构构造 原岩类型 ND-b9 Pt3k1 变质砂岩 砂粒矿物(>70%)主要是长石和石英,基质矿物有绢云母、黑云母、长石和石英等 变余砂状结构,变余层理 长石石英砂岩 ND-b22 Pt3k2 变质砂岩 砂粒矿物(>50%)主要是石英和少量长石,基质矿物有绢云母、黑云母等 变余砂状结构,变余层理 石英长石砂岩 ND-b31 Pt3k1 变质砂岩 砂粒矿物(>70%)主要是长石和石英,基质矿物有绢云母、黑云母、长石和石英等 变余砂状结构,变余层理 长石石英砂岩 ND-b6 Pt3k2 变质沉凝灰岩 石英和岩屑(~5%),基质矿物有绢云母、黑云母等 变余碎屑结构 沉凝灰岩 ND-b7 Pt3k2 变质凝灰岩 石英和长石晶屑(~8%),基质矿物有绢云母、黑云母等 变余碎屑结构 凝灰岩 ND-b5 Pt3k1 绢云变质沉凝灰岩 石英和岩屑(<5%),基质为长英质矿物和绢云母等 变余碎屑结构 沉凝灰岩 ND-b32 Pt3k1 绢云变质沉凝灰岩 变余斑晶(<20%)为碱性长石、斜长石及石英.基质为绢云母、石英及少量的黑云母等 变余碎屑结构,显微片状粒状变晶结构 沉凝灰岩 ND-b34 Pt3k1 变质沉凝灰岩 石英和长石晶屑(~20%),基质矿物有绢云母、黑云母、石英、长石等 变余碎屑结构,块状构造 沉凝灰岩 ND-b2 Pt3s1 绢云千枚岩 绢云母为主(>50%),含黑云母、石英等 显微片状变晶结构,千枚状构造 泥质岩、粉砂质泥质岩,部分中酸性火山凝灰岩 ND-b8 Pt3k1 绢云千枚岩 绢云母为主(>50%),含黑云母、石英等 显微片状变晶结构,千枚状构造 ND-b21 Pt3s2 含磁铁矿绢云千枚岩 绢云母为主(≥70%),含磁铁矿、黑云母、绿泥石及石英等 斑状变晶结构,显微片状变晶结构,千枚状构造 ND-b33 Pt3k1 绢云石英千枚岩 石英(>70%)、绢云母(10%)、堇青石(4%)、黑云母(5%)、绿泥石(2%) 斑状变晶结构,显微片状变晶结构,千枚状构造 ND-b23 Pt3s1 白云母片岩 白云母(>65%),石英(35%) 粒状片状变晶结构,片状构造 泥质岩、粉砂质泥质岩,部分中酸性火山凝灰岩 -
[1] Bao, Z.W., 1992.A Geochemical Study of the Granitoid Weathering Crust in Southeast China.Geochimica, 21(2):166-174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000258390 [2] Bao, Z.W., Zhao, Z.H., 2008.Geochemistry of Mineralization with Exchangeable REY in the Weathering Crusts of Granitic Rocks in South China.Ore Geology Reviews, 33(3-4):519-535.https://doi.org/10.1016/j.oregeorev.2007.03.005" target="_blank"> https://doi.org/10.1016/j.oregeorev.2007.03.005 [3] Bern, C.R., Yesavage, T., Foley, N.K., 2017.Ion-Adsorption REEs in Regolith of the Liberty Hill Pluton, South Carolina, USA:An Effect of Hydrothermal Alteration.Journal of Geochemical Exploration, 172:29-40.https://doi.org/10.1016/j.gexplo.2016.09.009" target="_blank"> https://doi.org/10.1016/j.gexplo.2016.09.009 [4] Chi, R.A., Tian, J., Luo, X.P., et al., 2012.The Basic Research on the Weathered Crust Elution-Deposited Rare Earth Ores.Nonferrous Metals Science and Engineering, 3(4):1-13(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxysjs201705019 [5] Ding, J., Song, T.R., Shi, Y.R., 2016.Occurrence and Origin of Monazite and Rutiles from Sedimentary Rock of Chuanlinggou Formation in Changping Area of Beijing.Journal of Earth Sciences and Enviroment, 38(2):172-181(in Chinese with English abstract). [6] Grommet, L, P., Silver, L, T., 1983.A Rare Earth Element Distribution among Minerals in a Granodiorite and their Petrogenetic Implications.Geochimica et Cosmochimica Acta, 47(5):925-937. doi: 10.1016/0016-7037(83)90158-8 [7] Guo, N.X., 2015.Genesis Relationship between Two Types of Mineralization in Yinkeng Ore Field, Southern Jiangxi Province, Nanling Region (Dissertation).Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract). [8] Imai, A., Yonezu, K., Sanematsu, K., et al., 2013.Rare Earth Elements in Hydrothermally Altered Granitic Rocks in the Ranong and Takua Pa Tin-Field, Southern Thailand.Resource Geology, 63(1):84-98.https://doi.org/10.1111/j.1751-3928.2012.00212.x doi: 10.1111/rge.2013.63.issue-1 [9] Ishihara, S., Hua, R.M., Hoshino, M., et al., 2008.REE Abundance and REE Minerals in Granitic Rocks in the Nanling Range, Jiangxi Province, Southern China, and Generation of the REE-Rich Weathered Crust Deposits.Resource Geology, 58(4):355-372.https://doi.org/10.1111/j.1751-3928.2008.00070.x doi: 10.1111/rge.2008.58.issue-4 [10] Kato, Y., Fujinaga, K., Nakamura, K., et al., 2011.Deep-Sea Mud in the Pacific Ocean as a Potential Resource for Rare-Earth Elements.Nature Geoscience, 4(8):535-539.https://doi.org/10.1038/ngeo1185" target="_blank"> https://doi.org/10.1038/ngeo1185 [11] Li, Z.J., Liu, Y., 2018.Ore Types and Genesis of Weathered Deposits in Mianning-Dechang REE Ore Belt, Western Sichuan Province, Southwestern China.Earth Science, 43(4):1307-1320(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2018.722 http://d.old.wanfangdata.com.cn/Periodical/dqkx201804024 [12] Liu, Z.C., Wu, F.Y., Guo, C.L., et al., 2011.In Situ U-Pb Dating of Xenotime by Laser Ablation (LA)-ICP-MS.Chinese Science Bulletin, 56(33):2772-2781(in Chinese). doi: 10.1007/s11434-011-4657-y [13] McLennan, S.M., 1989.Rare Earth Elements in Sedimentary Rocks:Influence on Provenance and Sedimentary Processes.Reviews in Mineralogy, 21(8):169-200. http://eprints.uni-kiel.de/29574/ [14] Murakami, H., Ishihara, S., 2008.REE Mineralization of Weathered Crust and Clay Sediment on Granitic Rocks in the Sanyo Belt, SW Japan and the Southern Jiangxi Province, China.Resource Geology, 58(4):373-401.https://doi.org/10.1111/j.1751-3928.2008.00071.x doi: 10.1111/rge.2008.58.issue-4 [15] Padrones, J.T., Imai, A., Takahashi, R., 2017.Geochemical Behavior of Rare Earth Elements in Weathered Granitic Rocks in Northern Palawan, Philippines.Resource Geology, 67(3):231-253.https://doi.org/10.1111/rge.12123 doi: 10.1111/rge.2017.67.issue-3 [16] Qiu, K.F., Yang, L.Q., 2011 Genetic Feature of Monazite and Its U-Th-Pb Dating:Critical Considerations on the Tectonic Evolution of Sanjiang Tethys.Acta Petrologica Sinica, 27(9):2721-2732(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201109020 [17] Sanematsu, K., Ejima, T., Kon, Y., et al., 2016.Fractionation of Rare-Earth Elements during Magmatic Differentiation and Weathering of Calc-Alkaline Granites in Southern Myanmar.Mineralogical Magazine, 80(1):77-102.https://doi.org/10.1180/minmag.2016.080.053" target="_blank"> https://doi.org/10.1180/minmag.2016.080.053 [18] Sanematsu, K., Kon, Y., Imai, A., 2015.Influence of Phosphate on Mobility and Adsorption of REEs during Weathering of Granites in Thailand.Journal of Asian Earth Sciences, 111(1):14-30.https://doi.org/10.1016/j.jseaes.2015.05.018 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0235482339 [19] Sanematsu, K., Kon, Y., Imai, A., et al., 2013.Geochemical and Mineralogical Characteristics of Ion-Adsorption Type REE Mineralization in Phuket, Thailand.Mineralium Deposita, 48(4):437-451.https://doi.org/10.1007/s00126-011-0380-5" target="_blank"> https://doi.org/10.1007/s00126-011-0380-5 [20] Sanematsu, K., Murakami, H., Watanabe, Y., et al., 2009.Enrichment of Rare Earth Elements (REE) in Granitic Rocks and Their Weathered Crusts in Central and Southern Laos.Bulletin of the Geological Survey of Japan, 60(11-12):527-558.https://doi.org/10.9795/bullgsj.60.527" target="_blank"> https://doi.org/10.9795/bullgsj.60.527 [21] Sanematsu, K, Watanabe, K., 2016.Characteristics and Genesis of Ion-Adsorption Type Rare Earth Element Deposits.In: Verplanck, P.L., Hitzman, M.W., eds., Reviews in Economic Geology.Society of Economic Geologists, 18: 55-79. [22] Sawka, W.N., Chappell, B.W., 1988.Fractionation of Uranium, Thorium and Rare Earth Elements in a Vertically Zoned Granodiorite:Implications for Heat Production Distributions in the Sierra Nevada Batholith, California, U.S.A..Geochimica et Cosmochimica Acta, 52(5):1131-1143.https://doi.org/10.1016/0016-7037(88)90267-0" target="_blank"> https://doi.org/10.1016/0016-7037(88)90267-0 [23] Song, T.R., 1999.Discovery of Authigenic Rare Earth Mineral Monazite in Precambrian Sedimentary Rock of Dalian Area and Its Significance.Acta Sedimentologica Sinica, 17(Suppl.):663-667 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB1999S1000.htm [24] Song, T.R., He, Z.J., Wan, Y.S., et al., 2003.Discovery of Authigenic Monazite in Precambrian Sedimentary Rock and Its Significance.Acta Sedimentologica Sinica, 21(1):118-124 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB1999S1000.htm [25] Song, Y.H., Shen, L.P., 1982.Discussion on Clay Minerals Occurrsing in the Weathered Crust of a Certain Acid Volcanic Rock in Jiangxi Province and Their Formation Conditions.Acta Mineralogica Acta, 2(3):207-212 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-kwxb198203006.htm [26] Song, Y.H., Shen, L.P., 1986.REE Geochemistry of the Weathered Crust of Acid Volcanic Rocks—An Experimental Study.Geochimica, 2(3):225-234 (in Chinese with English abstract). doi: 10.1007/BF02872217 [27] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust: Its Composition and Evolution.Blackwell, London, 57-72. [28] Topp, S.E., Salbu, B., Roaldset, E., et al., 1984.Vertical Distribution of Trace Elements in Laterite Soil (Suriname).Chemical Geology, 47(1-2):159-174.https://doi.org/10.1016/0009-2541(84)90104-9" target="_blank"> https://doi.org/10.1016/0009-2541(84)90104-9 [29] Wang, D.H., Zhao, Z., Yu, Y., et al., 2017.A Review of the Achievements in the Survey and Study of Ion-Absorption Type REE Deposit in China.Acta Geoscientica Sinica, 38(3):317-325 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201703002 [30] Wang, Z., Zhao, Z., Zou, X.Y., et al., 2018.Petrogeochemical Characteristics and Metallogenetic Potential of Epimetamorphic Rocks in South Jiangxi Province.Rock and Mineral Analysis, 37(1):96-107(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201801013 [31] Wang, Z.L., Xu, D.R., Monika, A.K., et al., 2015.Genesis and CHIME Dating on Monazite in the Shilu Iron Ore Deposite, Hainan Province of South China, and Its Geological Implications.Acta Petrologica Sinica, 31(1):200-216(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201501015.htm [32] Wu, C.Y., 1988.The Study of Ion-Adsorbed Type of Rare Earth Deposits in Weathering Crust from South Jiangxi and North Guangdong Provinces(Dissertation).Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract). [33] Wu, C.Y., Lu, H.L., Xu, L.M., et al., 1993.A Preliminary Study on Modes of Occurrence of Rare Earth Elements in the Tropical Subtropical Weathering Crust of Nanling Region.Mineral Deposits, 12(4):297-307 (in Chinese with English abstract). [34] Xu, Z.G., Chen, Y.C., Wang, D.H., et al., 2008.Division of Metallogenic Belts in China.Geological Publishing House, Beijing (in Chinese). [35] Yang, Y.Q., Hu, Z.S., Luo, Z.M., 1981.Geological Characteristic of Mineralization of Rare Earth Deposit of the Ion-Absorption Type and Their Prospecting Direction.Bulletin of the Chinese Academy of Geological Sciences, 2(1):102-118(in Chinese with English abstract). [36] Zhao, Z., Wang, D.H., Chen, Z.Y., et al., 2014.Metallogenic Specialization of Rare Earth Mineralized Igneous Rocks in the Eastern Nanling Region.Geotectonica et Metallogenia, 38(2):255-263(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201402005 [37] Zhao, Z., Wang, D.H., Chen, Z.H., et al., 2017a.Progress of Research on Metallogenic Regularity of Ion-Adsorption Type REE Deposit in the Nanling Range.Acta Geologica Sinica, 91(12):2814-2827 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201712016 [38] Zhao, Z., Wang, D.H., Pan, H., et al., 2017b.REE Geochemistry of a Weathering Profile in Guangxi, Southern China, and Genesis of Ion-Adsorption Type REE Deposit.Earth science, 42(10):1697-1706 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.115 [39] Zhao, Z., Wang, Z.Q., Chen, Y.C., et al., 2016.381 Ma Rhyolite Found by Nanling Scientific Drilling in Qingbaikouan System.Geology in China, 43(5):1579-1584(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201605008 [40] 包志伟, 1992.华南花岗岩风化壳稀土元素地球化学研究.地球化学, 21(2):166-174. doi: 10.3321/j.issn:0379-1726.1992.02.008 [41] 池汝安, 田君, 罗仙平, 等, 2012.风化壳淋积型稀土矿的基础研究.有色金属科学与工程, 3(4) :1-13. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201204003 [42] 丁静, 宋天锐, 石玉若, 2016.北京昌平地区串岭沟组沉积岩中独居石、金红石赋存状态及其成因.地球科学与环境学报, 38(2):172-181. doi: 10.3969/j.issn.1672-6561.2016.02.005 [43] 郭娜欣, 2015.南岭银坑矿田两种类型矿床成因关系研究(博士论文).北京: 中国地质科学院. [44] 李自静, 刘琰, 2018.川西冕宁—德昌REE矿带风化型矿床的矿石类型及成因.地球科学, 43(4):1307-1320.https://doi.org/10.3799/dqkx.2018.722 http://earth-science.net/WebPage/Article.aspx?id=3783 [45] 刘志超, 吴福元, 郭春丽, 等, 2011.磷钇矿U-Pb年龄激光原位ICP-MS测定.科学通报, 56(33):2772-2781. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201201001106.htm [46] 邱昆峰, 杨立强.2011.独居石成因特征与U-Th-Pb定年及三江特提斯构造演化研究例析.岩石学报, 27(9):2721-2732. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201109020 [47] 宋天锐, 1999.大连地区前寒武纪沉积岩中发现自生独居石及其意义.沉积学报, 17(S1):663-667. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900008079 [48] 宋天锐, 和政军, 万渝生, 等, 2003.前寒武纪沉积岩独居石中自生独居石的发现及其意义.沉积学报, 21(1) :118-124. doi: 10.3969/j.issn.1000-0550.2003.01.018 [49] 宋云华, 沈丽璞.1982.江西某酸性火山岩风化壳中粘土矿物及其形成条件的讨论.矿物学报, 2(3):207-212. doi: 10.3321/j.issn:1000-4734.1982.03.007 [50] 宋云华, 沈丽璞.1986.酸性火山岩类风化壳中稀土元素的地球化学实验研究.地球化学, 2(3):225-234. doi: 10.3321/j.issn:0379-1726.1986.03.004 [51] 王登红, 赵芝, 于扬, 等, 2017.我国离子吸附型稀土矿产科学研究和调查评价新进展.地球学报, 38(3):317-325. http://d.old.wanfangdata.com.cn/Periodical/dqxb201703002 [52] 王臻, 赵芝, 邹新勇, 等, 2018.赣南浅变质岩岩石地球化学特征及稀土成矿潜力研究.岩矿测试, 37(1): 96-107. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YKCS201801014&dbname=CJFD&dbcode=CJFQ [53] 王智琳, 许德如, Monika, A.K., 等, 2015.海南石碌铁矿独居石的成因类型、化学定年及地质意义.岩石学报, 31(1):200-216. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501015 [54] 吴澄宇.1988.赣南粤北地区风化壳离子吸附型稀土矿床研究(博士论文).北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213390.htm [55] 吴澄宇, 卢海龙, 徐磊明, 等, 1993.南岭热带-亚热带风化壳中稀土元素赋存形式的初步研究.矿床地质, 12(4):297-307. http://www.cqvip.com/Main/Detail.aspx?id=1110692 [56] 徐志刚, 陈毓川, 王登红, 等, 2008.中国成矿区带划分方案.北京:地质出版社. [57] 杨岳清, 胡淙声, 罗展明, 1981.离子吸附型稀土矿床成矿地质特征及找矿方向.中国地质科学院院报矿床地质研究所分刊, 2(1):102-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002240114 [58] 赵正, 王宗起, 陈毓川, 等, 2016.南岭科学钻探青白口系中发现381 Ma流纹岩.中国地质, 43(5):1579-1584. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201605008 [59] 赵芝, 王登红, 陈振宇, 等, 2014.南岭东段与稀土矿有关岩浆岩的成矿专属性特征.大地构造与成矿学, 38(2):255-263. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201402005 [60] 赵芝, 王登红, 陈郑辉, 等, 2017a.南岭离子吸附型稀土矿床成矿规律研究新进展.地质学报, 91(12):2814-2827. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201712016 [61] 赵芝, 王登红, 潘华, 等, 2017b.广西某地花岗岩风化壳中稀土元素特征与iRee矿床成矿机制.地球科学, 42(10):1697-1706.https://doi.org/10.3799/dqkx.2017.115 http://earth-science.net/WebPage/Article.aspx?id=3667