• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湖北大冶铜山口铜(钼)矿床中钨矿化特征及其地质意义

    朱乔乔 谢桂青 韩颖霄

    朱乔乔, 谢桂青, 韩颖霄, 2019. 湖北大冶铜山口铜(钼)矿床中钨矿化特征及其地质意义. 地球科学, 44(2): 441-455. doi: 10.3799/dqkx.2018.288
    引用本文: 朱乔乔, 谢桂青, 韩颖霄, 2019. 湖北大冶铜山口铜(钼)矿床中钨矿化特征及其地质意义. 地球科学, 44(2): 441-455. doi: 10.3799/dqkx.2018.288
    Zhu Qiaoqiao, Xie Guiqing, Han Yingxiao, 2019. Characteristics of Tungsten Mineralization from the Tongshankou Skarn-Porphyry Cu (Mo) Deposit in Daye, Hubei Province, and Its Geological Implications. Earth Science, 44(2): 441-455. doi: 10.3799/dqkx.2018.288
    Citation: Zhu Qiaoqiao, Xie Guiqing, Han Yingxiao, 2019. Characteristics of Tungsten Mineralization from the Tongshankou Skarn-Porphyry Cu (Mo) Deposit in Daye, Hubei Province, and Its Geological Implications. Earth Science, 44(2): 441-455. doi: 10.3799/dqkx.2018.288

    湖北大冶铜山口铜(钼)矿床中钨矿化特征及其地质意义

    doi: 10.3799/dqkx.2018.288
    基金项目: 

    国家自然科学基金项目 41573042

    国家重点研发计划 2016YFC0600206

    详细信息
      作者简介:

      朱乔乔(1988-), 男, 助理研究员, 主要从事热液矿床成矿作用研究

      通讯作者:

      谢桂青

    • 中图分类号: P571

    Characteristics of Tungsten Mineralization from the Tongshankou Skarn-Porphyry Cu (Mo) Deposit in Daye, Hubei Province, and Its Geological Implications

    • 摘要: 为了查明鄂东矿集区内铜山口矽卡岩-斑岩型铜(钼)矿床中钨矿化作用的地质特征.对该矿床中的钨矿(化)体开展了系统的矿床地质特征、岩石学和矿物学研究,并探讨基底对区内钨矿在空间上分布的影响.钨矿体主要产出于花岗闪长斑岩与碳酸盐岩地层的接触部位及其附近,其产状受接触面形态的控制;钨既可形成独立的钨矿体,也可作为铜和钼矿体的伴生组分;钨矿物主要为含Mo的白钨矿.铜山口矿床中的钨矿化与矽卡岩化有着密切的时间、空间和成因联系,具有典型的氧化性矽卡岩型钨矿特征,钨和铜矿化是同一岩浆-热液事件不同阶段的产物,但钨矿体的产出位置比铜矿化相对更深;鄂东矿集区南部的钨矿化岩体具有很多相似性,他们很可能在一定程度上受富含铜和钨的江南式基底控制,江南式和董岭式基底在鄂东矿集区的结合部位可能位于阳新岩体附近.

       

    • 图  1  铜山口铜(钼)矿地质平面图

      吕新彪等(1992)修改

      Fig.  1.  Geological map of Tongshankou Cu(Mo) deposit

      图  2  铜山口铜(钼)矿地质剖面图(a)和钻孔中Cu、WO3含量关系(b)

      湖北省地质局第一地质大队,2015.湖北大冶市铜山口铜矿接替资源勘查报告

      Fig.  2.  Geological section of Tongshankou Cu (Mo) deposit (a) and the content of Cu and WO3 of core drill samples (b)

      图  3  铜山口矿床矿化阶段和矿物生成顺序

      Fig.  3.  Paragenetic sequence of mineralization stage and minerals in the Tongshankou deposit

      图  4  铜山口铜(钼)矿中白钨矿化特征

      a, b.绢云母碳酸盐蚀变岩中浸染状白钨矿;c.绢云母碳酸盐蚀变岩中半自形白钨矿颗粒产出,可见少量强绢云母化斜长石残留,白钨矿颗粒集合体外部有少量黄铁矿;d.石榴子石矽卡岩中浸染状白钨矿和团状黄铜矿和斑铜矿,方解石充填在石榴子石晶体间隙;e, f.白钨矿充填或交代石榴子石,黄铜矿和斑铜矿充填在白钨矿晶体间隙或穿插白钨矿;g.石榴子石矽卡岩化大理岩;h, i.石榴子石晶体核部包裹硬石膏和透辉石颗粒,边部包裹白钨矿,且晶体边部被方解石、硅灰石和石英交代;j.块状黄铜矿矿石;k, l.黄铜矿中包裹自形白钨矿,白钨矿颗粒核部不清晰.c, h, k.正交偏光;e.单偏光;f, l.反射光;i.BSE照片.Anh.硬石膏;Bn.斑铜矿;Cc.方解石;Ccp.黄铜矿;Di.透辉石;Grt.石榴子石;Mb.大理岩;Pl.斜长石;Py.黄铁矿;Sch.白钨矿;Wol.硅灰石

      Fig.  4.  Characteristics of tungsten mineralization from Tongshankou Cu (Mo) deposit

      图  5  白钨矿中Mo3与WO3(a)和CaO(b)含量谐变图解

      Fig.  5.  Relationship between Mo3 and WO3 (a) and CaO (b) content of scheelite

      图  6  白钨矿BSE照片中明暗变化与MoO3含量(%)相对关系

      Fig.  6.  Relationship of the brightness of back scattered electron imaging (BSE) photos and the MoO3 content of scheelite

      图  7  长江中下游地区江南式基底与金属矿床空间分布图

      常印佛等(1991); 马振东和单光祥(1997); Mao et al.(2011); Song et al.(2018)修改

      Fig.  7.  Relationship of Jiangnan basement and spatial distribution of mineral deposits in the Middle-Lower Yangtze River

      图  8  鄂东矿集区矽卡岩型钨矿岩体氧化性-二氧化硅图解

      Meinert(1995)修改;底图中各类型矽卡岩型矿床平均值据Meinert(1995),投点数据来源于Sato(1980); 孙家福(1984); 毕承思(1987); Blevin(1995); Hart et al.(2004); Wang et al.(2004); 谢桂青等, 2008; Rasmussen et al.(2011); Song et al.(2018)及其所引文献

      Fig.  8.  Iron oxidation state and SiO2 content of plutons associated with W skarns from East Hubei Province

      表  1  铜山口铜(钼钨)矿床中白钨矿电子探针数据(%)

      Table  1.   Electron microprobe analysis data (%) of scheelite from Tongshankou Cu (Mo-W) deposit

      样号FeONa2OCaOMnOWO3MoO3SiO2总量FeNaCaMnWMoSi钼钙矿(%)
      T02-10-1-1-0.0720.21-76.93-0.2097.410.00*0.000.760.003.230.000.010.00
      T02-10-4-10.11-20.26-77.700.060.2198.330.000.000.760.003.230.000.010.08
      T02-10-5-10.020.0520.480.0479.090.110.2299.990.000.000.750.003.230.000.010.14
      T02-10-6-1-0.0919.92-76.60-0.1896.790.000.000.760.003.230.000.010.00
      T02-10-7-2-0.0419.96-76.690.080.1396.900.000.000.760.003.230.000.000.12
      T02-10-8-20.14-19.87-77.170.150.2097.530.010.000.750.003.230.010.010.21
      T02-12-1-50.190.1126.24-22.9849.630.1199.250.010.000.940.000.912.130.0070.01
      T02-12-1-60.340.1023.74-44.7428.840.1397.870.010.000.870.001.831.270.0041.06
      T02-12-1-70.970.0822.80-51.2719.120.2394.460.040.000.880.002.190.880.0128.73
      T02-12-10.100.0419.450.0275.463.14-98.190.000.000.730.003.130.140.004.31
      T02-12-20.090.2024.240.1333.2537.40-95.310.000.000.910.011.391.690.0054.87
      T02-12-30.23-20.730.0566.5410.98-98.520.010.000.770.002.730.490.0015.13
      T06-1-1-20.14-20.660.1577.400.580.2299.140.010.000.770.013.190.030.010.80
      T06-1-2-1--20.850.0481.160.130.20102.380.000.000.750.003.240.010.010.17
      T06-1-2-2--21.34-75.735.610.24102.910.000.000.760.002.990.240.017.41
      T06-1-3-1--21.230.0275.285.090.18101.800.000.000.760.003.010.220.016.81
      T06-1-5-10.07-21.190.0972.305.350.1999.180.000.000.780.002.970.240.017.41
      T05-13-1-10.070.1720.75-74.101.140.2896.510.000.000.790.003.130.050.011.64
      T05-13-1-2--21.740.0767.2310.460.2999.790.000.000.800.002.730.460.0114.39
      T05-13-2-1-0.1122.260.0359.4115.550.2097.550.000.000.830.002.460.700.0122.05
      T05-13-2-20.080.0420.26-74.880.880.2596.390.000.000.770.003.170.040.011.25
      T05-10-1-10.040.0221.22-65.479.080.1996.010.000.000.810.002.770.410.0113.04
      T05-10-1-20.120.0821.09-69.425.200.2096.110.000.000.810.002.940.240.017.49
      T05-10-3-1-0.0520.77-72.093.830.2296.970.000.000.790.003.030.170.015.43
      T05-10-3-20.030.0921.41-63.159.450.1794.300.000.000.830.002.720.440.0113.92
      T05-10-3-30.090.0820.890.0967.577.060.1895.950.000.000.800.002.860.320.0110.14
      T05-10-3-20.040.0620.810.0467.5210.30-98.780.000.000.770.002.770.460.0014.16
      TSK09-1-1--20.60-76.571.130.1898.470.000.000.770.003.170.050.011.57
      TSK09-1-20.07-21.57-67.069.850.2098.760.000.000.800.002.750.440.0113.70
      TSK09-1-3-0.1720.58-76.131.280.1898.340.000.000.770.003.160.060.011.79
      TSK09-2-1-0.0620.50-75.711.210.1897.650.000.000.770.003.160.050.011.70
      TSK09-5-1--20.170.0475.381.390.2797.200.000.000.760.003.160.060.011.95
      TSK09-7-10.09-20.46-74.441.110.2196.310.000.000.780.003.160.050.011.59
      TSK09-7-20.08-20.790.1275.451.330.2398.010.000.000.780.003.140.060.011.87
      TSK09-7-30.04-20.83-73.142.340.1996.540.000.000.790.003.090.110.013.34
      T05-15-10.090.0221.53-74.535.950.24102.360.000.000.770.002.960.260.017.95
      T05-15-2--22.10-68.2410.480.22101.050.000.000.800.002.740.450.0114.24
      T05-15-3--21.61-72.036.750.18100.560.000.000.790.002.910.290.019.20
      T05-15-2-1-0.0321.220.1473.145.520.16100.200.000.000.780.012.970.240.017.54
      T05-15-2-2--21.820.0770.299.100.17101.450.000.000.790.002.810.390.0112.27
      T05-15-2-3-0.0221.39-72.096.940.20100.640.000.000.780.002.910.300.019.43
      T05-15-2-4-0.0521.400.0470.256.240.2398.210.000.000.800.002.910.280.018.76
      T05-15-4-20.08-21.100.0674.325.350.20101.100.000.000.760.002.990.230.017.21
      T05-15-4-3--21.640.1264.937.630.1594.470.000.000.840.012.790.360.0111.28
      T06-17-10.06-20.87-77.801.250.19100.180.000.000.770.003.170.060.011.71
      T06-17-20.02-20.530.0476.770.990.1198.460.000.000.770.003.180.040.001.37
      T06-17-3-10.100.0620.250.0676.410.690.2197.770.000.000.760.003.190.030.010.96
      T06-17-3-20.050.1919.59-74.880.920.3095.940.000.000.750.003.180.040.011.31
      T05-7-6-1--19.180.0578.670.10-98.000.000.000.720.003.270.000.000.13
      T05-7-6-20.040.0223.020.0047.8526.68-97.600.000.000.850.001.961.180.0037.61
      注:“-”表示低于检测限.“*”基于阳离子总数为4计算.
      下载: 导出CSV

      表  2  铜山口铜(钼钨)矿与不同类型矽卡岩型钨矿比较

      Table  2.   Comparison of characteristics of Tongshankou Cu (Mo-W) deposit with major W skarn types

      矿床类型/名称还原型氧化型铜山口
      主要金属元素W,CuW,MoCu、W、Mo
      次要金属元素Bi,AuCu,Zn,Ag,BiAg
      岩浆岩类型
      I型,演化的I型,S型?;钛铁矿型

      I型,演化的I型;磁铁矿型

      I型;磁铁矿型
      成矿主岩类型花岗岩(花岗闪长岩)花岗岩和花岗闪长岩花岗闪长斑岩
      主要蚀变类型蠕英石化,少量白云母化蠕英石化,内矽卡岩,少量黑云母化
      外矽卡岩>>内矽卡岩,钾长石、黑云母,石英-绢云母
      进变质矿物
      辉石(Hd70-95)>石榴子石(And10-30)(10:1-2:1)

      石榴子石(And60-100)>辉石(Hd40-60)(10:1-1:1)>>硅灰石

      石榴子石(And71)>透辉石>>硅灰石
      退变质矿物
      黑云母,铁闪石,铁绿泥石,石英,方解石,氧化物,硫化物

      阳起石,绿泥石,绿帘石,石英,方解石,氧化物,硫化物

      蛇纹石、金云母,石英,绿泥石,透闪石
      金属矿物
      少量钼白钨矿,自然金,磁黄铁矿,黄铜矿,闪锌矿

      钼白钨矿,黄铁矿,黄铜矿,磁铁矿

      钼白钨矿,黄铜矿,黄铁矿,辉钼矿,斑铜矿,磁铁矿
      流体包裹体成分低-中等盐度,富CH4中-高盐度中-高盐度
      形成压力150~250 MPa130~200 MPa20~50 MPa
      典型矿床
      Cantung,ManTung, Lened,Fujigatani; Sandong,朱溪

      Pine Creek,Round Valley,Kara,King Island
      参考文献
      Sato, 1980; Einaudi et al., 1981; Newberry, 1998; Song et al., 2018

      Einaudi et al., 1981; Newberry, 1998

      吕新彪等, 1992, 1993; 舒全安等, 1992, 本次
      下载: 导出CSV

      表  3  鄂东矿集区钨矿床特征对比

      Table  3.   Comparison of tungsten-bearing deposits from East Hubei Province

      矿床阮家湾钨铜矿龙角山铜钨矿付家山铜钨矿铜山口铜(钼钨)矿
      规模大型中型中型大型
      围岩地层
      奥陶系碳酸盐岩、志留系砂页岩

      中志留统坟头群砂页岩与黄龙群白云质大理岩界面
      二叠系下统茅口组灰岩大冶组灰岩、白云质灰岩
      成矿主岩类型/时代
      花岗闪长岩,143±1 Ma
      花岗闪长斑岩,144±1 Ma花岗闪长斑岩花岗闪长斑岩,140.6±2.4 Ma
      成矿主岩DI指数68.48~70.8173.31~74.0874.14~74.2970.70~74.25

      成矿主岩氧化性
      Fe2O3/(FeO+Fe2O3)
      0.42~0.700.41~0.440.460.35~0.47
      成矿时代
      143.6±1.7 Ma(辉钼矿Re-Os)

      144.7±2.9 Ma(辉钼矿Re-Os)

      142~143 Ma(辉钼矿Re-Os);143.0±0.3Ma(云母40Ar-39Ar)
      蚀变类型
      石榴子石矽卡岩化、钾长石化、硅化、绢云母化

      石榴子石矽卡岩化、硅化、黄铁矿化、绿泥石化、碳酸盐化、绿帘石化、绢云母化、蛇纹石化

      透辉石石榴子石矽卡岩和石榴子石矽卡岩化、黄铁矿化、钾长石化、绢云母化

      石榴子石矽卡岩化、透辉石矽卡岩化、钾化、硅化、绢云母化、碳酸盐化、蛇纹石化
      参考文献
      舒全安等, 1992; Xie et al., 2007
      舒全安等, 1992; 丁丽雪等, 2014舒全安等, 1992; 丁丽雪等, 2014
      Wang et al., 2004; 赵新福等, 2006; Xie et al., 2007; Li et al., 2008
      下载: 导出CSV
    • [1] Bi, C.S., 1987.Basic Geological Characteristics of Skarn-Type Scheelite Deposit in China.Journal of the Chinese Academy of Geological Sciences, 17(3):49-64 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005177214
      [2] Blevin, P.L., 1995.Chemistry, Origin, and Evolution of Mineralized Granites in the Lachlan Fold Belt, Australia:The Metallogeny of I-and S-Type Granites.Economic Geology, 90(6):1604-1619. https://doi.org/10.2113/gsecongeo.90.6.1604
      [3] Chang, Y.F., Dong, S.W., Huang, D.Z., 1996.On Tectonics of "Poly-Basement with One Cover" in Middle-Lower Yangtze Craton China.Volcanology & Mineral Resources, 17(1-2):1-15 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600914013
      [4] Chang, Y.F., Liu, X.P., Wu, Y.C., 1991.Metallogenic Belt of the Middle and Lower Yangtze River.Geological Publishing House, Beijing (in Chinese).
      [5] Ding, L.X., Huang, G.C., Xia, J.L., 2014.Petrogenesis of the Longjiaoshan-Fujiashan Porphyritic Intrusion in Southeastern Hubei Province and Implications for Cu-W Mineralization.Acta Geologica Sinica, 88(8):1513-1527 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201408013
      [6] Ding, L.X., Huang, G.C., Xia, J.L., 2018.Age and Petrogenesis of the Echeng Intrusion in Southeastern Hubei Province:Implications for Iron Mineralization.Earth Science, 43(7):2350-2369 (in Chinese with English abstract).
      [7] Einaudi, M.T., Meinert, L.D., Newberry, R.J., 1981.Skarn Deposits.In: Skinner, B.J, ed., Economic Geology Seventy-Fifth Anniversary Volume.Economic Geology Publishing Company, Lancaster, 317-391.https://doi.org/10.5382/AV75.11
      [8] Hart, C.J.R., Mair, J.L., Goldfarb, R.J., et al., 2004.Source and Redox Controls on Metallogenic Variations in Intrusion-Related Ore Systems, Tombstone-Tungsten Belt, Yukon Territory, Canada.Transactions of the Royal Society of Edinburgh Earth Sciences, 95(1-2):339-356. https://doi.org/10.1017/S0263593300001115
      [9] Hsu, L.C., Galli, P.E., 1973.Origin of the Scheelite-Powellite Series of Minerals.Economic Geology, 68(5):681-696. http://doi.org/10.2113/gsecongeo.68.5.681
      [10] Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2008.Origin of the Tongshankou Porphyry-Skarn Cu-Mo Deposit, Eastern Yangtze Craton, Eastern China:Geochronological, Geochemical, and Sr-Nd-Hf Isotopic Constraints.Mineralium Deposita, 43(3):315-336. https://doi.org/10.1007/s00126-007-0161-3
      [11] Liang, X.T., Quan, H.L., Ma, X.L., et al., 2012.Geophysical Deep Ore-Prospecting Model for Tongshankou Area of Daye, Hubei Province.Geophysical & Geochemical Exploration, 36(4):697-704(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/wtyht201204038
      [12] Liu, Y.J., Ma, D.S., 1987.Tungsten Geochemistry.Science Press, Beijing (in Chinese).
      [13] Lü, X.B., Yao, S.Z, Lin, X.D., 1992.The Geological Characteristics and Ore-Forming Mechanism of Tongshankou Skarn-Porphyry Composite Type of Copper (Molybdenum) Ore Deposit, Hubei.Earth Science, (2):171-180 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000260087
      [14] Lü, X.B., Yao, S.Z, Lin, X.D., 1993.Alteration-Mineralization Zoning of the Tongshankou Copper (Molybdenum) Deposit in Daye Hubei and Its Prospecting Significance.Mining Geology, (2):97-106 (in Chinese with English abstract).
      [15] Ma, Z.D., Shan, G.X., 1997.Geological-Geochemical Studies of the Formation Mechanism of "Integral Whole of Multiplaces" Large and Superlarge Copper Deposits in the Middle and Lower Reaches of the Yangtze River.Mineral Deposits, 16(3):225-234 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ703.003.htm
      [16] Mao, J.W., Xie, G.Q., Duan, C., et al., 2011.A Tectono-Genetic Model for Porphyry-Skarn-Strata Bound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle-Lower Yangtze River Valley, Eastern China.Ore Geology Reviews, 43(1):294-314. https://doi.org/10.1016/j.oregeorev.2011.07.010
      [17] Meinert, L.D., 1995.Compositional Variation of Igneous Rocks Associated with Skarn Deposits-Chemical Evidence for a Genetic Connection between Petrogenesis and Mineralization.In: Thompson, J.F.H., ed., Magmas, Fluids, and Ore Deposits.Victoria, Mineralogical Association of Canada Short Course Series, 23: 401-408.
      [18] Newberry, R.J., 1982.Tungsten-Bearing Skarns of Sierra Nevada I.The Pine Creek Mine, California.Economic Geology, 77(4):823-844. https://doi.org/10.2113/gsecongeo.77.4.823
      [19] Newberry, R.J., 1998.W-and Sn-Skarn Deposits: A 1998 Status Report.In: Lentz, D.R., ed., Mineralized Intrusion-Related Skarn Systems.Mineralogical Association of Canada Short Course Series.Ottawa, 26: 289-335.
      [20] Newberry, R.J., Swanson, S.E., 1986.Scheelite Skarn Granitoids:An Evaluation of the Roles of Magmatic Source and Process.Ore Geology Reviews, 1(1):57-81. https://doi.org/10.1016/0169-1368(86)90005-3
      [21] Nie, L.Q., Zhou, T.F., Fan, Y., et al., 2016.LA-ICPMS U-Pb Zircon Age and Molybdenite Re-Os Dating of Donggushan, the First Tungsten Deposit Found in the Luzong Orefield, Middle-Lower Yangtze River Valley Metallogenic Belt.Acta Petrologica Sinica, 32(2):303-318 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201602003
      [22] Rasmussen, K.L., Lentz, D.R., Falck, H., et al., 2011.Felsic Magmatic Phases and the Role of Late-Stage Aplitic Dykes in the Formation of the World-Class Cantung Tungsten Skarn Deposit, Northwest Territories, Canada.Ore Geology Reviews, 41(1):75-111. https://doi.org/10.1016/j.oregeorev.2011.06.011
      [23] Sato, K., 1980.Tungsten Skarn Deposit of the Fujigatani Mine, Southwest Japan.Economic Geology, 75(7):1066-1082.
      [24] Shu, Q.A., Chen, P.L., Cheng, J.R., 1992.Geology of Fe-Cu Ore Deposits in Eastern Hubei Province.Press of Metallurgical Industry, Beijing (in Chinese).
      [25] Sillito, R.H., 2010.Porphyry Copper Systems.Economic Geology, 105:3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      [26] Song S.W., Mao J.W., Zhu Y.F., et al., 2018.Partial-Melting of Fertile Metasedimentary Rocks Controlling the Ore Formation on the Jiangnan Porphyry-Skarn Tungsten Belt, South China:A Case Study at the Giant Zhuxi W-Cu Skarn Deposit.Lithos, 304-307:180-199. https://doi.org/10.1016/j.lithos.2018.02.002
      [27] Sun, J.F., 1984.Characteristics of the Tungsten Skarn Deposits from Daye-Yangxin Area.Geology and Prospecting, (8):11-13, 31 (in Chinese).
      [28] Sun, Y., Ma, C.Q., Liu, B., 2017.Record of Late Yanshanian Mafic Magmatic Activity in the Middle-Lower Yangtze River Metallogenic Belt.Earth Science, 42(6):891-908 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201706004
      [29] Wang, D.H., Chen, Z.H., Huang, G.C., et al.2012.Northwards and Westwards Prospecting for Tungsten and Its Significance in South China.Geotectonica et Metallogenia, 36(3):322-329 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201203003
      [30] Wang, Q., Zhao, Z.H., Bao, Z.W., et al., 2004.Geochemistry and Petrogenesis of the Tongshankou and Yinzu Adakitic Intrusive Rocks and the Associated Porphyry Copper-Molybdenum Mineralization in Southeast Hubei, East China.Resource Geology, 54(2):137-152.| https://doi.org/10.1111/j.1751-3928.2004.tb00195.x
      [31] Xie, G.Q., Li, R.L., Jiang, G.H., et al., 2008.Geochemistry and Petrogenesis of Late Mesozoic Granitoids in Southeastern Hubei Province and Constrains on the Timing of Lithospheric Thinning, Middle-Lower Reaches of the Yangtze River, Eastern China.Acta Petrologica Sinica, 24(8):1703-1714 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808004
      [32] Xie, G.Q., Mao, J.W., Li, R.L., et al., 2007.Re-Os Molybdenite and Ar-Ar Phlogopite Dating of Cu-Fe-Au-Mo (W) Deposits in Southeastern Hubei, China.Mineralogy & Petrology, 90(3-4):249-270. https://doi.org/10.1007/s00710-006-0176-y
      [33] Xie, G.Q., Mao, J.W., Li, X.W., et al., 2011a.Late Mesozoic Bimodal Volcanic Rocks in the Jinniu Basin, Middle-Lower Yangtze River Belt (YRB), East China:Age, Petrogenesis and Tectonic Implications.Lithos, 127:144-164. https://doi.org/10.1016/j.lithos.2011.08.012
      [34] Xie, G.Q., Mao, J.W., Zhao, H.J., 2011b.Zircon U-Pb Geochronological and Hf Isotopic Constraints on Petrogenesis of Late Mesozoic Intrusions in the Southeast Hubei Province, Middle-Lower Yangtze River Belt (MLYRB), East China.Lithos, 125:693-710. https://doi.org/10.1016/j.lithos.2011.04.001
      [35] Xie, G.Q., Mao, J.W., Zhao, H.J., et al., 2012.Zircon U-Pb and Phlogopite 40Ar-39Ar Age of the Chengchao and Jinshandian Skarn Fe Deposits, Southeast Hubei Province, Middle-Lower Yangtze River Valley Metallogenic Belt, China.Mineralium Deposita, 47(6):633-652. https://doi.org/10.1007/s00126-011-0367-2
      [36] Yan, D.R., Deng, X.D., Hu, H., et al., 2012.U-Pb Age and Petrogenesis of the Ruanjiawan Granodiorite Pluton and Xiniushan Granodiorite Porphyry, Southeast Hubei Province:Implications for Cu-Mo Mineralization.Acta Petrologica Sinica, 28(10):3373-3388 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201210023
      [37] Zhao, X.F., Li, J.W., Ma, C.Q., 2006.40Ar/39Ar Geochronology of the Tongshankou Cu (Mo) Deposit in the Southeastern Hubei Fe-Cu Province:Implications for Regional Metallogeny.Acta Geologica Sinica, 80(6):849-862 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200606007.htm
      [38] Zhou, T.F., Fan, Y., Wang, S.W., et al., 2017.Metallogenic Regularity and Metallogenic Model of the Middle-Lower Yangtze River Valley Metallogenic Belt.Acta Petrologica Sinica, 33(11):3353-3372(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201711002
      [39] Zhu, Q.Q., Xie, G.Q., Han, Y.X., 2017.SHRIMP Zircon U-Pb Dating of Quartz Diorite Porphyry from the Shizilishan Sr (Pb-Zn) Deposit in Hubei Province and Its Geological Significance.Acta Petrologica Sinica, 33(11):3484-3494(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201711010
      [40] Zhu, Z.Q., 1987.Discussion of Skarn Scheelite Deposit from Middle-Lower Yangtze River.Jiangsu Geology, (3):8-11 (in Chinese).
      [41] 毕承思, 1987.中国矽卡岩型白钨矿矿床成矿基本地质特征.中国地质科学院院报, 17(3):49-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005177214
      [42] 常印佛, 董树文, 黄德志, 1996.论中-下扬子"一盖多底"格局与演化.火山地质与矿产, 17(1-2):1-15. http://www.cnki.com.cn/Article/CJFDTotal-HSDZ1996Z1000.htm
      [43] 常印佛, 刘湘培, 吴言昌, 1991.长江中下游铜铁成矿带.地质出版社, 北京.
      [44] 丁丽雪, 黄圭成, 夏金龙, 2014.鄂东南地区龙角山-付家山斑岩体成因及其对成矿作用的指示.地质学报, 88(8):1513-1527. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201408013
      [45] 丁丽雪, 黄圭成, 夏金龙, 2018.鄂东南地区鄂城岩体的时代、成因及其对成矿作用的指示.地球科学, 43(7):2350-2369. http://www.earth-science.net/WebPage/Article.aspx?id=3884
      [46] 梁学堂, 全浩理, 马玄龙, 等, 2012.湖北大冶铜山口地区地球物理深部找矿模式.物探与化探, 36(4):697-704. http://d.old.wanfangdata.com.cn/Periodical/wtyht201204038
      [47] 刘英俊, 马东升, 1987.钨的地球化学.科学出版社, 北京.
      [48] 吕新彪, 姚书振, 林新多, 1992.湖北大冶铜山口矽卡岩-斑岩复合型铜(钼)矿床地质特征和成矿机制.地球科学, (2):171-180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000260087
      [49] 吕新彪, 姚书振, 林新多, 1993.大冶铜山口铜钼矿床蚀变-矿化分带找矿意义.矿山地质, (2):97-106. http://www.cqvip.com/Main/Detail.aspx?id=1110806
      [50] 马振东, 单光祥, 1997.长江中下游地区多位一体大型、超大型铜矿形成机制的地质、地球化学研究.矿床地质, 16(3):225-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700333014
      [51] 聂利青, 周涛发, 范裕, 等, 2016.长江中下游成矿带庐枞矿集区首例钨矿床成岩成矿时代及其意义.岩石学报, 32(2):303-318. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602003
      [52] 舒全安, 陈培良, 程建荣, 1992.鄂东铁铜矿产地质.冶金工业出版社, 北京.
      [53] 孙家福, 1984.大冶-阳新地区夕卡岩型白钨矿床的成矿特点.地质与勘探, (8):11-13, 31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000365924
      [54] 孙洋, 马昌前, 刘彬, 2017.长江中下游地区燕山晚期基性岩浆活动的记录.地球科学, 42(6):891-908. http://www.earth-science.net/WebPage/Article.aspx?id=3586
      [55] 王登红, 陈郑辉, 黄国成, 等, 2012.华南"南钨北扩"、"东钨西扩"及其找矿方向探讨.大地构造与成矿学, 36(3):322-329. doi: 10.3969/j.issn.1001-1552.2012.03.003
      [56] 谢桂青, 李瑞玲, 蒋国豪, 等, 2008.鄂东南地区晚中生代侵入岩的地球化学和成因及对岩石圈减薄时限的制约.岩石学报, 24(8):1703-1714. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200808004
      [57] 颜代蓉, 邓晓东, 胡浩, 等, 2012.鄂东南地区阮家湾和犀牛山花岗闪长岩的时代、成因及成矿和找矿意义.岩石学报, 28(10):3373-3388. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201210023
      [58] 赵新福, 李建威, 马昌前, 2006.鄂东南铁铜矿集区铜山口铜(钼)矿床40Ar/39Ar年代学及对区域成矿作用的指示.地质学报, 80(6):849-862. doi: 10.3321/j.issn:0001-5717.2006.06.007
      [59] 周涛发, 范裕, 王世伟, 等, 2017.长江中下游成矿带成矿规律和成矿模式.岩石学报, 33(11):3353-3372. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711002
      [60] 朱乔乔, 谢桂青, 韩颖霄, 2017.湖北狮子立山锶(铅锌)矿区石英闪长玢岩锆石SHRIMP U-Pb定年及其意义.岩石学报, 33(11):3484-3494. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711010
      [61] 朱增青, 1987.长江中、下游矽卡岩型白钨矿床成矿特征浅析.江苏地质, (3):8-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001745098
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  5257
    • HTML全文浏览量:  1777
    • PDF下载量:  45
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-04
    • 刊出日期:  2019-02-15

    目录

      /

      返回文章
      返回