• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地质统计学在细脉型矿体模拟中的应用:以新疆梅岭-红石铜矿为例

    张会琼 刘金辉 王京彬 赵路通 孙紫坚 韩英 熊靓辉

    张会琼, 刘金辉, 王京彬, 赵路通, 孙紫坚, 韩英, 熊靓辉, 2018. 地质统计学在细脉型矿体模拟中的应用:以新疆梅岭-红石铜矿为例. 地球科学, 43(9): 2980-2986. doi: 10.3799/dqkx.2018.283
    引用本文: 张会琼, 刘金辉, 王京彬, 赵路通, 孙紫坚, 韩英, 熊靓辉, 2018. 地质统计学在细脉型矿体模拟中的应用:以新疆梅岭-红石铜矿为例. 地球科学, 43(9): 2980-2986. doi: 10.3799/dqkx.2018.283
    Zhang Huiqiong, Liu Jinhui, Wang Jingbin, Zhao Lutong, Sun Zijian, Han Ying, Xiong Lianghui, 2018. Narrow Vein Ore Body Modeling by Geostatistics: An Example from Meiling-Hongshi Copper Mine in Xinjiang. Earth Science, 43(9): 2980-2986. doi: 10.3799/dqkx.2018.283
    Citation: Zhang Huiqiong, Liu Jinhui, Wang Jingbin, Zhao Lutong, Sun Zijian, Han Ying, Xiong Lianghui, 2018. Narrow Vein Ore Body Modeling by Geostatistics: An Example from Meiling-Hongshi Copper Mine in Xinjiang. Earth Science, 43(9): 2980-2986. doi: 10.3799/dqkx.2018.283

    地质统计学在细脉型矿体模拟中的应用:以新疆梅岭-红石铜矿为例

    doi: 10.3799/dqkx.2018.283
    基金项目: 

    国土资源部行业科研基金项目 201411026

    详细信息
      作者简介:

      张会琼(1982-), 女, 高级工程师, 主要从事科技管理与成矿预测研究工作

      通讯作者:

      刘金辉

    • 中图分类号: P624

    Narrow Vein Ore Body Modeling by Geostatistics: An Example from Meiling-Hongshi Copper Mine in Xinjiang

    • 摘要: 细脉状矿体由于矿脉厚度小且沿走向和倾向品位变化较大,致使其在资源模拟中很难实现三维建模.通过构建高斯变换的二维变异函数转载到单层三维块体模型,首次完成了对新疆梅岭-红石铜矿区细脉状矿体的三维建模.这一成果弥补了二维模型在空间形态、品位变化特征上的不足,避免了采用传统极小的子块模型匹配实体模型所产生的高平滑效应.单层三维块体模型能够更加有助于实际采矿生产中块段划分,具有创新性,并为矿产资源评价和开发设计提供基础,对同类矿体的三维建模具有重要的指导意义.

       

    • 图  1  埃尔米特多项式高斯变换

      Fig.  1.  Gaussian anamorphosis by Hermite polynomials

      图  2  卡拉塔格矿区地质简图

      1.卡拉塔格火山岩系;2.志留纪花岗岩;3.泥盆纪大南湖组;4.志留纪闪长岩;5.白垩系;6.泥盆纪花岗岩;7.二叠系;8.花岗斑岩/次火山岩;9.侏罗系;10.志留纪二长花岗岩;11.推测的火山机构

      Fig.  2.  Geological sketch of Kalatage mine area

      图  3  梅岭-红石矿区地质及深部矿体投影

      1.凝灰质砂岩;2.硅质岩;3.蚀变石英流纹斑岩;4.角砾岩;5.含角砾熔结凝灰岩;6.铜矿脉;7.火山碎屑岩;8.熔结凝灰岩;9.玄武安山岩;10.侵入花岗岩;11.火山机构

      Fig.  3.  Geological and domains projection map of Meiling-Hongshi mine

      图  4  Cu12矿体的铜品位基本统计

      Fig.  4.  Basic statistics of copper grade on Cu12 domain

      图  5  Cu12矿体的视厚度基本统计

      Fig.  5.  Basic statistics of visual thickness on Cu12 domain

      图  6  Cu12矿体的高斯变换铜品位基本统计

      Fig.  6.  Basic statistics of Gaussian Cu grade on Cu12 domain

      图  7  Cu12整数据库组合样品试验变异函数

      Fig.  7.  Downhole variogram on Gaussian value

      图  8  样品高斯变换值试验变异函数与理论变异函数

      Fig.  8.  Variogram and variogram modeling for Gaussian value

      图  9  反变换的原始组合样品理论变异函数模型

      Fig.  9.  Final variogram modeling on raw composites

      图  10  Cu12矿体单层块体模型剖面

      Fig.  10.  Cross section of single layer block model

      图  11  Cu12矿体块体模型平面

      Fig.  11.  Plan view of Cu12 single layer block model showing Cu grade variation

      图  12  Cu12矿体三维模型

      Fig.  12.  Three-dimensional model of Cu12

      表  1  线性插值反转变换(原始变量转高斯变量)

      Table  1.   Linear interpolator inversion (raw variable to Gaussian variable)

      条件Z 结果Y
      ZZamin Y=Yamin
      ZaminZZpmin Y=linear(Yamin, Ypmin)
      ZpminZZpmax $Y\leftarrow Z=\sum\limits_{i=0}^{NH-1}{{{\mathit{\Psi }}_{i}}{{H}_{i}}\left(Y \right)}$
      ZpmaxZZamax Y=linear(Ypmax, Yamax)
      ZYamax Y=Yamax
      下载: 导出CSV

      表  2  分区间高斯变量转原始变量

      Table  2.   Gaussian variable into raw variable on intervals

      条件Y 结果Z
      YYamin Z=Zamin
      YaminYYpmin Z=linear(Zamin, Zpmin)
      YpminYYpmax $Z=\sum\limits_{i=0}^{NH-1}{{{\mathit{\Psi }}_{i}}{{H}_{i}}\left(Y \right)}$
      YpmaxYYamax Z=linear(Zpmax, Zamax)
      YYamax Z=Zamax
      下载: 导出CSV

      表  3  Cu12矿体Cu品位与矿化厚度基本统计

      Table  3.   Basic statistics of Cu grade and thickness on Cu12 domain

      统计特征 最小值 最大值 平均值 方差 变异系数
      Cu原始样品位 0.02% 6.09% 0.47% 0.86 1.95
      Cu组合样品位 0.04% 2.27% 0.41% 0.23 1.17
      矿化厚度 1.10 m 19.53 m 7.38 m 24.00 0.66
      注:Cu原始样品个数153个,Cu组合样品个数27个,矿化厚度所测样品个数27个.
      下载: 导出CSV
    • [1] Armstong, M., 1984.Improving the Estimation and Modelling of the Variogram.In: Verly, G., David, M., Journel, A.G., et al., Geostatistics for Natural Resources Characterization.Springer, Dordrecht.
      [2] Brooker, P.I., 1986.A Parametric Study of Robustness of Kriging Variance as a Function of Range and Relative Nugget Effect for a Spherical Semivariogram.Mathematical Geology, 18(5):477-488. https://doi.org/10.1007/bf00897500
      [3] Chen, X.W, Song, G.W., 2009.Application of Kriging Estimation Method in SURPAC Block Model.Meatal Mine, (10):137-139 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSKS200910035.htm
      [4] Coburn, T.C., 1997.Geostatistics for Natural Resources Evaluation.Technometrics, 42(4):437-438. https://doi.org/10.1080/00401706.2000.10485733
      [5] Deng, X.H., Wang, J.B., Wang, Y.Y., et al., 2014.Geological Characteristics of the Hongshi Cu-Au Deposit, Eastern Tianshan, Xinjiang and Discussion of the Deposit Genesis.Mineral Exploration, 5(2):159-168 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSJS201402007.htm
      [6] Gao, Z.Q., Fang, W.X., Hu, R.Z., et al., 2006.The Metallogenic Environment of Kalatage Prophyry Copper (Gold) Deposit and Its Prospecting Perspective, Xinjiang, China.Geological Journal, 80(1):90-100 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200601011.htm
      [7] Guo, Q.F., Liu, J.H., 2012.Application on the Disjunctive Kriging in Global Estimate of Recoverable Resource.China Mining Magazine, 21(8):20-22 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201208006
      [8] Hou, J.R., Huang, J.X., 2001.Application of Geostatistics in Classification for Resources/Reserves of Solid Fuels and Mineral Commodities.Geology and Prospecting, 37(6):61-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKT200106017.htm
      [9] Hou, J.R., Huang, J.X., Zhang S.Q., 1989.Theory of Lognormal Kriging and Its Application in Ore Reserve Estimation.Jornal of University of Science and Technology Beijing, 11(5):391-398 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001093626
      [10] Hou, J.R., Yin, Z.N., Li, W.M., 1988.Applied Geostatistics.Geological Publishing House, Beijing (in Chinese).
      [11] Hou, J.R., Yin, Z.N., Li, W.M., et al., 1998.Practical Geostatistics.Geological Publishing House, Beijing, 36-44 (in Chinese).
      [12] Jia, M.T., Pan, C.L., Wang, L.G., 2003.The Technology to Overcome Effects of Subjective Factors in Deposit Modeling Using Geostatistics.Geology and Prospecting, 39(4):73-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200304016.htm
      [13] Jiang, C.R., Peng, P.G., Wang, L.G., 2016.Dynamic Cut-Off Grade Optimization in Shaxi Copper Mine.Metal Mine, (9):73-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JSKS201609015.htm
      [14] Mao, Q.G., Fang, T.H., Wang, J.B., et al., 2010.Geochronology Studies of the Early Paleozoic Honghai Massive Sulfide Deposits and Its Geological Significance in Kalatage Area, Eastern Tianshan Mountain.Acta Petrologica Sinica, 26(10):3017-3026 (in Chinese with English abstract).
      [15] Qin, K.Z., Fang, T.H., Wang, S.L., et al., 2014.Discovery of the Kalatage Cu-Au Mineralized District and Its Prospecting Potentiality, Paleozoic Window at the South Margin of the Tu-Ha Basin.Chinese Geology, 28(3):16-23 (in Chinese).
      [16] Sun, Y.J., Meng, W., Wan, H., 2006.A New Method for Classifying Degree of Engineering Controlling in Resources and Reserves Estimation.Geology and Prospecting, 42(6):81-84 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt200606017
      [17] Tang, P., Tang, J.X., Tang, X.Q., et al., 2013.The Comparative Research of Traditional Method and Geo-Statistics Method in Mineral Resource/Reserve Classification.Metal Mine, (11):106-109 (in Chinese with English abstract).
      [18] Wang, Z.M., Hou, J.R., 1994.Cokriging and Its Application in Estimation of Mineral Reserves.Geology and Prospecting, 30(3):39-48 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400056018
      [19] Xiao, B., Zhao, P.D., Hou, J.R., 2001.Theoretical Study of Universal Kriging in Temporal-Spatial Domain.Journal of Jianghan Prtroleum Institute, 23(1):81-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JHSX200101028.htm
      [20] Zhou, X., Wang, X.W., Jin, Y., 2015.Reserves Estimation of an Iron Deposit Based on Geostatistics Method.Metal Mine, (7):86-90 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201507020
      [21] 陈小文, 宋革文, 2009.克立格估值法在SURPAC块体建模中的应用.金属矿山, (10):137-139. doi: 10.3321/j.issn:1001-1250.2009.10.036
      [22] 邓小华, 王京彬, 王玉往, 等, 2014.东天山卡拉塔格红石铜矿地质特征及矿床成因初步探讨.矿产勘查, 5(2):159-168. doi: 10.3969/j.issn.1674-7801.2014.02.007
      [23] 高珍权, 方维萱, 胡瑞忠, 等, 2006.新疆东天山卡拉塔格斑岩型铜(金)矿成矿地质背景与找矿评价.地质学报, 80(1):90-100. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200601010
      [24] 郭奇峰, 刘金辉, 2012.析取克里格法在可回采资源量的总体估算的应用.中国矿业, 21(8):20-22. doi: 10.3969/j.issn.1004-4051.2012.08.006
      [25] 侯景儒, 黄竞先, 2001.地质统计学在固体矿产资源/储量分类中的应用.地质与勘探, 37(6):61-66. doi: 10.3969/j.issn.0495-5331.2001.06.017
      [26] 侯景儒, 黄竞先, 张树泉, 等, 1989.对数正态克立格法理论及其应用.北京科技大学学报, 11(5):391-398. doi: 10.1016-j.theriogenology.2010.10.030/
      [27] 侯景儒, 尹镇南, 李维明, 1988.实用地质统计学.北京:地质出版社.
      [28] 侯景儒, 尹镇南, 李维明, 等, 1998.实用地质统计学.北京:地质出版社, 36-44.
      [29] 贾明涛, 潘长良, 王李管, 2003.克服地质统计学矿床建模中主观因素影响技术研究.地质与勘探, 39(4):73-77. doi: 10.3969/j.issn.0495-5331.2003.04.016
      [30] 蒋成荣, 彭平安, 王李管, 2016.沙溪铜矿开采边界品位动态优化方法.金属矿山, (9):73-77. doi: 10.3969/j.issn.1001-1250.2016.09.014
      [31] 毛启贵, 方同辉, 王京彬, 等, 2010.东天山卡拉塔格早古生代红海块状硫化物矿床精确定年及其地质意义.岩石学报, 26(10):3017-3026. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010013
      [32] 秦克章, 方同辉, 王书来, 等, 2001.吐哈盆地南缘古生代"天窗"卡拉塔格铜金矿化区的发现及其成矿潜力.中国地质, 28(3):16-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200103004
      [33] 孙玉建, 孟伟, 万会, 2006.矿产资源储量估算中工程控制程度划分的探索.地质与勘探, 42(6):81-84. doi: 10.3969/j.issn.0495-5331.2006.06.017
      [34] 唐攀, 唐菊兴, 唐晓倩, 等, 2013.传统方法和地质统计学在矿产资源/储量分类中的对比分析.金属矿山, (11):106-109. http://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201311031.htm
      [35] 王志民, 侯景儒, 1994.协同克立格法及其在矿产储量计算中的应用.地质与勘探, 30(3):39-48. http://www.cnki.com.cn/Article/CJFDTotal-DZKT403.007.htm
      [36] 肖斌, 赵鹏大, 侯景儒, 2001.时空泛克立格法的理论研究.江汉石油学院学报, 23(1):81-83. doi: 10.3969/j.issn.1000-9752.2001.01.027
      [37] 周旋, 王选问, 金瑜, 2015.基于地质统计学方法某铁矿资源量估算.金属矿山, (7):86-90. doi: 10.3969/j.issn.1001-1250.2015.07.020
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  3201
    • HTML全文浏览量:  1469
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-01-21
    • 刊出日期:  2018-09-15

    目录

      /

      返回文章
      返回