• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    甘肃省龙首山芨岭钠交代型铀矿床地质特征与成因

    赵如意 陈毓川 陈云杰 王刚 聂利 荣骁 李涛

    赵如意, 陈毓川, 陈云杰, 王刚, 聂利, 荣骁, 李涛, 2020. 甘肃省龙首山芨岭钠交代型铀矿床地质特征与成因. 地球科学, 45(1): 90-107. doi: 10.3799/dqkx.2018.287
    引用本文: 赵如意, 陈毓川, 陈云杰, 王刚, 聂利, 荣骁, 李涛, 2020. 甘肃省龙首山芨岭钠交代型铀矿床地质特征与成因. 地球科学, 45(1): 90-107. doi: 10.3799/dqkx.2018.287
    Zhao Ruyi, Chen Yuchuan, Chen Yunjie, Wang Gang, Nie Li, Rong Xiao, Li Tao, 2020. Geological Characteristics and Its Genesis of the Jiling Na-Metasomatic Uranium Deposit in Longshou Mountains, Gansu Province. Earth Science, 45(1): 90-107. doi: 10.3799/dqkx.2018.287
    Citation: Zhao Ruyi, Chen Yuchuan, Chen Yunjie, Wang Gang, Nie Li, Rong Xiao, Li Tao, 2020. Geological Characteristics and Its Genesis of the Jiling Na-Metasomatic Uranium Deposit in Longshou Mountains, Gansu Province. Earth Science, 45(1): 90-107. doi: 10.3799/dqkx.2018.287

    甘肃省龙首山芨岭钠交代型铀矿床地质特征与成因

    doi: 10.3799/dqkx.2018.287
    基金项目: 

    东华理工大学核资源与环境国家重点实验室自主基金项目 Z1914

    中国核工业地质局项目 201349

    中国核工业地质局项目 201571

    中国地质调查局中国矿产地质与成矿规律综合集成和服务(矿产地质志)项目 DD20160346

    中国地质调查局项目 12120114014901

    详细信息
      作者简介:

      赵如意(1982-), 男, 工程师, 博士后, 主要从事矿产资源调查与评价工作, 重点进行岩浆岩与成矿研究

    • 中图分类号: P611

    Geological Characteristics and Its Genesis of the Jiling Na-Metasomatic Uranium Deposit in Longshou Mountains, Gansu Province

    • 摘要: 芨岭钠交代型铀矿床是中国西北部的重要铀矿床.在总结矿床地质特征的基础上,通过流体包裹体、绿泥石温度计、同位素和地球化学特征等研究,认为该矿床形成于早古生代后碰撞阶段.矿床的形成经历了5个阶段,自矿体中心向外分为6个蚀变组合带;成矿流体起源自花岗质岩浆演化晚期,经与围岩交代、反应形成再平衡混合的岩浆水.它是温度为295℃左右、盐度为2.99%~4.57% NaCleqv、密度为0.75~0.77 g/cm3的流体,其中富含U6+、Na+、CO32-等组分,对SiO2、Fe2+、Mn2+、K+和Rb、Sr、Mo、Ga、Zr、Ba等组分有较强的溶蚀或交代能力.流体沸腾是成矿物质的主要卸载机制,pH、Eh值的变化促进了成矿物质的进一步卸载.

       

    • 图  1  芨岭铀矿床大地构造位置(a),区域地质(b)及矿床地质简图(c)

      Fig.  1.  The tectonic location (a), regional (b) and deposit geological map (c) of Jiling uranium deposit

      图  2  芨岭矿床13、17、21、25和29号勘探线剖面

      Fig.  2.  The 13, 17, 21, 25 and 29 sections of the Jiling uranium deposit

      图  3  芨岭铀矿床岩石学特征(a~f)及沥青铀矿背散射电子图像(g~i)

      Ab.钠长石;Ap.磷灰石;Cc.方解石;Cc1.主成矿阶段早期方解石;Cc2.主成矿阶段晚期方解石;Chl.绿泥石;Hem.赤铁矿;Kf.钾长石;Pl.斜长石;U.沥青铀矿

      Fig.  3.  The petrological characteristics (a-f) and backscattered electron images of pitchblende in Jiling U deposit (g-i)

      图  4  芨岭矿床钠交代蚀变似斑状花岗岩中矿物共生关系

      Fig.  4.  Mineral paragenesis in Na-metasomatic porphyritic granite of the Jiling uranium deposit

      图  5  芨岭铀矿床蚀变矿物组合与分带图

      Fig.  5.  The mineral assemblages and zones picture of the Jiling uranium deposit

      图  6  芨岭矿床钠交代似斑状花岗岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分曲线图(b)

      标准化数值据文献Sun and McDonough(1989)

      Fig.  6.  The primitive mantle normalizes trace elements spider diagram (a) and chondrite-normalized rare earth elements diagram (b) of altered porphyritic granite in Jiling Uranium deposit

      图  7  芨岭铀矿床绿泥石蚀变温度和粉红色方解石脉流体包裹体均一温度直方图(a)与方解石流体包裹体盐度分布直方图(b)

      Fig.  7.  The histograms of chlorite forming temperatues and fluid inclusions homogenization temperatures in calcite vein (a) and the fluid inclusions salinity histograms (b) of light pink calcite vein in Jiling uranium deposit

      图  8  芨岭铀矿床淡粉红色方解石脉流体包裹体NaCl-H2O系统T⁃w⁃ρ图解

      Fig.  8.  The T⁃w⁃ρ diagram for NaCl⁃H2O system of light pink calcitedyke in Jiling uranium deposit

      图  9  芨岭铀矿床钠交代似斑状花岗岩中各蚀变带地球化学组分迁移Ci0-CiA图解

      a.细脉状绿泥石化带;b.粉红色方解石化带;c.雪花状方解石化带;d.赤铁矿化带;e.假象绿泥石化带;f.硅化带

      Fig.  9.  The Ci0-CiA diagrams of altered zones in Na-metasomatic porphyritic granite in Jiling uranium deposit

      图  10  芨岭铀矿床U与多组分地球化学图解(a~e)及SiO2-P2O5关系图解(f)

      Fig.  10.  The diagrams of U with some components (a-e) and SiO2-P2O5 (f) diagrams

      图  11  芨岭矿床及外围不同产状方解石中δ13CPDB18OSMOW温度模型

      刘家军等(2004)

      Fig.  11.  The δ13CPDB18OSMOW temperature model of calcite in and aroud Jiling uranium deposit

      图  12  芨岭铀矿床绿泥石Si-Fe分类图解(a)和不同产状方解石δ13CPDB18OSMOW(b)

      底图据刘家军等(2004)

      Fig.  12.  The Si-Fe classification diagram of chlorites (a) and δ13CPDB18OSMOW diagram (b) of calcites

      图  13  芨岭铀矿床淡粉红色方解石脉流体温度和密度演化图解(a)和绿泥石T-Fe/(Fe+Mg)图解(b)

      Fig.  13.  The temperature-salinity diagram (a) of light pink calcite vein and T-Fe/(Fe+Mg) diagram (b) of chlorites in Jiling uranium deposit

      图  14  芨岭钠交代型铀矿床成矿模式

      Fig.  14.  The genetic model of Jiling Na-metasomatic uranium deposit

    • [1] Chen, Y. J., Fu, C. M., Wang, G., et al., 2014. Carbon and Oxygen Isotopes in Granite-Type Hydrothermal Uranium Deposits:A Case of the Jiling Uranium Ore Field in Longshou Mountain, Gansu Province. Geology and Exploration, 50(4):641-648 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201404004
      [2] Cuney, M., Emetz, A., Mercadier, J., et al., 2012. Uranium Deposits Associated with Na-Metasomatism from Central Ukraine:A Review of some of the Major Deposits and Genetic Constraints. Ore Geology Reviews, 44:82-106. https://doi.org/10.1016/j.oregeorev.2011.09.007
      [3] Franz, J. D., 2009.Uranium Deposits of the World. Springer, Berlin.
      [4] Friedman, I., O'Neil, J.R., 1977. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. U. S. Geological Survey Professional Paper, Reston.
      [5] Gao, Y., Zhao, R. Y., Wang, G., et al., 2017. Geochemical Characteristics and Geological Implication of the Jiling Diabase in Gansu Province. Geology and Resources, 26(5):505-514 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjsdz201705012
      [6] Han, J., Xia, Y. L., 2009. Discussion on Zircon LA-ICP-MS Ages of Lianshanguan-Gaojiagou Granites and Its Significance. Uranium Geology, 25(4):214-221 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz200904004
      [7] Hu, N. G., 2003. Geochemical Characteristics and the Tectonic Setting of the Longshoushan Group in the Dongdashan Area, Gansu Province. Journal of Earth Science and Environmental, 25(4):32-39 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb200304008
      [8] Inoue, A., 1995. Formation of Clay Minerals in Hydrothermal Environments. In: Velde, B., ed., Origin and Mineralogy of Clays. Springer, Berlin, 268-330.
      [9] Jerden, J. L., 2001. Origin of Uranium Mineralisation at Coles Hill Virginia (USA) and Its Natural Attenuation within an Oxidized Rock-Soil-Ground Water System (Dissertation). Virginia Polytechnic Institute and State University, Blacksburg.
      [10] Ji, S. C., 1983. The Genetic Mechanism of Reddening. Uranium Geology, (3): 22-26 (in Chinese).
      [11] Li, X. H., Su, L., Song, B., et al., 2004. SHRIMP U-Pb Zircon Age of the Jinchuan Ultramafic Intrusion and Its Geological Significance. Chinese Science Bulletin, 49(4):401-402 (in Chinese with English abstract) doi: 10.1360/csb2004-49-4-401
      [12] Li, Z. Y., 1987. Rare Earth Element Geochemistry of Granite-Type Hydrothermal Uranium Deposits with Alkaline Metasomatism in Northwest China. Uranium Geology, 3(3):175-183(in Chinese).
      [13] Liu, C. Q., Huang, Z. L., Li, H. P., et al., 2001 The Geofluid in the Mantle and Its Role in Ore Forming Processes. Earth Science Frontiers, 8(4):231-243 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200104001
      [14] Liu, J. J., He, M. Q., Li, Z. M., et al., 2004. Oxygen and Carbon Isotopic Geochemistry of Baiyangping Silver-Copper Polymetallic Ore Concentration Area in Lanping Basin of Yunnan Province and Its Significance. Mineral Deposits, 23(1):1-10 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200401001
      [15] Ohmoto, H., 1986. Stable Isotope Geochemistry of Ore Deposits. Reviews in Mineralogy and Geochemistry, 16(6):491-559. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201801010
      [16] Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer, Berlin.
      [17] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
      [18] Tao, G., Zhu, L. D., Li, Z. W., et al., 2017. Petrogenesis and Geological Significance of the North Liuhuangkuang Granodiorite in the West Sement of the Qilian Terrane:Evidences from Geochronology, Geochemistry, and Hf Isotopes. Earth Science, 42(12):2258-2275 (in Chinese with English abstract).
      [19] Ткачева, Т. В., 1985. The Discussion on the Radioactive Genetic Hypothesis of Hematitization nearby Ore in Hydrothermal Uranium Deposit. Translated by Mo, Y. Z.. World Nuclear Geoscience, (1): 41-45 (in Chinese).
      [20] Vels, B, Fritsche, R., 1988. Sodium Metasomatism in the Kitongo Uranium Occurrence near Poli, Cameroon. Uranium, 4:365-383.
      [21] Wang, J. Q., Liu, X. M., 2016. Proficiency Testing of the XRF Method for Measuring 10 Major Elements in Different Rock Types. Rock and Mineral Analysis, 35(2):145-151 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201602005
      [22] Wang, N., Wu, C. L., Lei, M., et al., 2018. Mineralogical Characteristics of Qingshan Granitic Pluton in North Qilian Orogenic Belt and Their Constraints on Petrogenesis. Earth Science, 43(4):1253-1265 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804020
      [23] Wang, Y. S., 1983. The Categories and Geological Significances of Reddening. Uranium Geology, (2):1-8 (in Chinese).
      [24] Wilde, A., 2013. Towards a Model for Albitite-Type Uranium. Minerals, 3(1):36-48. https://doi.org/10.3390/min3010036
      [25] Wu, C. L., Xu, X. Y., Gao, Q. M., et al., 2010. Early Palaezoic Grranitoid Magmatism and Tectonic Evolution in North Qilian, NW China. Acta Petrologica Sinica, 26(4):1027-1044 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201004003
      [26] Xin, C. L., Ma, W. Y., An, G. B., et al., 2013. Geological Characteristics and Mineralization Mechanism of the No.207 Uranium Deposit in Longshoushan, Gansu Province. Acta Geologica Sinica, 87(4):577-590 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201304011
      [27] Xu, Z. Q., Xu, H. F., Zhang, J. X., et al., 1994. The Zhoulangnanshan Caledonian Subductive Complex in the Northern Qilian Mountain and Its Dynamics. Acta Geologica Sinica, 68(1):1-15 (in Chinese with English abstract).
      [28] Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Qinghai-Tibet Plateau and Continental Dynamics:A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2):221-238 (in Chinese with English abstract).
      [29] Zhang, J. M., Zhao, R. Y., Wang, G., et al., 2017. The Geological Characteristics and Significances of A-Type Porphyritic Granite in the Jiling Uranium Deposit in the Longshou Mountains, Gansu Province. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5):813-823 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201705011
      [30] Zhao, R. Y., 2016. The Study on Geological Characteristics and Metallogeny of Jiling Sodium-Metasomatic Uranium Deposit in Longshou Mountain Metallogenic Belt in Gansu Province (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      [31] Zhao, R. Y., Chen, Y. J., Wu, B., et al., 2013. A Metallogenic Model of the Sodic-Metasomatic Type Uranium Ore Deposit in the Jiling Area of Longshoushan, Gansu Province. Geology and Prospecting, 49(1):67-74 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201301008
      [32] Zhao, R. Y., Jiang, C. Y., Chen, X., et al., 2015. Geological Features of Albitite Veins and Their Relationship with Uranium Mineralization in the Middle Longshou Mountains of Gansu Province. Geology and Exploration, 51(6):1069-1078 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201506008
      [33] Zhao, R. Y., Wang, B., Chen, Y. C., et al., 2018. A Study of Mineralizing Hydrothermal Fluid Characteristics of the Jiling Uranium Deposit in the Longshou Mountain, Gansu Province. Acta Geoscientica Sinica, 39(3):282-294 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqxb201803003
      [34] Zhao, Y.Y., Zhang, S.M., Tang, L., et al., 2016. Sr-Nd-Pb Isotopic Characteristics and Its Geological Significance of the Jiling Grantic Pluton in the Middle Longshou Mountains. Earth Science, 41(6):1016-1030 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201606008
      [35] 陈云杰, 傅成铭, 王刚, 等, 2014.花岗岩型热液铀矿床C、O同位素研究——以甘肃省龙首山芨岭矿区为例.地质与勘探, 50(4):641-648. http://d.old.wanfangdata.com.cn/Periodical/dzykt201404004
      [36] 高宇, 赵如意, 王刚, 等, 2017.甘肃龙首山芨岭辉绿岩地球化学特征及其地质意义.地质与资源, 26(5):505-514. doi: 10.3969/j.issn.1671-1947.2017.05.012
      [37] 韩军, 夏毓亮, 2009.连山关-高家沟花岗岩体LA-ICP-MS锆石U-Pb年龄及其地质意义.铀矿地质, 25(4):214-221. doi: 10.3969/j.issn.1000-0658.2009.04.004
      [38] 胡能高, 2003.甘肃东大山地区龙首山岩群地球化学特征及其构造环境.地球科学与环境学报, 25(4):32-39. doi: 10.3969/j.issn.1672-6561.2003.04.008
      [39] 嵇少丞, 1983.有关红化蚀变的成因机制问题.铀矿地质, (3):22-26.
      [40] 李献华, 苏犁, 宋彪, 等, 2004.金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义.科学通报, 49(4):401-402 doi: 10.3321/j.issn:0023-074X.2004.04.018
      [41] 李占游, 1987.西北某花岗岩型碱交代热液铀矿床稀土元素地球化学.铀矿地质, 3(3):175-183.
      [42] 刘丛强, 黄智龙, 李和平, 等, 2001.地幔流体及其成矿作用.地学前缘, 8(4):231-243. doi: 10.3321/j.issn:1005-2321.2001.04.001
      [43] 刘家军, 何明勤, 李志明, 等, 2004.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质, 23(1):1-10. doi: 10.3969/j.issn.0258-7106.2004.01.001
      [44] Ткачева, Т.В. 1985.论热液铀矿床中近矿赤铁矿化带形成的放射性成因假说.莫耀支, 译.世界核地质科学, (1): 41-45.
      [45] 陶刚, 朱利东, 李智武, 等, 2017.祁连地块西段硫磺矿北花岗闪长岩的岩石成因及其地质意义:年代学、地球化学及Hf同位素证据.地球科学, 42(12):2258-2275. doi: 10.3799/dqkx.2017.614
      [46] 王建其, 柳小明, 2016. X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证.岩矿测试, 35(2):145-151. http://d.old.wanfangdata.com.cn/Periodical/ykcs201602005
      [47] 王楠, 吴才来, 雷敏, 等, 2018.北祁连青山花岗岩体矿物学特征及其对岩石成因的约束.地球科学, 43(4):1253-1265. doi: 10.3799/dqkx.2018.718
      [48] 王玉生, 1983.红化蚀变的类型及其地质意义.铀矿地质, (2):1-8.
      [49] 吴才来, 徐学义, 高前明, 等, 2010.北祁连早古生代花岗质岩浆作用及构造演化.岩石学报, 26(04):1027-1044. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004003
      [50] 辛存林, 马维云, 安国堡, 等, 2013.甘肃龙首山207铀矿床成矿地质特征及其成矿机制探讨.地质学报, 87(4):577-590. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201304011
      [51] 许志琴, 徐惠芬, 张建新, 等, 1994.北祁连走廊南山加里东俯冲杂岩增生地质体及其动力学.地质学报, 68(1):1-15.
      [52] 许志琴, 杨经绥, 李海兵, 等, 2006.青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力.中国地质, 33(2), 221-238. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200602001
      [53] 张甲民, 赵如意, 王刚, 等, 2017.甘肃芨岭矿区A型似斑状花岗岩地质特征及其地质意义.矿物岩石地球化学通报, 36(5):813-823. doi: 10.3969/j.issn.1007-2802.2017.05.010
      [54] 赵如意, 2016.甘肃省龙首山成矿带芨岭钠交代型铀矿地质特征与成矿作用研究(博士学位论文).西安: 长安大学.
      [55] 赵如意, 陈云杰, 武彬, 等, 2013.甘肃龙首山芨岭地区钠交代型铀矿成矿模式研究.地质与勘探, 49(1):67-74. http://d.old.wanfangdata.com.cn/Periodical/dzykt201301008
      [56] 赵如意, 姜常义, 陈旭, 等, 2015.甘肃省龙首山成矿带中段钠长岩脉地质特征及其与铀矿化关系研究.地质与勘探, 51(6):1069-1078. http://d.old.wanfangdata.com.cn/Periodical/dzykt201506008
      [57] 赵如意, 王博, 陈毓川, 等, 2018.甘肃省龙首山芨岭铀矿床成矿热液流体特征研究.地球学报, 39(3):282-294. http://d.old.wanfangdata.com.cn/Periodical/dqxb201803003
      [58] 赵亚云, 张树明, 汤琳, 等, 2016.龙首山中段芨岭花岗岩体Sr-Nd-Pb同位素特征及意义.地球科学, 41(6):1016-1030. doi: 10.3799/dqkx.2016.084
    • dqkx-45-1-90-Table1-6.pdf
    • 加载中
    图(14)
    计量
    • 文章访问数:  2863
    • HTML全文浏览量:  687
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-08-13
    • 刊出日期:  2020-01-15

    目录

      /

      返回文章
      返回