Dissolution of Fe-Organic Associations by Peatland-Derived Phenolic Acids and Its Environmental Significance
-
摘要: 泥炭沼泽是具有全球意义的湿地类型,研究泥炭沼泽源酚酸对铁有机复合体的溶解作用有助于深入了解铁碳耦合地球化学循环过程.以中国东北金川泥炭沼泽为研究对象,提取了泥炭腐殖质,并实验合成了铁有机复合体及一系列的铁氧化物.选择原儿茶酸、咖啡酸和没食子酸等代表性泥炭沼泽源酚酸对铁有机复合体以及铁氧化物等系统开展了不同条件下的溶解试验.结果表明酚酸对无定型的水铁矿和新合成的铁有机复合溶解能力相对较弱,而对结晶态的赤铁矿、针铁矿和老化后的铁有机复合体的溶解能力较强.pH值、酚酸浓度和铁氧化物自身的结构和组成都对铁矿物的溶解作用产生影响.反映了铁有机复合体在酚酸溶液体系中比无机铁氧化物更稳定,这与泥炭沼泽中有机结合态铁比例较高、而普通矿质土壤中结晶态铁氧化物占比更大的事实相吻合.证明了铁有机复合体是泥炭沼泽中影响铁碳循环耦合的关键载体.泥炭沼泽中铁碳作用十分复杂,既能以铁有机络合物形式向海洋等水生生态系统输出大量的溶解性铁,也能通过铁有机复合体的形成促进泥炭沼泽有机碳的保存,进而影响全球铁碳循环耦合,具有重要的生态环境意义.Abstract: Peatland is a type of wetland with global significance, and the study of the dissolution of phenolic-iron complexes by peat derived phenolic acids helps us to understand better the iron-carbon coupled geochemical cycle. In this study, humic substances were extracted from Jingchuan peatland soils and hematite, goethite, ferrihydrite and Fe-organic associations were synthesized. After that, a series of dissolution experiments were performed with three representative peatland-derived phenolic acids, including gallic acid, caffeic acid and protocatechuic acid. Results show that the amorphous ferrihydrite and the newly synthesized humic-Fe have weaker dissolution capacities, but the well-crystallized goethite, hematite and the humic-Fe after aging have better dissolution capacities, meanwhile the humic-Fe could be more stable in the phenolic acids solution than the pure iron oxides. It is confirmed that the organic iron makes up higher proportion in peatland soil, while the crystallized iron oxides make up higher proportion in mineral soils. The interaction between iron and carbon in peatland is complicated, where iron could be exported to aquatic ecosystem such as the ocean by complexing with iron, and organic carbon could also be preserved by forming Fe-organic complexes, thus affecting the global iron-carbon coupled geochemical cycle.
-
Key words:
- Fe-organic association /
- peatland /
- phenolic acid /
- iron dissolution /
- organic matter
-
表 1 铁氧化物和铁有机复合体在不同溶解体系下的溶解量
Table 1. The dissolved concentrations of iron oxides and iron-organic associations in different dissolution systems
铁矿物 酚酸浓度
(mmol/L)原儿茶酸 咖啡酸 没食子酸 pH=8.0 pH=5.5 pH=8.0 pH=5.5 pH=8.0 pH=5.5 水铁矿 0.1 0.205±0.013 0.184±0.022 0.246±0.007 0.246±0.013 0.137±0.013 0.141±0.023 0.5 0.164±0.017 0.164±0.006 0.128±0.023 0.142±0.013 0.142±0.023 0.164±0.006 1.0 0.142±0.013 0.142±0.006 0.178±0.017 0.205±0.046 0.205±0.028 0.331±0.028 赤铁矿 0.1 1.222±0.132 0.271±0.080 1.299±0.273 0.229±0.013 1.112±0.147 1.493±0.418 0.5 0.906±0.196 0.161±0.024 0.875±0.109 0.288±0.210 0.740±0.220 1.133±0.060 1.0 0.682±0.136 0.090±0.042 0.609±0.211 0.180±0.217 0.756±0.344 0.718±0.191 针铁矿 0.1 5.709±0.740 1.724±0.502 0.738±0.393 2.489±0.052 2.277±0.251 2.142±0.497 0.5 4.171±1.044 0.948±0.233 0.437±0.195 1.887±0.048 1.469±0.098 1.147±0.020 1.0 2.714±0.231 0.055±0.013 0.072±0.055 0.409±0.025 0.996±0.073 0.120±0.010 HA-FE 0.1 0.377±0.046 0.354±0.025 0.359±0.023 0.577±0.028 0.504±0.017 0.737±0.013 0.5 0.329±0.061 0.205±0.007 0.282±0.011 0.458±0.064 0.404±0.022 0.591±0.017 1.0 0.133±0.011 0.124±0.007 0.232±0.034 0.472±0.050 0.345±0.028 0.582±0.073 LHA-Fe 0.1 4.210±0.031 0.646±0.289 5.092±0.185 1.876±0.075 3.885±1.844 4.865±0.169 0.5 1.016±0.298 0.074±0.007 3.865±0.122 0.549±0.422 1.695±0.589 1.120±0.067 1.0 0.088±0.013 0.061±0.017 0.088±0.013 0.187±0.006 0.088±0.006 0.164±0.029 注:溶解量单位为10-6. 表 2 不同反应体系中溶解铁含量随酚酸浓度变化程度
Table 2. The degrees of dissolved iron change in different reaction systems
铁矿物 原儿茶酸 咖啡酸 没食子酸 pH=8.0 pH=5.5 pH=8.0 pH=5.5 pH=8.0 pH=5.5 赤铁矿 79.1% 200.1% 113.3% 27.2% 47.2% 107.8% 针铁矿 110.3% 3 034.5% 925.0% 508.9% 128.5% 1 681.2% HA-Fe 183.7% 186.2% 54.6% 22.2% 45.9% 26.7% LHA-Fe 4 684.1% 965.3% 5 708.4% 904.8% 4 314.7% 2 860.4% 表 3 不同反应体系中铁矿物溶解速率
Table 3. Dissolution rates of iron minerals in different systems
铁矿物 原儿茶酸 咖啡酸 没食子酸 pH=8.0 pH=5.5 pH=8.0 pH=5.5 pH=8.0 pH=5.5 针铁矿 0.729 0.207 0.412 0.149 0.288 0.318 赤铁矿 0.202 0.080 -0.107 0.108 0.275 0.210 HA-Fe 0.059 0.026 0.052 0.053 0.146 0.209 LHA-Fe 0.117 0.007 0.195 0.063 0.127 0.131 注:溶解速率单位为mg/h. 表 4 铁有机复合体和铁氧化物在不同酚酸溶液中的K值
Table 4. The K of Fe-organic associations and iron oxides in different phenolic acid solutions
有机复合体 HA-Fe LHA-Fe 赤铁矿 针铁矿 原儿茶酸 58.2% 346.6% 545.9% 201.6% 没食子酸 11.4% 177.4% 35.7% 138.4% 咖啡酸 11.4% 254.7% -34.7% 28.0% -
[1] Andjelkovi, M., Camp, J.V., Meulenaer, B.D., et al., 2006.Iron-Chelation Properties of Phenolic Acids Bearing Catechol and Galloyl Groups.Food Chemistry, 98(1):23-31. doi: 10.1016/j.foodchem.2005.05.044 [2] Boudot, J.P., Bel Hadj Brahim, A., Steiman, R., et al., 1989.Biodegradation of Synthetic Organo-Metallic Complexes of Iron and Aluminium with Selected Metal to Carbon Ratios.Soil Biology and Biochemistry, 21(7):961-966. doi: 10.1016/0038-0717(89)90088-6 [3] Chen, C.M., Dynes, J.J., Wang, J., et al., 2014.Properties of Fe-Organic Matter Associations via Coprecipitation versus Adsorption.Environmental Science & Technology, 48(23):13751-13759. http://www.ncbi.nlm.nih.gov/pubmed/25350793 [4] Chin, Y., Traina, S.J., Swank, C.R., et al., 1998.Abundance and Properties of Dissolved Organic Matter in Pore Waters of a Freshwater Wetland.Limnology and Oceanography, 43(6):1287-1296. doi: 10.4319/lo.1998.43.6.1287 [5] Colombo, C., Palumbo, G., He, J.Z., et al., 2014.Review on Iron Availability in Soil:Interaction of Fe Minerals, Plants, and Microbes.Journal of Soils & Sediments, 14(3):538-548. http://jxb.oxfordjournals.org/external-ref?access_num=10.1007/s11368-013-0814-z&link_type=DOI [6] Davranche, M., Dia, A., Fakih, M., et al, 2013.Organic Matter Control on the Reactivity of Fe(Ⅲ)-Oxyhydroxides and Associated as in Wetland Soils:A Kinetic Modeling Study.Chemical Geology, 335(1):24-35. http://www.sciencedirect.com/science/article/pii/S0009254112005396 [7] Eitel, E.M., Taillefert, M., 2017.Mechanistic Investigation of Fe(Ⅲ) Oxide Reduction by Low Molecular Weight Organic Sulfur Species.Geochimica et Cosmochimica Acta, 215:173-188. doi: 10.1016/j.gca.2017.07.016 [8] Elfarissi, F., Pefferkorn, E., 2000.Kaolinite/Humic Acid Interaction in the Presence of Aluminium Ion.Colloids and Surfaces A Physicochemical and Engineering Aspects, 168(1):1-12. http://www.sciencedirect.com/science/article/pii/S0927775799002927 [9] Eusterhues, K., Hädrich, A., Neidhardt, J., et al., 2014.Reduction of Ferrihydrite with Adsorbed and Coprecipitated Organic Matter:Microbial Reduction by Geobacter Bremensis vs.Abiotic Reduction by Na-Dithionite.Biogeosciences Discussions, 11(4):6039-6067. http://adsabs.harvard.edu/abs/2014BGeo...11.4953E [10] Fahmi, A., Radjagukguk, B., Purwanto, B.H., et al., 2010.The Role of Peat Layers on Iron Dynamics in Peatlands.Jurnal Tanah Tropika, 15(3):195-201. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_6ca2d3cf713ff2f5e88c77fa7b4a9ab8 [11] Fu, X.F., 2017.Influence of Wetland Utilization on Interactions between Iron and Carbon in Sanjiang Plain and the Environmental Significances (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). [12] Gao, J., Zheng, T.L., Deng, Y.M., et al., 2017.Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain.Earth Science, 42(5):716-726 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705006.htm [13] Gorham, E., 1991.Northern Peatlands:Role in the Carbon Cycle and Probable Responses to Climatic Warming.Ecological Applications, 1(2):182-195. doi: 10.2307/1941811 [14] Graham, T.L., 1991.Flavonoid and Isoflavonoid Distribution in Developing Soybean Seedling Tissues and in Seed and Root Exudates.Plant Physiology, 95(2):594-603. doi: 10.1104/pp.95.2.594 [15] Gu, B., Schmitt, J., Chen, Z., et al., 1994.Adsorption and Desorption of Natural Organic Matter on Iron Oxide:Mechanisms and Models.Environmental Science & Technology, 28(1):38. http://www.ncbi.nlm.nih.gov/pubmed/22175831 [16] Harwood, C.S., Parales, R.E., 1996.The Beta-Ketoadipate Pathway and the Biology of Self-Identity.Annual Review of Microbiology, 50(1):553-590. doi: 10.1146/annurev.micro.50.1.553 [17] Krachler, R., Krachler, R.F., Vond, K.F., et al., 2010.Relevance of Peat-Draining Rivers for the Riverine Input of Dissolved Iron into the Ocean.Science of the Total Environment, 408(11):2402-2408. doi: 10.1016/j.scitotenv.2010.02.018 [18] Krumina, L., Lyngsie, G., Tunlid, A., et al., 2017.Oxidation of a Dimethoxyhydroquinone by Ferrihydrite and Goethite Nanoparticles:Iron Reduction versus Surface Catalysis.Environmental Science & Technology, 51(16):9053-9061. http://www.ncbi.nlm.nih.gov/pubmed/28691796/ [19] LaKind, J.S., Stone, A.T., 1989.Reductive Dissolution of Goethite by Phenolic Reductants.Geochimica et Cosmochimica Acta, 53(5):961-971. doi: 10.1016/0016-7037(89)90202-0 [20] Larsen, O, Postma, D., 2001.Kinetics of Reductive Bulk Dissolution of Lepidocrocite, Ferrihydrite, and Goethite.Geochimica et Cosmochimica Acta, 65(9):1367-1379. doi: 10.1016/S0016-7037(00)00623-2 [21] Larsen, O., Postma, D., Jakobsen, R., 2006.The Reactivity of Iron Oxides towards Reductive Dissolution with Ascorbic Acid in a Shallow Sandy Aquifer (Rømø, Denmark).Geochimica et Cosmochimica Acta, 70(19):4827-4835. doi: 10.1016/j.gca.2006.03.027 [22] Lovley, D., Philips, E.J.P., 1988.Manganese Inhibition of Microbial Iron Reduction in Anaerobic Sediments.Geomicrobiology Journal, 6(3-4):145-155. doi: 10.1080/01490458809377834 [23] Lovley, D.R., 2004.Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) Reduction.Advances in Microbial Physiology, 49(2):219. http://pubmedcentralcanada.ca/pmcc/articles/PMC372814/ [24] Lu, Z.J., Deng, Y.M., Du, Y., et al., 2017.EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain.Earth Science, 42(5):771-782 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705012.htm [25] Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1990.Iron in Antarctic Waters.Nature, 345(6271):156-158. doi: 10.1038/345156a0 [26] Mercader, R.C., Silva, A.C., Montes, M.L., et al., 2014.Chemical Fate of Iron in a Peatland Developing in the Southern Espinhaço Chain, Brazil.Hyperfine Interactions, 226(1-3):509-516. doi: 10.1007/s10751-013-0975-6 [27] Mikutta, R., Mikutta, C., Kalbitz, K., et al., 2007.Biodegradation of Forest Floor Organic Matter Bound to Minerals via Different Binding Mechanisms.Geochimica et Cosmochimica Acta, 71(10):2569-2590. doi: 10.1016/j.gca.2007.03.002 [28] Moran, J.F., Klucas, R.V., Grayer, R.J., et al., 1997.Complexes of Iron with Phenolic Compounds from Soybean Nodules and Other Legume Tissues:Prooxidant and Antioxidant Properties.Free Radical Biology and Medicine, 22(5):861-870. doi: 10.1016/S0891-5849(96)00426-1 [29] Nevin, K.P., Lovley, D.R., 2002.Mechanisms for Accessing Insoluble Fe(Ⅲ) Oxide during Dissimilatory Fe(Ⅲ) Reduction by Geothrix Fermentans.Applied and Environmental Microbiology, 68(5):2294-2299. doi: 10.1128/AEM.68.5.2294-2299.2002 [30] Parida, K.M., Das, N.N., 1996.Reductive Dissolution of Hematite in Hydrochloric Acid Medium by Some Inorganic and Organic Reductants:A Comparative Study.Indian Journal of Engineering & Materials Sciences, 3(6):243-247. doi: 10.1021/la960203u [31] Prietzel, J., Thieme, A.J., Eusterhues, B.K., et al., 2007.Iron Speciation in Soils and Soil Aggregates by Synchrotron-Based X-Ray Microspectroscopy (XANES, μ-XANES).European Journal of Soil Science, 58(5):1027-1041. doi: 10.1111/ejs.2007.58.issue-5 [32] Reddy, K.R., Delaune, R.D., et al., 2008.Biogeochemistry of Wetlands:Science and Applications.Soil Science Society of America Journal, 73(2):1779. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_704a6b4451440dc6bf4b36b41cbd8bc5 [33] Rue, E.L., Bruland, K.W., 1995.Complexation of Iron (Ⅲ) by Natural Organic Ligands in the Central North Pacific as Determined by a New Competitive Ligand Equilibration/Adsorptive Cathodic Stripping Voltammetric Method.Marine Chemistry, 50(1-4):117-138. doi: 10.1016/0304-4203(95)00031-L [34] Schwertmann, H.C.U., Cornell, R.M., 2000.Iron Oxides in the Laboratory:Preparation and Characterization.Clay Minerals, 27(3):393. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_cdae05dc4e98ca279bfe7ddde622081d [35] Shi, Z., Zachara, J.M., Wang, Z., et al., 2013.Reductive Dissolution of Goethite and Hematite by Reduced Flavins.Geochimica et Cosmochimica Acta, 121(6):139-154. http://www.sciencedirect.com/science/article/pii/S0016703713003268 [36] Shimizu, M., Zhou, J., Schröder, C., et al., 2013.Dissimilatory Reduction and Transformation of Ferrihydrite-Humic Acid Coprecipitates.Environmental Science & Technology, 47(23):13375-13384. http://europepmc.org/abstract/med/24219167 [37] Stone, A.T., 1987.Adsorption of Organic Reductants and Subsequent Electron Transfer on Metal Oxide Surfaces.Symposium A:Quarterly Journal in Modern Foreign Literatures, 11:446-461. doi: 10.1021/bk-1987-0323.ch021 [38] Stumm, W., Sulzberger, B., 1992.The Cycling of Iron in Natural Environments:Considerations Based on Laboratory Studies of Heterogeneous Redox Processes.Geochimica et Cosmochimica Acta, 56(8):3233-3257. doi: 10.1016/0016-7037(92)90301-X [39] Suter, D., Banwart, S., Stumm, W., 1991.Dissolution of Hydrous Iron(Ⅲ) Oxides by Reductive Mechanisms.Langmuir, 7(4):809-813. doi: 10.1021/la00052a033 [40] Taillefert, M, Beckler, J S, Carey, E, et al., 2007.Shewanella Putrefaciens Produces an Fe(Ⅲ)-Solubilizing Organic Ligand during Anaerobic Respiration on Insoluble Fe(Ⅲ) Oxides.Journal of Inorganic Biochemistry, 101(11):1760-1767. http://www.sciencedirect.com/science/article/pii/S0162013407001997 [41] Tufano, K.J., Fendorf, S., 2008.Confounding Impacts of Iron Reduction on Arsenic Retention.Environmental Science & Technology, 42(13):4777-4783. http://www.ncbi.nlm.nih.gov/pubmed/18678005 [42] Vempati, R.K., Loeppert, R.H., 1986, Synthetic Ferrihydrite as a Potential Iron Amendment in Calcareous Soils.Journal of Plant Nutrition, 9(3-7):1039-1052. doi: 10.1080/01904168609363504 [43] Wan, X., Xiang, W., Yu, S., et al., 2013.Determination of Phenols from Peatland Water by Solid Phase Extraction and High Performance Liquid Chromatography.Chinese Journal of Analysis Laboratory, 32(10):15-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-FXSY201310006.htm [44] Wang, Y., Xiang, W., Yang, W., et al., 2018.Photo-Stability of Iron-Phenolic Complexes Derived from Peatland Upon Irradiation in Waters under Simulated Sunlight.Chemical Geology, 485:14-23. doi: 10.1016/j.chemgeo.2018.03.016 [45] Wen, Q.X., 1984.Method of Soil Organic Matter Research.China Agriculture Press, Beijing (in Chinese). [46] Wu, Y., Xiang, W., Fu, X.F., et al., 2016.Effect of Phenolic Acids Derived from Peatland on Surface Behavior of Iron and Its Significance:A Case Study in Hani Peatland.Earth Science, 41(4):683-691 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201604014.htm [47] Xu, S.L., Duan, W.H., Liu, S.J., et al., 1986.A Study on the Ferrous Ion Oxidized by the Air in Aqueous Solution.Journal of Yunnan University, 8(2):191-197 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YNDZ198602015.htm [48] Yu, Z., Loisel, J., Brosseau, D.P., et al., 2010.Global Peatland Dynamics since the Last Glacial Maximum.Geophysical Research Letters, 37(13):69-73. http://www.cabdirect.org/abstracts/20103270680.html [49] 傅先芳, 2017.湿地开发对三江平原沼泽分布区铁碳相互作用的影响及其环境意义(硕士学位论文).武汉: 中国地质大学. [50] 高杰, 郑天亮, 邓娅敏, 等, 2017.江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响.地球科学, 42(5):716-726. http://earth-science.net/WebPage/Article.aspx?id=3576 [51] 鲁宗杰, 邓娅敏, 杜尧, 等, 2017.江汉平原高砷地下水中DOM三维荧光特征及其指示意义.地球科学, 42(5):771-782. http://earth-science.net/WebPage/Article.aspx?id=3571 [52] 万翔, 向武, 于桑, 等, 2013.固相萃取-高效液相色谱法同时测定泥炭沼泽源水体中9种酚类物质.分析试验室, 32(10):15-19. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FXSY201310006&dbname=CJFD&dbcode=CJFQ [53] 文启孝, 1984.土壤有机质研究法.北京:农业出版社. [54] 邬钰, 向武, 傅先芳, 等, 2016.东北哈尼泥炭沼泽中酚酸的组成、酚铁相互作用及其环境意义.地球科学, 41(4):683-691. http://d.old.wanfangdata.com.cn/Periodical/dqkx201604014 [55] 徐绍龄, 段维恒, 刘时杰, 等, 1986.空气氧化水溶液中亚铁离子的研究——1.溶液pH值对氧化速率的影响及铁的水解产物破坏水合亚铁离子"遮蔽效应"的催化机理.云南大学学报, 8(2):191-197. http://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ198602015.htm