Temperature-Pressure Field and Hydrocarbon Accumulation in Deep-Ancient Marine Strata
-
摘要: 深层海相碳酸盐岩层系尚处于勘探初期,对于海相盆地深层温压场的演化特征及主控因素认识还不够清晰.本文总结了适用于深层海相层系的温压场研究方法,并以川中古隆起震旦系气藏和塔中隆起奥陶系凝析气藏为例,展示温压场恢复的结果.川中古隆起震旦系灯影组的温度演化经历了升温-降温-快速升温-快速降温的过程,主要受大地热流与沉积埋藏史的控制;而塔中隆起奥陶系则经历了持续缓慢增温的过程,现今为最高温度.川中震旦系和塔中奥陶系现今地层压力都表现为常压,但前者经历了常压-弱超压-强超压-卸压的演化过程,而塔中隆起奥陶系在3次主要的油气成藏期没有明显的超压.对温压场的系统研究,有助于解释塔中隆起和川中古隆起现今油气相态的差异,还可以为碳酸盐岩储层高温高压模拟实验提供参数,为海相大气田进一步勘探提供理论指导.Abstract: Deep marine carbonate strata are still in the early stage of exploration, and the evolution characteristics and main controlling factors of deep temperature and pressure field in marine basin are not clearly understanded. In this paper, the evolution of temperature and pressure of the Sinian gas reservoir in the central paleo-uplift of Sichuan Basin and the Ordovician condensate gas reservoir in the central uplift of Tarim Basin are reconstructed, on the basis of our summaries of suitable methods for deep marine reservoirs, in combination with our research findings and relevant literatures, the present geothermal gradient and heat flow in both the Sichuan and Tarim basins are lower. The Sinian Dengying Formation experienced the changes of warming-cooling-fast warming-fast cooling, which were mainly controlled by the heat flow and burial history. But the Ordovician in the central Tarim Basin underwent a sustained and slow warming process, and the present temperature is the highest during the geological time. The present-day pressures in both two reservoirs are in normal state. The Dengying Formation experienced the normal pressure, weak-overpressure, strong overpressure and pressure relief; but there were no obvious overpressures during the three major hydrocarbon accumulation periods in the Ordovician. The systematic research on temperature and pressure is not only very favorable for gas phase interpretations in these two gas reservoirs, but also provide modeling parameters for high temperature-high pressure experiment of carbonate rocks, improve the accumulation theory of deep marine strata, and support the further hydrocarbon exploration in deep marine gas field.
-
表 1 典型古老-深层海相气藏温压场特征对比
Table 1. Comparison of temperature and pressure in typical ancient-deep marine gas reserovirs
温压特征 川中古隆起震旦系 塔中隆起奥陶系 气藏相态 原油裂解气 凝析气 现今地温 气藏温度为140~160 ℃
地温梯度为25~30 ℃/km气藏温度为100~150 ℃
地温梯度为20~24 ℃/km温度演化 增温-降温-快速升温-快速降温
最大古地温超过220 ℃持续缓慢增温
现今为最高温度(100~150 ℃)现今压力系数 1.0~1.2 0.9~1.2 压力演化 常压-弱超压-强超压-常压 常压-弱超压 超压成因机制 烃类生成 - 代表井 MX9井、GS6井 TZ12井、TZ62井 -
[1] Aplin, A.C., Larter, S.R., Bigge, M.A., et al., 2000.PVTX History of the North Sea's Judy Oilfield.Journal of Geochemical Exploration, 69-70:641-644.https://doi.org/10.1016/s0375-6742(00)00066-2 doi: 10.1016/S0375-6742(00)00066-2 [2] Beaudoin, N., Lacombe, O., Bellahsen, N., et al., 2014.Evolution of Pore-Fluid Pressure during Folding and Basin Contraction in Overpressured Reservoirs:Insights from the Madison-Phosphoria Carbonate Formations in the Bighorn Basin(Wyoming, USA).Marine and Petroleum Geology, 55:214-229. https://doi.org/10.1016/j.marpetgeo.2013.12.009 [3] Chang, J., Qiu, N.S., Song, X.Y., et al., 2015.Multiple Cooling Episodes in the Central Tarim(Northwest China) Revealed by Apatite Fission Track Analysis and Vitrinite Reflectance Data.International Journal of Earth Sciences, 105(4):1257-1272. doi: 10.1007%2Fs00531-015-1242-7 [4] Chen, Z.H., Zhang, S.C., Zha, M., 2013.Geochemical Evolution during the Cracking of Crude Oil into Gas under Different Pressure Systems.Science in China (Series D), 43(11):1807-1818(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXG201403010&dbname=CJFD&dbcode=CJFQ [5] Ding, Q., He, Z.L., Wo, Y.J., et al., 2017.Factors Controlling Carbonate Rock Dissolution under High Temperature and Pressure.Oil and Gas Geology, 38(4):784-791(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201704015 [6] Feng, C.G., Liu, S.W., Wang, L.S., et al., 2009.Present-Day Geothermal Regime in Tarim Basin, Northwest China.Chinese Journal of Geophysics, 52(11):2752-2762(in Chinese with English abstract). doi: 10.1002/cjg2.1450/full [7] Feng, C.G., Liu, S.W., Wang, L.S., et al., 2010.Present-Day Geotemperature Field Characteristics in the Central Uplift Area of the Tarim Basin and Implications for Hydrocarbon Generation and Preservation.Earth Science, 35(4):645-656(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2010.079 [8] Guo, X.W., He, S., Liu, K.Y., et al., 2011.Quantitative Estimation of Overpressure Caused by Oil Generation in Petroliferous Basins.Organic Geochemistry, 42(11):1343-1350. https://doi.org/10.1016/j.orggeochem.2011.08.017 [9] Guo, X.W., Liu, K.Y., Jia, C.Z., et al., 2016.Constraining Tectonic Compression Processes by Reservoir Pressure Evolution:Overpressure Generation and Evolution in the Kelasu Thrust Belt of Kuqa Foreland Basin, NW China.Marine and Petroleum Geology, 72:30-44. doi: 10.1016/j.marpetgeo.2016.01.015 [10] Guo, Y.C., Pang, X.Q., Chen, D.X., et al., 2012.Evolution of Continental Formation Pressure in the Middle Part of the Western Sichuan Depression and Its Significance for Hydrocarbon Accumulation.Petroleum Exploration and Development, 39(4):426-433(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201204006.htm [11] Hao, F., Guo, T.L., Zhu, Y.M., et al., 2008.Evidence for Multiple Stages of Oil Cracking and Thermochemical Sulfate Reduction in the Puguang Gas Field, Sichuan Basin, China.AAPG Bulletin, 92(5):611-637. https://doi.org/10.1306/01210807090 [12] He, L.J., Huang, F., Liu, Q.Y., et al., 2014.Tectono-Thermal Evolution of Sichuan Basin in Early Paleozoic.Journal of Earth Sciences and Environment, 36(2):10-17(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201402002.htm [13] He, L.J., Xu, H.H., Wang, J.Y., 2011.Thermal Evolution and Dynamic Mechanism of the Sichuan Basin during the Early Permian-Middle Triassic.Science in China(Series D), 41(12):1884-1891(in Chinese). http://adsabs.harvard.edu/abs/2011AGUFMOS21A1570B [14] He, Z.L., Jin, X.H., Wo, Y.J., et al., 2016.Hydrocarbon Accumulation Characteristics and Exploration Domains of Ultra-Deep Marine Carbonates in China.China Petroleum Exploration, 21(1):3-14(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-KTSY201601003.htm [15] Huo, Z.P., Jiang, T., Pang, X.Q., et al., 2016.Evaluation of Deep Carbonate Source Rocks with Low TOC and Contribution to Oil-Gas Accumulation in Tazhong Area, Tarim Basin.Earth Science, 41(12):2061-2074(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.143 [16] Jiang, X.Q., Wang, S.Y., Fang, M., et al., 2008.Study of Simulation Experiment for Carbonate Rocks Dissolution in Burial Diagenetic Environment.Petroleum Geology and Experiment, 30(6):643-646(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz200806020 [17] Li, H.L., Qiu, N.S., Jin, Z.J., et al., 2004.Study on Thermal History of Tazhong Area, Talimu Basin.Journal of Xi'an Shiyou University(Natural Science Edition), 19(4):36-39(in Chinese with English abstract). doi: 10.3969/j.issn.1673-064X.2004.04.009 [18] Li, M.J., Wang, T.G., Chen, J.F., et al., 2010.Paleo-Heat Flow Evolution of the Tabei Uplift in Tarim Basin, Northwest China.Journal of Asian Earth Sciences, 37(1):52-66. https://doi.org/10.1016/j.jseaes.2009.07.007 [19] Li, S.M., Xiao, Z.Y., Lv, X.X., et al., 2011.Geochemical Characteristics and Origin of Hydrocarbons from Lower Ordovician in Tazhong Area, Tarim Basin.Xinjiang Petroleum Geology, 32(3):272-276(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjsydz201103014 [20] Liu, K.Y., Bourde, J., Zhang, B.S., et al., 2013.Hydrocarbon Charge History of the Tazhong Ordovician Reservoirs, Tarim Basin as Revealed from an Integrated Fluid Inclusion Study.Petroleum Exploration and Development, 40(2):171-180(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201302007 [21] Liu, S., Wang, H., Sun, W., et al., 2008.Energy Field Adjustment and Hydrocarbon Phase Evolution in Sinian-Lower Paleozoic Sichuan Basin.Journal of China University of Geosciences, 19(6):700-706. http://d.old.wanfangdata.com.cn/Periodical/dqkx-e200806013 [22] Liu, W., Qiu, N.S., Xu, Q.C., et al., 2018a.Precambrian Temperature and Pressure System of Gaoshiti-Moxi Block in the Central Paleo-Uplift of Sichuan Basin, Southwest China.Precambrian Research, 313:91-108. doi: 10.1016/j.precamres.2018.05.028 [23] Liu, W., Qiu, N.S., Xu, Q.C., et al., 2018b.The Evolution of Pore-Fluid Pressure and Its Causes in the Sinian-Cambrian Deep Carbonate Gas Reservoirs in Central Sichuan Basin, Southwestern China.Journal of Petroleum Science and Engineering, 169:96-109. doi: 10.1016/j.petrol.2018.05.057 [24] Liu, Y.F., Qiu, N.S., Xie, Z.Y., et al., 2014.Characteristics and Effects on Gas Accumulation of the Sinian-Lower Cambrian Temperature-Pressure Field in the Central Paleo-Uplift, Sichuan Basin.Acta Sedimentologica Sinica, 32(3):601-610(in Chinese with English abstract). http://www.cqvip.com/QK/95994X/201403/67748866504849524851485051.html [25] Liu, Y.F., Qiu, N.S., Xie, Z.Y., et al., 2016.Overpressure Compartments in the Central Paleo-Uplift, Sichuan Basin, Southwest China.AAPG Bulletin, 100(5):867-888. https://doi.org/10.1306/02101614037 [26] Liu, Y.F., Zheng, L.J., Qiu, N.S., et al., 2015.The Effect of Temperature on the Overpressure Distribution and Formation in the Central Paleo-Uplift of the Sichuan Basin.Chinese Journal of Geophysics, 58(7):2380-2390(in Chinese with English abstract). http://www.cqvip.com/QK/94718X/201507/665685077.html [27] Lu, X.S., Liu, K.Y., Zhao, M.J., et al., 2016.Accumulation Mechanism Analysis of the Typical Deep Reservoirs in Tarim Basin.Journal of Northeast Petroleum University, 40(6):62-73 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQSY201606008.htm [28] Luo, B., Yang, Y.M., Luo, W.J., et al., 2017.Controlling Factors of Dengying Formation Reservoirs in the Central Sichuan Paleo-Uplift.Petroleum Research, 2(1):54-63. https://doi.org/10.1016/j.ptlrs.2017.06.001 [29] Meng, Y.L., Li, B., Wang, Z.G., et al., 2008.Overpressure Retardation of Organic Acid Generation and Clastic Reservoirs Dissolution in Central Huanghua Depression.Petroleum Exploration and Development, 35(1):40-43(in Chinese with English abstract). doi: 10.1016/S1876-3804(08)60006-3 [30] Qiu, N.S., 2002.Characters of Thermal Conductivity and Radio Genic Heat Production Rate in Basins of Northwest China.Chinese Journal of Geology, 37(2):196-206(in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2002.02.007 [31] Qiu, N.S., Chang, J., Zuo, Y.H., et al., 2012.Thermal Evolution and Maturation of Lower Paleozoic Source Rocks in the Tarim Basin, Northwest China.AAPG Bulletin, 96(5):789-821. https://doi.org/10.1306/09071111029 [32] Qiu, N.S., Jin, Z.J., Li, J.C., 2002.Discussion on Thermal Wave Model Used in the Thermal Evolution Analysis in the Tarim Basin.Chinese Journal of Geophysics, 45(3):398-406(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2002.03.011 [33] Reiners, P.W., Spell, T.L., Nicolescu, S., et al., 2004.Zircon (U-Th)/He Thermochronometry:He Diffusion and Comparisons with 40Ar/39Ar Dating.Geochimica et Cosmochimica Acta, 68(8):1857-1887. https://doi.org/10.1016/j.gca.2003.10.021 [34] Roedder, E., Bodnar, R.J., 1980.Geologic Pressure Determinations from Fluid Inclusion Studies.Annual Review of Earth and Planetary Sciences, 8(1):263-301. https://doi.org/10.1146/annurev.ea.08.050180.001403 [35] She, M., Shou, J.F., He, X.Y., et al., 2013.Experiment of Dissolution Mechanism of Carbonate Rocks:Surface Dissolution and Internal Dissolution.Marine Origin Petroleum Geology, 18(3):55-61(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2013.03.007 [36] Sweeney, J.J., Burnham, A.K., 1990.Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics.AAPG Bulletin, 74(10):1559-1570. https://doi.org/10.1306/0c9b251f-1710-11d7-8645000102c1865d [37] Thiéry, R., Pironon, J., Walgenwitz, F., et al., 2002.Individual Characterization of Petroleum Fluid Inclusions(Composition and P-T Trapping Conditions) by Microthermometry and Confocal Laser Scanning Microscopy:Inferences from Applied Thermodynamics of Oils.Marine and Petroleum Geology, 19(7):847-859.https://doi.org/10.1016/s0264-8172(02)00110-1 doi: 10.1016/S0264-8172(02)00110-1 [38] Tian, H., Xiao, X.M., Wilkins, R.W.T., et al., 2008.New Insights into the Volume and Pressure Changes during the Thermal Cracking of Oil to Gas in Reservoirs:Implications for the In-Situ Accumulation of Gas Cracked from Oils.AAPG Bulletin, 92(2):181-200. https://doi.org/10.1306/09210706140 [39] Tripathy, V., Saha, D., 2015.Inversion of Calcite Twin Data, Paleostress Reconstruction and Multiphase Weak Deformation in Cratonic Interior-Evidence from the Proterozoic Cuddapah Basin, India.Journal of Structural Geology, 77:62-81. https://doi.org/10.1016/j.jsg.2015.05.009 [40] Wan, Y.L., Gu, Y., Fu, Q., et al., 2017.Characteristics of Geothermal-Geopressure Field and Its Implications for the Process of Hydrocarbon Distribution in Deep Ordovician Stratum in Shunnan-Gulong Area of Tarim Basin.Journal of Mineralogy and Petrology, 37(1):74-83(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201701009 [41] Wang, H.J., Huang, X.M., 1999.Pressure Structure and Petroleum Distribution in Tazhong Area.Experimental Petroleum Geology, 21(3):242-245(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD199903009.htm [42] Wang, J., Wang, J.A., Shen, J.Y., et al., 1995.Heat Flow in Tarim Basin.Earth Science, 20(4):399-404(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX199504008.htm [43] Wang, W., Huang, K.J., Bao, Z.Y., et al., 2011.Dissolution Kinetics of Different Types of Oolitic Limestones in Northeastern Sichuan Basin.Petroleum Exploration and Development, 38(4):495-502(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/syktykf201104015 [44] Wei, G.Q., Du, J.H., Xu, C.C., et al., 2015.Characteristics and Accumulation Modes of Large Gas Reservoirs in Sinian-Cambrian of Gaoshiti-Moxi Region, Sichuan Basin.Acta Petrolei Sinica, 36(1):1-12(in Chinese with English abstract). doi: 10.1038/aps.2014.140 [45] Wu, T., Xu, Y., Bian, Q.L., 1999.Relationship between the CAI of Conodont and Maturity of Source Rock in Northeast Region of Tarim Basin.Xinjiang Geology, 17(2):75-78(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI902.010.htm [46] Xiao, X.M., Wilkins, R.W.T., Liu, D.H., et al., 2000.Investigation of Thermal Maturity of Lower Palaeozoic Hydrocarbon Source Rocks by Means of Vitrinite-Like Maceral Reflectance-A Tarim Basin Case Study.Organic Geochemistry, 31(10):1041-1052.https://doi.org/10.1016/s0146-6380(00)00061-9 doi: 10.1016/S0146-6380(00)00061-9 [47] Xie X.N., Cheng J.M., Meng Y.L., 2009.Basin Fluid Flow and Associated Diagenetic Processes.Acta Sedmentologica Sinica, 27(5):863-871(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzxb-e201801017 [48] Xie, X.N., Hao, F., Lu, Y.C., et al., 2017.Differential Enrichment Mechanism and Key Technology of Shale Gas in Complex Areas of South China.Earth Science, 42(7):1045-1056(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.084 [49] Xu, M., Zhu, C.Q., Tian, Y.T., et al., 2011.Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin.Chinese Journal of Geophysics, 54(4):1052-1060(in Chinese with English abstract). doi: 10.1002/cjg2.1604/full [50] Xu, Q.C., Qiu, N.S., Liu, W., et al., 2018.Thermal Evolution and Maturation of Sinian and Cambrian Source Rocks in the Central Sichuan Basin, Southwest China.Journal of Asian Earth Sciences, 164:143-158. https://doi.org/10.1016/j.jseaes.2018.06.015 [51] Yamada, R., Murakami, M., Tagami, T., 2007.Statistical Modelling of Annealing Kinetics of Fission Tracks in Zircon; Reassessment of Laboratory Experiments.Chemical Geology, 236(1-2):75-91. https://doi.org/10.1016/j.chemgeo.2006.09.002 [52] Yang, Y.P., Zheng, H.F., 2009.Pressure Determination by Raman Spectra of Water in Hydrothermal Diamond-Anvil Cell Experiments.Applied Spectroscopy, 63(1):120-123. https://doi.org/10.1366/000370209787169678 [53] Zhang, N., Tian, L., Xing, Y.L., et al., 2011.Characteristic of Hydrocarbon Fluid Inclusions and Analysis of Reservoir Formation in Ordovician Reservoir of Tazhong Area, Tarim Basin.Acta Petrologica Sinica, 27(5):1548-1556(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201105027 [54] Zhao, W.Z., Hu, S.Y., Liu, W., et al., 2014.Petroleum Geological Features and Exploration Prospect in Deep Marine Carbonate Strata Onshore China:A Further Discussion.Natural Gas Industry, 34(4):1-9(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2014.04.001 [55] Zhu, C.Q., Xu, M., Yuan, Y.S., et al., 2010.Palaeogeothermal Response and Record of the Effusing of Emeishan Basalts in the Sichuan Basin.Chinese Science Bulletin, 55(6):474-482(in Chinese). doi: 10.1007/s11434-009-0490-y [56] Zhu, G.Y., Milkov, A.V., Chen, F.R., et al., 2018.Non-Cracked Oil in Ultra-Deep High-Temperature Reservoirs in the Tarim Basin, China.Marine and Petroleum Geology, 89:252-262. https://doi.org/10.1016/j.marpetgeo.2017.07.019 [57] 陈中红, 张守春, 查明, 2013.不同压力体系下原油裂解的地球化学演化特征.中国科学(D辑), 43(11):1807-1818. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201311010.htm [58] 丁茜, 何治亮, 沃玉进, 等, 2017.高温高压条件下碳酸盐岩溶蚀过程控制因素.石油与天然气地质, 38(4):784-791. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201704015 [59] 冯昌格, 刘绍文, 王良书, 等, 2009.塔里木盆地现今地热特征.地球物理学报, 52(11):2752-2762. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb200911010 [60] 冯昌格, 刘绍文, 王良书, 等, 2010.塔里木盆地中央隆起区现今地温场分布特征及其与油气的关系.地球科学, 35(4):645-656. https://doi.org/10.3799/dqkx.2010.079 [61] 郭迎春, 庞雄奇, 陈冬霞, 等, 2012.川西坳陷中段陆相地层压力演化及其成藏意义.石油勘探与开发, 39(4):426-433. http://d.old.wanfangdata.com.cn/Periodical/syktykf201204005 [62] 何丽娟, 黄方, 刘琼颖, 等, 2014.四川盆地早古生代构造-热演化特征.地球科学与环境学报, 36(2):10-17. doi: 10.3969/j.issn.1672-6561.2014.02.004 [63] 何丽娟, 许鹤华, 汪集旸, 2011.早二叠世-中三叠世四川盆地热演化及其动力学机制.中国科学(D辑), 41(12):1884-1891. http://www.cqvip.com/QK/98491A/201112/40711778.html [64] 何治亮, 金晓辉, 沃玉进, 等, 2016.中国海相超深层碳酸盐岩油气成藏特点及勘探领域.中国石油勘探, 21(1):3-14. http://d.old.wanfangdata.com.cn/Periodical/zgsykt201601003 [65] 霍志鹏, 姜涛, 庞雄奇, 等, 2016.塔中地区深层低丰度碳酸盐岩有效烃源岩评价及其对油气藏贡献.地球科学, 41(12):2061-2074. https://doi.org/10.3799/dqkx.2016.143 [66] 蒋小琼, 王恕一, 范明, 等, 2008.埋藏成岩环境碳酸盐岩溶蚀作用模拟实验研究.石油实验地质, 30(6):643-646. doi: 10.3969/j.issn.1001-6112.2008.06.020 [67] 李慧莉, 邱楠生, 金之钧, 等, 2004.塔里木盆地塔中地区地质热历史研究.西安石油大学学报(自然科学版), 19(4):36-39. doi: 10.3969/j.issn.1673-064X.2004.04.009 [68] 李素梅, 肖中尧, 吕修祥, 等, 2011.塔中地区下奥陶统油气地球化学特征及成因.新疆石油地质, 32(3):272-276. http://d.old.wanfangdata.com.cn/Periodical/xjsydz201103014 [69] 刘可禹, Bourdet, J., 张宝收, 等, 2013.应用流体包裹体研究油气成藏——以塔中奥陶系储集层为例.石油勘探与开发, 40(2):171-180. http://www.cqvip.com/QK/90664X/201302/45075495.html [70] 刘一锋, 邱楠生, 谢增业, 等, 2014.川中古隆起震旦系-下寒武统温压演化及其对天然气成藏的影响.沉积学报, 32(3):601-610. http://www.cqvip.com/QK/95994X/201403/67748866504849524851485051.html [71] 刘一锋, 郑伦举, 邱楠生, 等, 2015.川中古隆起超压分布与形成的地温场因素.地球物理学报, 58(7):2380-2390. http://www.cqvip.com/QK/94718X/201507/665685077.html [72] 鲁雪松, 刘可禹, 赵孟军, 等, 2016.塔里木盆地典型深层油气藏成藏机制分析.东北石油大学学报, 40(6):62-73. doi: 10.3969/j.issn.2095-4107.2016.06.008 [73] 孟元林, 李斌, 王志国, 等, 2008.黄骅坳陷中区超压对有机酸生成和溶解作用的抑制.石油勘探与开发, 35(1):40-43. doi: 10.3321/j.issn:1000-0747.2008.01.008 [74] 邱楠生, 2002.中国西北部盆地岩石热导率和生热率特征.地质科学, 37(2):196-206. doi: 10.3321/j.issn:0563-5020.2002.02.007 [75] 邱楠生, 金之钧, 李京昌, 2002.塔里木盆地热演化分析中热史波动模型的初探.地球物理学报, 45(3):398-406. doi: 10.3321/j.issn:0001-5733.2002.03.011 [76] 佘敏, 寿建峰, 贺训云, 等, 2013.碳酸盐岩溶蚀机制的实验探讨:表面溶蚀与内部溶蚀对比.海相油气地质, 18(3):55-61. doi: 10.3969/j.issn.1672-9854.2013.03.007 [77] 万旸璐, 顾忆, 傅强, 等, 2017.塔里木盆地顺南-古隆地区深层奥陶系地温-地压特征与油气分布关系.矿物岩石, 37(1):74-83. http://d.old.wanfangdata.com.cn/Periodical/kwys201701009 [78] 王红军, 黄晓明, 1999.塔中地区地层压力结构与油气的分布.石油实验地质, 21(3):242-245. doi: 10.3969/j.issn.1001-6112.1999.03.010 [79] 王钧, 汪缉安, 沈继英, 等, 1995.塔里木盆地的大地热流.地球科学, 20(4):399-404. http://earth-science.net/WebPage/Article.aspx?id=240 [80] 王炜, 黄康俊, 鲍征宇, 等, 2011.不同类型鲕粒灰岩储集层溶解动力学特征.石油勘探与开发, 38(4):495-502. http://d.old.wanfangdata.com.cn/Periodical/syktykf201104015 [81] 魏国齐, 杜金虎, 徐春春, 等, 2015.四川盆地高石梯-磨溪地区震旦系-寒武系大型气藏特征与聚集模式.石油学报, 36(1):1-12. http://d.wanfangdata.com.cn/Periodical/syxb201501001 [82] 武涛, 许英, 边青兰, 1999.塔里木盆地东北地区早古生代牙形石色变指数与生油岩成熟度.新疆地质, 17(2):75-78. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI902.010.htm [83] 解习农, 成建梅, 孟元林, 2009.沉积盆地流体活动及其成岩响应.沉积学报, 27(5):863-871. http://d.wanfangdata.com.cn/Periodical/cjxb200905010 [84] 解习农, 郝芳, 陆永潮, 等, 2017.南方复杂地区页岩气差异富集机理及其关键技术.地球科学, 42(7):1045-1056. https://doi.org/10.3799/dqkx.2017.084 [85] 徐明, 朱传庆, 田云涛, 等, 2011.四川盆地钻孔温度测量及现今地热特征.地球物理学报, 54(4):1052-1060. doi: 10.3969/j.issn.0001-5733.2011.04.020 [86] 张鼐, 田隆, 邢永亮, 等, 2011.塔中地区奥陶系储层烃包裹体特征及成藏分析.岩石学报, 27(5):1548-1556. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201105027 [87] 赵文智, 胡素云, 刘伟, 等, 2014.再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景.天然气工业, 34(4):1-9. doi: 10.3787/j.issn.1000-0976.2014.04.001 [88] 朱传庆, 徐明, 袁玉松, 等, 2010.峨眉山玄武岩喷发在四川盆地的地热学响应.科学通报, 55(6):474-482. http://www.cqvip.com/QK/71135X/201107/33315886.html