Narrow Vein Ore Body Modeling by Geostatistics: An Example from Meiling-Hongshi Copper Mine in Xinjiang
-
摘要: 细脉状矿体由于矿脉厚度小且沿走向和倾向品位变化较大,致使其在资源模拟中很难实现三维建模.通过构建高斯变换的二维变异函数转载到单层三维块体模型,首次完成了对新疆梅岭-红石铜矿区细脉状矿体的三维建模.这一成果弥补了二维模型在空间形态、品位变化特征上的不足,避免了采用传统极小的子块模型匹配实体模型所产生的高平滑效应.单层三维块体模型能够更加有助于实际采矿生产中块段划分,具有创新性,并为矿产资源评价和开发设计提供基础,对同类矿体的三维建模具有重要的指导意义.Abstract: 3D resource modeling of the narrow vein ore body is challenging due to its small thickness and large grade variations along the vein. This paper completed the three-dimensional modeling for narrow vein ore body of Meiling-Hongshi copper mine in Xinjiang, by building two-dimensional variation function Gaussian transformation into a single 3D block model. This study makes up for the lack of spatial morphology and grade change characteristics in the two-dimensional model. In addition, it avoids the high-smoothing effect of single-layer three-dimensional block model. The innovative monolayer 3D block modeling is not only more helpful to the partition of blocks in actual mining production, but also provides a basis for mineral resources evaluation and development design, which can facilitates future three-dimensional modeling of similar orebodies.
-
Key words:
- narrow vein deposit /
- geostatistics /
- variation function /
- Gaussian transformation /
- ore deposit geology
-
表 1 线性插值反转变换(原始变量转高斯变量)
Table 1. Linear interpolator inversion (raw variable to Gaussian variable)
条件Z 结果Y Z<Zamin Y=Yamin Zamin≤Z≤Zpmin Y=linear(Yamin, Ypmin) Zpmin<Z<Zpmax $Y\leftarrow Z=\sum\limits_{i=0}^{NH-1}{{{\mathit{\Psi }}_{i}}{{H}_{i}}\left(Y \right)}$ Zpmax≤Z≤Zamax Y=linear(Ypmax, Yamax) Z>Yamax Y=Yamax 表 2 分区间高斯变量转原始变量
Table 2. Gaussian variable into raw variable on intervals
条件Y 结果Z Y<Yamin Z=Zamin Yamin≤Y≤Ypmin Z=linear(Zamin, Zpmin) Ypmin<Y<Ypmax $Z=\sum\limits_{i=0}^{NH-1}{{{\mathit{\Psi }}_{i}}{{H}_{i}}\left(Y \right)}$ Ypmax≤Y≤Yamax Z=linear(Zpmax, Zamax) Y>Yamax Z=Zamax 表 3 Cu12矿体Cu品位与矿化厚度基本统计
Table 3. Basic statistics of Cu grade and thickness on Cu12 domain
统计特征 最小值 最大值 平均值 方差 变异系数 Cu原始样品位 0.02% 6.09% 0.47% 0.86 1.95 Cu组合样品位 0.04% 2.27% 0.41% 0.23 1.17 矿化厚度 1.10 m 19.53 m 7.38 m 24.00 0.66 注:Cu原始样品个数153个,Cu组合样品个数27个,矿化厚度所测样品个数27个. -
[1] Armstong, M., 1984.Improving the Estimation and Modelling of the Variogram.In: Verly, G., David, M., Journel, A.G., et al., Geostatistics for Natural Resources Characterization.Springer, Dordrecht. [2] Brooker, P.I., 1986.A Parametric Study of Robustness of Kriging Variance as a Function of Range and Relative Nugget Effect for a Spherical Semivariogram.Mathematical Geology, 18(5):477-488. https://doi.org/10.1007/bf00897500 [3] Chen, X.W, Song, G.W., 2009.Application of Kriging Estimation Method in SURPAC Block Model.Meatal Mine, (10):137-139 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSKS200910035.htm [4] Coburn, T.C., 1997.Geostatistics for Natural Resources Evaluation.Technometrics, 42(4):437-438. https://doi.org/10.1080/00401706.2000.10485733 [5] Deng, X.H., Wang, J.B., Wang, Y.Y., et al., 2014.Geological Characteristics of the Hongshi Cu-Au Deposit, Eastern Tianshan, Xinjiang and Discussion of the Deposit Genesis.Mineral Exploration, 5(2):159-168 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSJS201402007.htm [6] Gao, Z.Q., Fang, W.X., Hu, R.Z., et al., 2006.The Metallogenic Environment of Kalatage Prophyry Copper (Gold) Deposit and Its Prospecting Perspective, Xinjiang, China.Geological Journal, 80(1):90-100 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200601011.htm [7] Guo, Q.F., Liu, J.H., 2012.Application on the Disjunctive Kriging in Global Estimate of Recoverable Resource.China Mining Magazine, 21(8):20-22 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201208006 [8] Hou, J.R., Huang, J.X., 2001.Application of Geostatistics in Classification for Resources/Reserves of Solid Fuels and Mineral Commodities.Geology and Prospecting, 37(6):61-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKT200106017.htm [9] Hou, J.R., Huang, J.X., Zhang S.Q., 1989.Theory of Lognormal Kriging and Its Application in Ore Reserve Estimation.Jornal of University of Science and Technology Beijing, 11(5):391-398 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001093626 [10] Hou, J.R., Yin, Z.N., Li, W.M., 1988.Applied Geostatistics.Geological Publishing House, Beijing (in Chinese). [11] Hou, J.R., Yin, Z.N., Li, W.M., et al., 1998.Practical Geostatistics.Geological Publishing House, Beijing, 36-44 (in Chinese). [12] Jia, M.T., Pan, C.L., Wang, L.G., 2003.The Technology to Overcome Effects of Subjective Factors in Deposit Modeling Using Geostatistics.Geology and Prospecting, 39(4):73-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200304016.htm [13] Jiang, C.R., Peng, P.G., Wang, L.G., 2016.Dynamic Cut-Off Grade Optimization in Shaxi Copper Mine.Metal Mine, (9):73-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JSKS201609015.htm [14] Mao, Q.G., Fang, T.H., Wang, J.B., et al., 2010.Geochronology Studies of the Early Paleozoic Honghai Massive Sulfide Deposits and Its Geological Significance in Kalatage Area, Eastern Tianshan Mountain.Acta Petrologica Sinica, 26(10):3017-3026 (in Chinese with English abstract). [15] Qin, K.Z., Fang, T.H., Wang, S.L., et al., 2014.Discovery of the Kalatage Cu-Au Mineralized District and Its Prospecting Potentiality, Paleozoic Window at the South Margin of the Tu-Ha Basin.Chinese Geology, 28(3):16-23 (in Chinese). [16] Sun, Y.J., Meng, W., Wan, H., 2006.A New Method for Classifying Degree of Engineering Controlling in Resources and Reserves Estimation.Geology and Prospecting, 42(6):81-84 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt200606017 [17] Tang, P., Tang, J.X., Tang, X.Q., et al., 2013.The Comparative Research of Traditional Method and Geo-Statistics Method in Mineral Resource/Reserve Classification.Metal Mine, (11):106-109 (in Chinese with English abstract). [18] Wang, Z.M., Hou, J.R., 1994.Cokriging and Its Application in Estimation of Mineral Reserves.Geology and Prospecting, 30(3):39-48 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400056018 [19] Xiao, B., Zhao, P.D., Hou, J.R., 2001.Theoretical Study of Universal Kriging in Temporal-Spatial Domain.Journal of Jianghan Prtroleum Institute, 23(1):81-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JHSX200101028.htm [20] Zhou, X., Wang, X.W., Jin, Y., 2015.Reserves Estimation of an Iron Deposit Based on Geostatistics Method.Metal Mine, (7):86-90 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201507020 [21] 陈小文, 宋革文, 2009.克立格估值法在SURPAC块体建模中的应用.金属矿山, (10):137-139. doi: 10.3321/j.issn:1001-1250.2009.10.036 [22] 邓小华, 王京彬, 王玉往, 等, 2014.东天山卡拉塔格红石铜矿地质特征及矿床成因初步探讨.矿产勘查, 5(2):159-168. doi: 10.3969/j.issn.1674-7801.2014.02.007 [23] 高珍权, 方维萱, 胡瑞忠, 等, 2006.新疆东天山卡拉塔格斑岩型铜(金)矿成矿地质背景与找矿评价.地质学报, 80(1):90-100. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200601010 [24] 郭奇峰, 刘金辉, 2012.析取克里格法在可回采资源量的总体估算的应用.中国矿业, 21(8):20-22. doi: 10.3969/j.issn.1004-4051.2012.08.006 [25] 侯景儒, 黄竞先, 2001.地质统计学在固体矿产资源/储量分类中的应用.地质与勘探, 37(6):61-66. doi: 10.3969/j.issn.0495-5331.2001.06.017 [26] 侯景儒, 黄竞先, 张树泉, 等, 1989.对数正态克立格法理论及其应用.北京科技大学学报, 11(5):391-398. doi: 10.1016-j.theriogenology.2010.10.030/ [27] 侯景儒, 尹镇南, 李维明, 1988.实用地质统计学.北京:地质出版社. [28] 侯景儒, 尹镇南, 李维明, 等, 1998.实用地质统计学.北京:地质出版社, 36-44. [29] 贾明涛, 潘长良, 王李管, 2003.克服地质统计学矿床建模中主观因素影响技术研究.地质与勘探, 39(4):73-77. doi: 10.3969/j.issn.0495-5331.2003.04.016 [30] 蒋成荣, 彭平安, 王李管, 2016.沙溪铜矿开采边界品位动态优化方法.金属矿山, (9):73-77. doi: 10.3969/j.issn.1001-1250.2016.09.014 [31] 毛启贵, 方同辉, 王京彬, 等, 2010.东天山卡拉塔格早古生代红海块状硫化物矿床精确定年及其地质意义.岩石学报, 26(10):3017-3026. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010013 [32] 秦克章, 方同辉, 王书来, 等, 2001.吐哈盆地南缘古生代"天窗"卡拉塔格铜金矿化区的发现及其成矿潜力.中国地质, 28(3):16-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200103004 [33] 孙玉建, 孟伟, 万会, 2006.矿产资源储量估算中工程控制程度划分的探索.地质与勘探, 42(6):81-84. doi: 10.3969/j.issn.0495-5331.2006.06.017 [34] 唐攀, 唐菊兴, 唐晓倩, 等, 2013.传统方法和地质统计学在矿产资源/储量分类中的对比分析.金属矿山, (11):106-109. http://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201311031.htm [35] 王志民, 侯景儒, 1994.协同克立格法及其在矿产储量计算中的应用.地质与勘探, 30(3):39-48. http://www.cnki.com.cn/Article/CJFDTotal-DZKT403.007.htm [36] 肖斌, 赵鹏大, 侯景儒, 2001.时空泛克立格法的理论研究.江汉石油学院学报, 23(1):81-83. doi: 10.3969/j.issn.1000-9752.2001.01.027 [37] 周旋, 王选问, 金瑜, 2015.基于地质统计学方法某铁矿资源量估算.金属矿山, (7):86-90. doi: 10.3969/j.issn.1001-1250.2015.07.020