Characteristics of Tungsten Mineralization from the Tongshankou Skarn-Porphyry Cu (Mo) Deposit in Daye, Hubei Province, and Its Geological Implications
-
摘要: 为了查明鄂东矿集区内铜山口矽卡岩-斑岩型铜(钼)矿床中钨矿化作用的地质特征.对该矿床中的钨矿(化)体开展了系统的矿床地质特征、岩石学和矿物学研究,并探讨基底对区内钨矿在空间上分布的影响.钨矿体主要产出于花岗闪长斑岩与碳酸盐岩地层的接触部位及其附近,其产状受接触面形态的控制;钨既可形成独立的钨矿体,也可作为铜和钼矿体的伴生组分;钨矿物主要为含Mo的白钨矿.铜山口矿床中的钨矿化与矽卡岩化有着密切的时间、空间和成因联系,具有典型的氧化性矽卡岩型钨矿特征,钨和铜矿化是同一岩浆-热液事件不同阶段的产物,但钨矿体的产出位置比铜矿化相对更深;鄂东矿集区南部的钨矿化岩体具有很多相似性,他们很可能在一定程度上受富含铜和钨的江南式基底控制,江南式和董岭式基底在鄂东矿集区的结合部位可能位于阳新岩体附近.Abstract: The Tongshankou deposit is a typical skarn-porphyry Cu (Mo) deposit in the East Hubei Province, thick tungsten ore bodies have been discovered in deep part of this deposit recently. In this paper, systematic researches on geological characteristics, petrology, and mineralogy were carried out on tungsten mineralization from the Tongshankou deposit. It is found that tungsten ore bodies were mainly produced at or near the contact zone between sedimentary rocks and granodioritic porphyry. Therefore, their occurrences are controlled by the shape of contact surface.Tungsten can be produced either as a separate tungsten ore body or as a byproduct element in Cu and Mo ore bodies. Scheelite is the mainly tungsten-bearing mineral, and is characterized by a significant enrichment of Mo. Tungsten mineralization process of the Tongshankou deposit is temporally, spatially and genetically associated with skarn alteration, and these features are consistent with those of oxidized W skarns. Tungsten and Cu mineralization are the product of different stages from the same magmatic-hydrothermal process, but the location of W ore bodies are relatively deeper than that of Cu. The Tongshankou porphyry stock shears a lot of similarities with stocks associated with W mineralization in East Hubei Province, suggesting that they were probably partly controlled by Cu and W fertile Jiangnan basement, and the connect part of Jiangnan and Dongling basement under the East Hubei Province probably located nearby the Yangxinpluton.
-
Key words:
- tungsten mineralization /
- skarn-porphyry deposit /
- Tongshankou /
- Daye rock /
- rock
-
图 4 铜山口铜(钼)矿中白钨矿化特征
a, b.绢云母碳酸盐蚀变岩中浸染状白钨矿;c.绢云母碳酸盐蚀变岩中半自形白钨矿颗粒产出,可见少量强绢云母化斜长石残留,白钨矿颗粒集合体外部有少量黄铁矿;d.石榴子石矽卡岩中浸染状白钨矿和团状黄铜矿和斑铜矿,方解石充填在石榴子石晶体间隙;e, f.白钨矿充填或交代石榴子石,黄铜矿和斑铜矿充填在白钨矿晶体间隙或穿插白钨矿;g.石榴子石矽卡岩化大理岩;h, i.石榴子石晶体核部包裹硬石膏和透辉石颗粒,边部包裹白钨矿,且晶体边部被方解石、硅灰石和石英交代;j.块状黄铜矿矿石;k, l.黄铜矿中包裹自形白钨矿,白钨矿颗粒核部不清晰.c, h, k.正交偏光;e.单偏光;f, l.反射光;i.BSE照片.Anh.硬石膏;Bn.斑铜矿;Cc.方解石;Ccp.黄铜矿;Di.透辉石;Grt.石榴子石;Mb.大理岩;Pl.斜长石;Py.黄铁矿;Sch.白钨矿;Wol.硅灰石
Fig. 4. Characteristics of tungsten mineralization from Tongshankou Cu (Mo) deposit
图 7 长江中下游地区江南式基底与金属矿床空间分布图
据常印佛等(1991); 马振东和单光祥(1997); Mao et al.(2011); Song et al.(2018)修改
Fig. 7. Relationship of Jiangnan basement and spatial distribution of mineral deposits in the Middle-Lower Yangtze River
图 8 鄂东矿集区矽卡岩型钨矿岩体氧化性-二氧化硅图解
据Meinert(1995)修改;底图中各类型矽卡岩型矿床平均值据Meinert(1995),投点数据来源于Sato(1980); 孙家福(1984); 毕承思(1987); Blevin(1995); Hart et al.(2004); Wang et al.(2004); 谢桂青等, 2008; Rasmussen et al.(2011); Song et al.(2018)及其所引文献
Fig. 8. Iron oxidation state and SiO2 content of plutons associated with W skarns from East Hubei Province
表 1 铜山口铜(钼钨)矿床中白钨矿电子探针数据(%)
Table 1. Electron microprobe analysis data (%) of scheelite from Tongshankou Cu (Mo-W) deposit
样号 FeO Na2O CaO MnO WO3 MoO3 SiO2 总量 Fe Na Ca Mn W Mo Si 钼钙矿(%) T02-10-1-1 - 0.07 20.21 - 76.93 - 0.20 97.41 0.00* 0.00 0.76 0.00 3.23 0.00 0.01 0.00 T02-10-4-1 0.11 - 20.26 - 77.70 0.06 0.21 98.33 0.00 0.00 0.76 0.00 3.23 0.00 0.01 0.08 T02-10-5-1 0.02 0.05 20.48 0.04 79.09 0.11 0.22 99.99 0.00 0.00 0.75 0.00 3.23 0.00 0.01 0.14 T02-10-6-1 - 0.09 19.92 - 76.60 - 0.18 96.79 0.00 0.00 0.76 0.00 3.23 0.00 0.01 0.00 T02-10-7-2 - 0.04 19.96 - 76.69 0.08 0.13 96.90 0.00 0.00 0.76 0.00 3.23 0.00 0.00 0.12 T02-10-8-2 0.14 - 19.87 - 77.17 0.15 0.20 97.53 0.01 0.00 0.75 0.00 3.23 0.01 0.01 0.21 T02-12-1-5 0.19 0.11 26.24 - 22.98 49.63 0.11 99.25 0.01 0.00 0.94 0.00 0.91 2.13 0.00 70.01 T02-12-1-6 0.34 0.10 23.74 - 44.74 28.84 0.13 97.87 0.01 0.00 0.87 0.00 1.83 1.27 0.00 41.06 T02-12-1-7 0.97 0.08 22.80 - 51.27 19.12 0.23 94.46 0.04 0.00 0.88 0.00 2.19 0.88 0.01 28.73 T02-12-1 0.10 0.04 19.45 0.02 75.46 3.14 - 98.19 0.00 0.00 0.73 0.00 3.13 0.14 0.00 4.31 T02-12-2 0.09 0.20 24.24 0.13 33.25 37.40 - 95.31 0.00 0.00 0.91 0.01 1.39 1.69 0.00 54.87 T02-12-3 0.23 - 20.73 0.05 66.54 10.98 - 98.52 0.01 0.00 0.77 0.00 2.73 0.49 0.00 15.13 T06-1-1-2 0.14 - 20.66 0.15 77.40 0.58 0.22 99.14 0.01 0.00 0.77 0.01 3.19 0.03 0.01 0.80 T06-1-2-1 - - 20.85 0.04 81.16 0.13 0.20 102.38 0.00 0.00 0.75 0.00 3.24 0.01 0.01 0.17 T06-1-2-2 - - 21.34 - 75.73 5.61 0.24 102.91 0.00 0.00 0.76 0.00 2.99 0.24 0.01 7.41 T06-1-3-1 - - 21.23 0.02 75.28 5.09 0.18 101.80 0.00 0.00 0.76 0.00 3.01 0.22 0.01 6.81 T06-1-5-1 0.07 - 21.19 0.09 72.30 5.35 0.19 99.18 0.00 0.00 0.78 0.00 2.97 0.24 0.01 7.41 T05-13-1-1 0.07 0.17 20.75 - 74.10 1.14 0.28 96.51 0.00 0.00 0.79 0.00 3.13 0.05 0.01 1.64 T05-13-1-2 - - 21.74 0.07 67.23 10.46 0.29 99.79 0.00 0.00 0.80 0.00 2.73 0.46 0.01 14.39 T05-13-2-1 - 0.11 22.26 0.03 59.41 15.55 0.20 97.55 0.00 0.00 0.83 0.00 2.46 0.70 0.01 22.05 T05-13-2-2 0.08 0.04 20.26 - 74.88 0.88 0.25 96.39 0.00 0.00 0.77 0.00 3.17 0.04 0.01 1.25 T05-10-1-1 0.04 0.02 21.22 - 65.47 9.08 0.19 96.01 0.00 0.00 0.81 0.00 2.77 0.41 0.01 13.04 T05-10-1-2 0.12 0.08 21.09 - 69.42 5.20 0.20 96.11 0.00 0.00 0.81 0.00 2.94 0.24 0.01 7.49 T05-10-3-1 - 0.05 20.77 - 72.09 3.83 0.22 96.97 0.00 0.00 0.79 0.00 3.03 0.17 0.01 5.43 T05-10-3-2 0.03 0.09 21.41 - 63.15 9.45 0.17 94.30 0.00 0.00 0.83 0.00 2.72 0.44 0.01 13.92 T05-10-3-3 0.09 0.08 20.89 0.09 67.57 7.06 0.18 95.95 0.00 0.00 0.80 0.00 2.86 0.32 0.01 10.14 T05-10-3-2 0.04 0.06 20.81 0.04 67.52 10.30 - 98.78 0.00 0.00 0.77 0.00 2.77 0.46 0.00 14.16 TSK09-1-1 - - 20.60 - 76.57 1.13 0.18 98.47 0.00 0.00 0.77 0.00 3.17 0.05 0.01 1.57 TSK09-1-2 0.07 - 21.57 - 67.06 9.85 0.20 98.76 0.00 0.00 0.80 0.00 2.75 0.44 0.01 13.70 TSK09-1-3 - 0.17 20.58 - 76.13 1.28 0.18 98.34 0.00 0.00 0.77 0.00 3.16 0.06 0.01 1.79 TSK09-2-1 - 0.06 20.50 - 75.71 1.21 0.18 97.65 0.00 0.00 0.77 0.00 3.16 0.05 0.01 1.70 TSK09-5-1 - - 20.17 0.04 75.38 1.39 0.27 97.20 0.00 0.00 0.76 0.00 3.16 0.06 0.01 1.95 TSK09-7-1 0.09 - 20.46 - 74.44 1.11 0.21 96.31 0.00 0.00 0.78 0.00 3.16 0.05 0.01 1.59 TSK09-7-2 0.08 - 20.79 0.12 75.45 1.33 0.23 98.01 0.00 0.00 0.78 0.00 3.14 0.06 0.01 1.87 TSK09-7-3 0.04 - 20.83 - 73.14 2.34 0.19 96.54 0.00 0.00 0.79 0.00 3.09 0.11 0.01 3.34 T05-15-1 0.09 0.02 21.53 - 74.53 5.95 0.24 102.36 0.00 0.00 0.77 0.00 2.96 0.26 0.01 7.95 T05-15-2 - - 22.10 - 68.24 10.48 0.22 101.05 0.00 0.00 0.80 0.00 2.74 0.45 0.01 14.24 T05-15-3 - - 21.61 - 72.03 6.75 0.18 100.56 0.00 0.00 0.79 0.00 2.91 0.29 0.01 9.20 T05-15-2-1 - 0.03 21.22 0.14 73.14 5.52 0.16 100.20 0.00 0.00 0.78 0.01 2.97 0.24 0.01 7.54 T05-15-2-2 - - 21.82 0.07 70.29 9.10 0.17 101.45 0.00 0.00 0.79 0.00 2.81 0.39 0.01 12.27 T05-15-2-3 - 0.02 21.39 - 72.09 6.94 0.20 100.64 0.00 0.00 0.78 0.00 2.91 0.30 0.01 9.43 T05-15-2-4 - 0.05 21.40 0.04 70.25 6.24 0.23 98.21 0.00 0.00 0.80 0.00 2.91 0.28 0.01 8.76 T05-15-4-2 0.08 - 21.10 0.06 74.32 5.35 0.20 101.10 0.00 0.00 0.76 0.00 2.99 0.23 0.01 7.21 T05-15-4-3 - - 21.64 0.12 64.93 7.63 0.15 94.47 0.00 0.00 0.84 0.01 2.79 0.36 0.01 11.28 T06-17-1 0.06 - 20.87 - 77.80 1.25 0.19 100.18 0.00 0.00 0.77 0.00 3.17 0.06 0.01 1.71 T06-17-2 0.02 - 20.53 0.04 76.77 0.99 0.11 98.46 0.00 0.00 0.77 0.00 3.18 0.04 0.00 1.37 T06-17-3-1 0.10 0.06 20.25 0.06 76.41 0.69 0.21 97.77 0.00 0.00 0.76 0.00 3.19 0.03 0.01 0.96 T06-17-3-2 0.05 0.19 19.59 - 74.88 0.92 0.30 95.94 0.00 0.00 0.75 0.00 3.18 0.04 0.01 1.31 T05-7-6-1 - - 19.18 0.05 78.67 0.10 - 98.00 0.00 0.00 0.72 0.00 3.27 0.00 0.00 0.13 T05-7-6-2 0.04 0.02 23.02 0.00 47.85 26.68 - 97.60 0.00 0.00 0.85 0.00 1.96 1.18 0.00 37.61 注:“-”表示低于检测限.“*”基于阳离子总数为4计算. 表 2 铜山口铜(钼钨)矿与不同类型矽卡岩型钨矿比较
Table 2. Comparison of characteristics of Tongshankou Cu (Mo-W) deposit with major W skarn types
矿床类型/名称 还原型 氧化型 铜山口 主要金属元素 W,Cu W,Mo Cu、W、Mo 次要金属元素 Bi,Au Cu,Zn,Ag,Bi Ag 岩浆岩类型
I型,演化的I型,S型?;钛铁矿型
I型,演化的I型;磁铁矿型
I型;磁铁矿型成矿主岩类型 花岗岩(花岗闪长岩) 花岗岩和花岗闪长岩 花岗闪长斑岩 主要蚀变类型 蠕英石化,少量白云母化 蠕英石化,内矽卡岩,少量黑云母化
外矽卡岩>>内矽卡岩,钾长石、黑云母,石英-绢云母进变质矿物
辉石(Hd70-95)>石榴子石(And10-30)(10:1-2:1)
石榴子石(And60-100)>辉石(Hd40-60)(10:1-1:1)>>硅灰石
石榴子石(And71)>透辉石>>硅灰石退变质矿物
黑云母,铁闪石,铁绿泥石,石英,方解石,氧化物,硫化物
阳起石,绿泥石,绿帘石,石英,方解石,氧化物,硫化物
蛇纹石、金云母,石英,绿泥石,透闪石金属矿物
少量钼白钨矿,自然金,磁黄铁矿,黄铜矿,闪锌矿
钼白钨矿,黄铁矿,黄铜矿,磁铁矿
钼白钨矿,黄铜矿,黄铁矿,辉钼矿,斑铜矿,磁铁矿流体包裹体成分 低-中等盐度,富CH4 中-高盐度 中-高盐度 形成压力 150~250 MPa 130~200 MPa 20~50 MPa 典型矿床
Cantung,ManTung, Lened,Fujigatani; Sandong,朱溪
Pine Creek,Round Valley,Kara,King Island参考文献
Sato, 1980; Einaudi et al., 1981; Newberry, 1998; Song et al., 2018
Einaudi et al., 1981; Newberry, 1998
吕新彪等, 1992, 1993; 舒全安等, 1992, 本次表 3 鄂东矿集区钨矿床特征对比
Table 3. Comparison of tungsten-bearing deposits from East Hubei Province
矿床 阮家湾钨铜矿 龙角山铜钨矿 付家山铜钨矿 铜山口铜(钼钨)矿 规模 大型 中型 中型 大型 围岩地层
奥陶系碳酸盐岩、志留系砂页岩
中志留统坟头群砂页岩与黄龙群白云质大理岩界面二叠系下统茅口组灰岩 大冶组灰岩、白云质灰岩 成矿主岩类型/时代
花岗闪长岩,143±1 Ma花岗闪长斑岩,144±1 Ma 花岗闪长斑岩 花岗闪长斑岩,140.6±2.4 Ma 成矿主岩DI指数 68.48~70.81 73.31~74.08 74.14~74.29 70.70~74.25
成矿主岩氧化性
Fe2O3/(FeO+Fe2O3)0.42~0.70 0.41~0.44 0.46 0.35~0.47 成矿时代
143.6±1.7 Ma(辉钼矿Re-Os)
144.7±2.9 Ma(辉钼矿Re-Os)
142~143 Ma(辉钼矿Re-Os);143.0±0.3Ma(云母40Ar-39Ar)蚀变类型
石榴子石矽卡岩化、钾长石化、硅化、绢云母化
石榴子石矽卡岩化、硅化、黄铁矿化、绿泥石化、碳酸盐化、绿帘石化、绢云母化、蛇纹石化
透辉石石榴子石矽卡岩和石榴子石矽卡岩化、黄铁矿化、钾长石化、绢云母化
石榴子石矽卡岩化、透辉石矽卡岩化、钾化、硅化、绢云母化、碳酸盐化、蛇纹石化参考文献
舒全安等, 1992; Xie et al., 2007舒全安等, 1992; 丁丽雪等, 2014 舒全安等, 1992; 丁丽雪等, 2014
Wang et al., 2004; 赵新福等, 2006; Xie et al., 2007; Li et al., 2008 -
[1] Bi, C.S., 1987.Basic Geological Characteristics of Skarn-Type Scheelite Deposit in China.Journal of the Chinese Academy of Geological Sciences, 17(3):49-64 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005177214 [2] Blevin, P.L., 1995.Chemistry, Origin, and Evolution of Mineralized Granites in the Lachlan Fold Belt, Australia:The Metallogeny of I-and S-Type Granites.Economic Geology, 90(6):1604-1619. https://doi.org/10.2113/gsecongeo.90.6.1604 [3] Chang, Y.F., Dong, S.W., Huang, D.Z., 1996.On Tectonics of "Poly-Basement with One Cover" in Middle-Lower Yangtze Craton China.Volcanology & Mineral Resources, 17(1-2):1-15 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600914013 [4] Chang, Y.F., Liu, X.P., Wu, Y.C., 1991.Metallogenic Belt of the Middle and Lower Yangtze River.Geological Publishing House, Beijing (in Chinese). [5] Ding, L.X., Huang, G.C., Xia, J.L., 2014.Petrogenesis of the Longjiaoshan-Fujiashan Porphyritic Intrusion in Southeastern Hubei Province and Implications for Cu-W Mineralization.Acta Geologica Sinica, 88(8):1513-1527 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201408013 [6] Ding, L.X., Huang, G.C., Xia, J.L., 2018.Age and Petrogenesis of the Echeng Intrusion in Southeastern Hubei Province:Implications for Iron Mineralization.Earth Science, 43(7):2350-2369 (in Chinese with English abstract). [7] Einaudi, M.T., Meinert, L.D., Newberry, R.J., 1981.Skarn Deposits.In: Skinner, B.J, ed., Economic Geology Seventy-Fifth Anniversary Volume.Economic Geology Publishing Company, Lancaster, 317-391.https://doi.org/10.5382/AV75.11 [8] Hart, C.J.R., Mair, J.L., Goldfarb, R.J., et al., 2004.Source and Redox Controls on Metallogenic Variations in Intrusion-Related Ore Systems, Tombstone-Tungsten Belt, Yukon Territory, Canada.Transactions of the Royal Society of Edinburgh Earth Sciences, 95(1-2):339-356. https://doi.org/10.1017/S0263593300001115 [9] Hsu, L.C., Galli, P.E., 1973.Origin of the Scheelite-Powellite Series of Minerals.Economic Geology, 68(5):681-696. http://doi.org/10.2113/gsecongeo.68.5.681 [10] Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2008.Origin of the Tongshankou Porphyry-Skarn Cu-Mo Deposit, Eastern Yangtze Craton, Eastern China:Geochronological, Geochemical, and Sr-Nd-Hf Isotopic Constraints.Mineralium Deposita, 43(3):315-336. https://doi.org/10.1007/s00126-007-0161-3 [11] Liang, X.T., Quan, H.L., Ma, X.L., et al., 2012.Geophysical Deep Ore-Prospecting Model for Tongshankou Area of Daye, Hubei Province.Geophysical & Geochemical Exploration, 36(4):697-704(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/wtyht201204038 [12] Liu, Y.J., Ma, D.S., 1987.Tungsten Geochemistry.Science Press, Beijing (in Chinese). [13] Lü, X.B., Yao, S.Z, Lin, X.D., 1992.The Geological Characteristics and Ore-Forming Mechanism of Tongshankou Skarn-Porphyry Composite Type of Copper (Molybdenum) Ore Deposit, Hubei.Earth Science, (2):171-180 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000260087 [14] Lü, X.B., Yao, S.Z, Lin, X.D., 1993.Alteration-Mineralization Zoning of the Tongshankou Copper (Molybdenum) Deposit in Daye Hubei and Its Prospecting Significance.Mining Geology, (2):97-106 (in Chinese with English abstract). [15] Ma, Z.D., Shan, G.X., 1997.Geological-Geochemical Studies of the Formation Mechanism of "Integral Whole of Multiplaces" Large and Superlarge Copper Deposits in the Middle and Lower Reaches of the Yangtze River.Mineral Deposits, 16(3):225-234 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ703.003.htm [16] Mao, J.W., Xie, G.Q., Duan, C., et al., 2011.A Tectono-Genetic Model for Porphyry-Skarn-Strata Bound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle-Lower Yangtze River Valley, Eastern China.Ore Geology Reviews, 43(1):294-314. https://doi.org/10.1016/j.oregeorev.2011.07.010 [17] Meinert, L.D., 1995.Compositional Variation of Igneous Rocks Associated with Skarn Deposits-Chemical Evidence for a Genetic Connection between Petrogenesis and Mineralization.In: Thompson, J.F.H., ed., Magmas, Fluids, and Ore Deposits.Victoria, Mineralogical Association of Canada Short Course Series, 23: 401-408. [18] Newberry, R.J., 1982.Tungsten-Bearing Skarns of Sierra Nevada I.The Pine Creek Mine, California.Economic Geology, 77(4):823-844. https://doi.org/10.2113/gsecongeo.77.4.823 [19] Newberry, R.J., 1998.W-and Sn-Skarn Deposits: A 1998 Status Report.In: Lentz, D.R., ed., Mineralized Intrusion-Related Skarn Systems.Mineralogical Association of Canada Short Course Series.Ottawa, 26: 289-335. [20] Newberry, R.J., Swanson, S.E., 1986.Scheelite Skarn Granitoids:An Evaluation of the Roles of Magmatic Source and Process.Ore Geology Reviews, 1(1):57-81. https://doi.org/10.1016/0169-1368(86)90005-3 [21] Nie, L.Q., Zhou, T.F., Fan, Y., et al., 2016.LA-ICPMS U-Pb Zircon Age and Molybdenite Re-Os Dating of Donggushan, the First Tungsten Deposit Found in the Luzong Orefield, Middle-Lower Yangtze River Valley Metallogenic Belt.Acta Petrologica Sinica, 32(2):303-318 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201602003 [22] Rasmussen, K.L., Lentz, D.R., Falck, H., et al., 2011.Felsic Magmatic Phases and the Role of Late-Stage Aplitic Dykes in the Formation of the World-Class Cantung Tungsten Skarn Deposit, Northwest Territories, Canada.Ore Geology Reviews, 41(1):75-111. https://doi.org/10.1016/j.oregeorev.2011.06.011 [23] Sato, K., 1980.Tungsten Skarn Deposit of the Fujigatani Mine, Southwest Japan.Economic Geology, 75(7):1066-1082. [24] Shu, Q.A., Chen, P.L., Cheng, J.R., 1992.Geology of Fe-Cu Ore Deposits in Eastern Hubei Province.Press of Metallurgical Industry, Beijing (in Chinese). [25] Sillito, R.H., 2010.Porphyry Copper Systems.Economic Geology, 105:3-41. https://doi.org/10.2113/gsecongeo.105.1.3 [26] Song S.W., Mao J.W., Zhu Y.F., et al., 2018.Partial-Melting of Fertile Metasedimentary Rocks Controlling the Ore Formation on the Jiangnan Porphyry-Skarn Tungsten Belt, South China:A Case Study at the Giant Zhuxi W-Cu Skarn Deposit.Lithos, 304-307:180-199. https://doi.org/10.1016/j.lithos.2018.02.002 [27] Sun, J.F., 1984.Characteristics of the Tungsten Skarn Deposits from Daye-Yangxin Area.Geology and Prospecting, (8):11-13, 31 (in Chinese). [28] Sun, Y., Ma, C.Q., Liu, B., 2017.Record of Late Yanshanian Mafic Magmatic Activity in the Middle-Lower Yangtze River Metallogenic Belt.Earth Science, 42(6):891-908 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201706004 [29] Wang, D.H., Chen, Z.H., Huang, G.C., et al.2012.Northwards and Westwards Prospecting for Tungsten and Its Significance in South China.Geotectonica et Metallogenia, 36(3):322-329 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201203003 [30] Wang, Q., Zhao, Z.H., Bao, Z.W., et al., 2004.Geochemistry and Petrogenesis of the Tongshankou and Yinzu Adakitic Intrusive Rocks and the Associated Porphyry Copper-Molybdenum Mineralization in Southeast Hubei, East China.Resource Geology, 54(2):137-152.| https://doi.org/10.1111/j.1751-3928.2004.tb00195.x [31] Xie, G.Q., Li, R.L., Jiang, G.H., et al., 2008.Geochemistry and Petrogenesis of Late Mesozoic Granitoids in Southeastern Hubei Province and Constrains on the Timing of Lithospheric Thinning, Middle-Lower Reaches of the Yangtze River, Eastern China.Acta Petrologica Sinica, 24(8):1703-1714 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808004 [32] Xie, G.Q., Mao, J.W., Li, R.L., et al., 2007.Re-Os Molybdenite and Ar-Ar Phlogopite Dating of Cu-Fe-Au-Mo (W) Deposits in Southeastern Hubei, China.Mineralogy & Petrology, 90(3-4):249-270. https://doi.org/10.1007/s00710-006-0176-y [33] Xie, G.Q., Mao, J.W., Li, X.W., et al., 2011a.Late Mesozoic Bimodal Volcanic Rocks in the Jinniu Basin, Middle-Lower Yangtze River Belt (YRB), East China:Age, Petrogenesis and Tectonic Implications.Lithos, 127:144-164. https://doi.org/10.1016/j.lithos.2011.08.012 [34] Xie, G.Q., Mao, J.W., Zhao, H.J., 2011b.Zircon U-Pb Geochronological and Hf Isotopic Constraints on Petrogenesis of Late Mesozoic Intrusions in the Southeast Hubei Province, Middle-Lower Yangtze River Belt (MLYRB), East China.Lithos, 125:693-710. https://doi.org/10.1016/j.lithos.2011.04.001 [35] Xie, G.Q., Mao, J.W., Zhao, H.J., et al., 2012.Zircon U-Pb and Phlogopite 40Ar-39Ar Age of the Chengchao and Jinshandian Skarn Fe Deposits, Southeast Hubei Province, Middle-Lower Yangtze River Valley Metallogenic Belt, China.Mineralium Deposita, 47(6):633-652. https://doi.org/10.1007/s00126-011-0367-2 [36] Yan, D.R., Deng, X.D., Hu, H., et al., 2012.U-Pb Age and Petrogenesis of the Ruanjiawan Granodiorite Pluton and Xiniushan Granodiorite Porphyry, Southeast Hubei Province:Implications for Cu-Mo Mineralization.Acta Petrologica Sinica, 28(10):3373-3388 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201210023 [37] Zhao, X.F., Li, J.W., Ma, C.Q., 2006.40Ar/39Ar Geochronology of the Tongshankou Cu (Mo) Deposit in the Southeastern Hubei Fe-Cu Province:Implications for Regional Metallogeny.Acta Geologica Sinica, 80(6):849-862 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200606007.htm [38] Zhou, T.F., Fan, Y., Wang, S.W., et al., 2017.Metallogenic Regularity and Metallogenic Model of the Middle-Lower Yangtze River Valley Metallogenic Belt.Acta Petrologica Sinica, 33(11):3353-3372(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201711002 [39] Zhu, Q.Q., Xie, G.Q., Han, Y.X., 2017.SHRIMP Zircon U-Pb Dating of Quartz Diorite Porphyry from the Shizilishan Sr (Pb-Zn) Deposit in Hubei Province and Its Geological Significance.Acta Petrologica Sinica, 33(11):3484-3494(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201711010 [40] Zhu, Z.Q., 1987.Discussion of Skarn Scheelite Deposit from Middle-Lower Yangtze River.Jiangsu Geology, (3):8-11 (in Chinese). [41] 毕承思, 1987.中国矽卡岩型白钨矿矿床成矿基本地质特征.中国地质科学院院报, 17(3):49-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005177214 [42] 常印佛, 董树文, 黄德志, 1996.论中-下扬子"一盖多底"格局与演化.火山地质与矿产, 17(1-2):1-15. http://www.cnki.com.cn/Article/CJFDTotal-HSDZ1996Z1000.htm [43] 常印佛, 刘湘培, 吴言昌, 1991.长江中下游铜铁成矿带.地质出版社, 北京. [44] 丁丽雪, 黄圭成, 夏金龙, 2014.鄂东南地区龙角山-付家山斑岩体成因及其对成矿作用的指示.地质学报, 88(8):1513-1527. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201408013 [45] 丁丽雪, 黄圭成, 夏金龙, 2018.鄂东南地区鄂城岩体的时代、成因及其对成矿作用的指示.地球科学, 43(7):2350-2369. http://www.earth-science.net/WebPage/Article.aspx?id=3884 [46] 梁学堂, 全浩理, 马玄龙, 等, 2012.湖北大冶铜山口地区地球物理深部找矿模式.物探与化探, 36(4):697-704. http://d.old.wanfangdata.com.cn/Periodical/wtyht201204038 [47] 刘英俊, 马东升, 1987.钨的地球化学.科学出版社, 北京. [48] 吕新彪, 姚书振, 林新多, 1992.湖北大冶铜山口矽卡岩-斑岩复合型铜(钼)矿床地质特征和成矿机制.地球科学, (2):171-180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000260087 [49] 吕新彪, 姚书振, 林新多, 1993.大冶铜山口铜钼矿床蚀变-矿化分带找矿意义.矿山地质, (2):97-106. http://www.cqvip.com/Main/Detail.aspx?id=1110806 [50] 马振东, 单光祥, 1997.长江中下游地区多位一体大型、超大型铜矿形成机制的地质、地球化学研究.矿床地质, 16(3):225-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700333014 [51] 聂利青, 周涛发, 范裕, 等, 2016.长江中下游成矿带庐枞矿集区首例钨矿床成岩成矿时代及其意义.岩石学报, 32(2):303-318. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602003 [52] 舒全安, 陈培良, 程建荣, 1992.鄂东铁铜矿产地质.冶金工业出版社, 北京. [53] 孙家福, 1984.大冶-阳新地区夕卡岩型白钨矿床的成矿特点.地质与勘探, (8):11-13, 31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000365924 [54] 孙洋, 马昌前, 刘彬, 2017.长江中下游地区燕山晚期基性岩浆活动的记录.地球科学, 42(6):891-908. http://www.earth-science.net/WebPage/Article.aspx?id=3586 [55] 王登红, 陈郑辉, 黄国成, 等, 2012.华南"南钨北扩"、"东钨西扩"及其找矿方向探讨.大地构造与成矿学, 36(3):322-329. doi: 10.3969/j.issn.1001-1552.2012.03.003 [56] 谢桂青, 李瑞玲, 蒋国豪, 等, 2008.鄂东南地区晚中生代侵入岩的地球化学和成因及对岩石圈减薄时限的制约.岩石学报, 24(8):1703-1714. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200808004 [57] 颜代蓉, 邓晓东, 胡浩, 等, 2012.鄂东南地区阮家湾和犀牛山花岗闪长岩的时代、成因及成矿和找矿意义.岩石学报, 28(10):3373-3388. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201210023 [58] 赵新福, 李建威, 马昌前, 2006.鄂东南铁铜矿集区铜山口铜(钼)矿床40Ar/39Ar年代学及对区域成矿作用的指示.地质学报, 80(6):849-862. doi: 10.3321/j.issn:0001-5717.2006.06.007 [59] 周涛发, 范裕, 王世伟, 等, 2017.长江中下游成矿带成矿规律和成矿模式.岩石学报, 33(11):3353-3372. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711002 [60] 朱乔乔, 谢桂青, 韩颖霄, 2017.湖北狮子立山锶(铅锌)矿区石英闪长玢岩锆石SHRIMP U-Pb定年及其意义.岩石学报, 33(11):3484-3494. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711010 [61] 朱增青, 1987.长江中、下游矽卡岩型白钨矿床成矿特征浅析.江苏地质, (3):8-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001745098