Zircon U-Pb Geochronology, Geochemistry of the Yusupuleke Granite Pluton in South Altyn and Its Geological Implications
-
摘要: 玉苏普阿勒克塔格岩体是南阿尔金出露面积较大的花岗岩体之一.为了查明该岩体的成因与形成的构造环境,探讨南阿尔金地区的岩浆演化过程,对该岩体进行了岩石学、地球化学及锆石U-Pb年代学方面的研究.研究结果表明玉苏普阿勒克塔格岩体主要由中粗粒似斑状黑云二长花岗岩及中细粒含斑黑云二长花岗岩组成.本次研究获得中粗粒似斑状黑云二长花岗岩的锆石U-Pb年龄为442~448 Ma,中细粒含斑黑云二长花岗岩的锆石U-Pb年龄为423~430 Ma.岩石地球化学显示,早期花岗岩具有准铝质特征(A/CNK=0.97),晚期花岗岩具有弱过铝质特征(A/CNK=1.04).两期花岗岩均属于高钾钙碱性Ⅰ型花岗岩,轻稀土富集重稀土亏损,具有Eu的弱负异常.两期花岗岩都富集Rb、Th、K等元素,亏损Ba、P、Sr、Ti等元素.根据两期花岗岩的形成时代,结合区域地质背景认为玉苏普阿勒克塔格岩体形成于活动大陆边缘环境,是早古生代南阿尔金洋向北俯冲碰撞,在构造体制转换阶段幔源岩浆上涌新生地壳发生部分熔融形成.Abstract: Yusupuleke pluton is one of the largest granite plutons in the south margin of the Altyn orogenic belt. It presents petrology, geochemistry, zircon U-Pb chronology to study the genesis and the evolution of the magmatism in this paper. The pluton is mainly composed of medium-coarse grained porphyritic biotite monzonitic granites and medium-fine grained phenocysts-bearing biotite monzonitic granites. The zircon U-Pb age of the former is 442-448 Ma while the latter is 423-430 Ma. The early granites belong to metaluminous series (A/CNK=0.97) and the late granites belong to weakly peraluminous series (A/CNK=1.04). Both of them show significant Ⅰ-type granite characteristics with depletion in HREE, Ba, P, Sr, Ti, enrichment in LREE, Rb, Th, K, and slightly negative Eu anomaly. Combined with the geochronological data and the regional geological background, It is inferred that the Yusupuleke granites formed in an active continental margin tectonic setting related to the northward subduction of the South Altyn Ocean in Early Paleozoic. In the process of the tectonic regime transition, along with the upwelling of the mantle component, the partial melting of the juvenile crust formed the parent magma and the Yusupuleke granites crystallized after the fractionation of the magma.
-
Key words:
- Ⅰ-type granite /
- U-Pb chronology /
- geological implication /
- Yusupuleke /
- South Altyn /
- geochemistry
-
图 1 阿尔金造山带构造单元及划分玉苏普阿勒克塔格岩体地质简图
Fig. 1. Tectonic subdivision of the Altyn orogenic belt and simplified geological map of Yusupuleke pluton
图 5 玉苏普阿勒克塔格岩体花岗岩A/NK-A/CNK图(a)和K2O-SiO2图(b)
a.据Maniar and Piccoli(1989);b.据Rickwood(1989)
Fig. 5. A/NK vs. A/CNK classification diagram(a) and K2O vs. SiO2 classification diagram (b) of the granites in Yusupuleke pluton
图 6 玉苏普阿勒克塔格岩体花岗岩球粒陨石标准化稀土元素配分曲线图(a, c)及原始地幔标准化微量元素蛛网图(b, d)
Fig. 6. Chondrite-normalized REE distribution patterns (a, c) and primitive mantle normalized trace element patterns (b, d) for the granites in Yusupuleke pluton
图 8 玉苏普阿勒克塔格岩体花岗岩La/Yb-La图解
Fig. 8. La/Yb vs. La classification diagram of granites in Yusupuleke pluton
图 9 Y-Zr、Zr/Al2O3-TiO2/Al2O3、Th/Yb-Ta/Yb判别图解
a,b.据Muller and Groves (1994);c.据Gorton and Schandl (2000)
Fig. 9. Y-Zr, Zr/Al2O3-TiO2/Al2O3, Th/Yb-Ta/Yb discrimination diagrams
表 1 玉苏普阿勒克塔格岩体花岗岩LA⁃MC⁃ICP⁃MS锆石U⁃Pb定年测试结果
Table 1. LA⁃MC⁃ICP⁃MS zircon U⁃Pb isotopic data of the granites in Yusupuleke pluton
样品号及分析点号 含量(10-6) 同位素比值 年龄(Ma) Pb Th U Th/ U 207Pb/ 206Pb 1σ 207Pb/ 235U 1σ 206Pb/ 238U 1σ 206Pb/ 238U 1σ 15CL155-3-03 75 92.3 190.7 0.48 0.055 7 0.000 6 0.548 4 0.012 6 0.071 4 0.001 7 444.7 10.4 15CL155-3-06 71 86.4 192.8 0.45 0.055 5 0.000 7 0.547 0 0.013 4 0.071 4 0.001 5 444.7 8.9 15CL155-3-07 25.4 29.7 69.0 0.43 0.056 7 0.001 0 0.557 7 0.018 0 0.071 2 0.001 6 443.6 9.7 15CL155-3-08 57.4 71.8 148.4 0.48 0.055 3 0.000 6 0.534 4 0.011 7 0.070 1 0.001 4 436.8 8.7 15CL155-3-09 24.6 29.7 70.7 0.42 0.055 4 0.000 9 0.536 1 0.014 6 0.070 2 0.001 6 437.5 9.6 15CL155-3-10 55.6 67.5 143.4 0.47 0.056 3 0.001 9 0.547 1 0.024 2 0.070 4 0.001 7 438.8 10.2 15CL155-3-11 81 96.9 215.8 0.45 0.056 1 0.001 2 0.549 9 0.015 4 0.071 2 0.001 6 443.3 9.7 15CL155-3-12 34.3 39.7 94.8 0.42 0.057 4 0.001 6 0.559 8 0.025 3 0.070 6 0.001 7 439.5 10.0 15CL155-3-16 62 74.3 152.1 0.49 0.055 9 0.000 5 0.546 4 0.011 9 0.070 9 0.001 5 441.5 9.3 15CL155-3-17 15.7 19.1 40.8 0.47 0.054 1 0.001 2 0.526 6 0.020 1 0.070 5 0.001 7 439.4 10.2 15CL155-3-18 52.2 62.8 120.4 0.52 0.057 7 0.001 4 0.562 7 0.029 9 0.070 4 0.002 4 438.8 14.5 15CL155-3-21 28.1 34.7 85.2 0.41 0.054 3 0.000 6 0.527 8 0.013 1 0.070 5 0.001 6 439.2 9.4 15CL155-3-23 176 214.8 425.4 0.50 0.055 3 0.000 4 0.546 9 0.013 8 0.071 7 0.001 7 446.4 10.5 15CL155-3-24 25.8 31.2 71.1 0.44 0.054 7 0.000 6 0.540 8 0.015 6 0.071 7 0.001 9 446.7 11.4 15CL155-3-25 40.6 47.9 109.7 0.44 0.054 6 0.000 6 0.548 6 0.015 3 0.072 8 0.002 0 453.1 11.8 15CL155-3-26 48.7 59.0 124.2 0.47 0.055 1 0.000 5 0.545 0 0.012 9 0.071 8 0.001 5 446.9 9.3 15CL155-3-27 126 166.5 321.0 0.52 0.056 2 0.000 5 0.560 3 0.016 5 0.072 2 0.001 7 449.3 10.5 15CL155-3-29 64 82.2 172.8 0.48 0.054 2 0.000 6 0.522 7 0.012 7 0.069 9 0.001 7 435.7 10.0 15CL155-3-30 112 138.8 282.1 0.49 0.057 2 0.001 4 0.555 4 0.019 8 0.070 3 0.001 5 438.0 9.0 15CL156-3-01 32.9 37.9 113.1 0.33 0.055 6 0.001 3 0.556 8 0.014 2 0.072 5 0.001 6 451.5 9.8 15CL156-3-02 218 267.2 655.7 0.41 0.055 9 0.001 0 0.547 7 0.010 3 0.071 0 0.001 2 442.0 7.5 15CL156-3-03 137 170.5 341.5 0.50 0.056 7 0.000 9 0.574 0 0.012 5 0.073 4 0.001 6 456.4 9.9 15CL156-3-04 298 363.0 963.3 0.38 0.056 4 0.000 8 0.562 4 0.012 1 0.072 2 0.001 4 449.4 8.7 15CL156-3-05 228 269.0 685.6 0.39 0.058 1 0.000 9 0.580 2 0.017 7 0.072 3 0.001 7 449.7 10.0 15CL156-3-06 125 166.2 222.8 0.75 0.058 8 0.001 0 0.596 5 0.017 2 0.073 4 0.001 5 456.8 8.9 15CL156-3-08 222 257.7 676.8 0.38 0.055 6 0.000 5 0.553 6 0.013 2 0.072 1 0.001 6 448.9 9.9 15CL156-3-09 134 156.7 412.3 0.38 0.056 9 0.000 8 0.558 0 0.015 6 0.071 0 0.0014 442.0 8.2 15CL156-3-10 149 175.9 469.4 0.37 0.055 7 0.000 5 0.540 6 0.010 9 0.070 4 0.001 4 438.3 8.4 15CL156-3-11 201 238.9 637.2 0.37 0.056 3 0.000 5 0.553 9 0.014 4 0.071 3 0.001 6 444.1 9.7 15CL156-3-14 66 74.5 164.4 0.45 0.059 3 0.001 8 0.597 4 0.032 0 0.072 8 0.001 9 452.8 11.4 15CL156-3-15 207 229.7 649.8 0.35 0.056 5 0.000 6 0.565 8 0.015 6 0.072 5 0.001 6 451.4 9.8 15CL156-3-16 141 160.4 487.9 0.33 0.055 5 0.000 4 0.565 1 0.016 1 0.073 8 0.001 9 459.3 11.3 15CL156-3-17 68 82.1 177.9 0.46 0.054 9 0.000 6 0.543 9 0.011 8 0.071 8 0.001 4 447.2 8.5 15CL156-3-18 211 251.1 756.0 0.33 0.058 7 0.001 8 0.572 8 0.026 8 0.070 5 0.001 5 439.4 9.1 15CL156-3-19 362 443.3 1 094.1 0.41 0.057 8 0.001 0 0.564 9 0.019 9 0.070 8 0.001 5 440.9 9.1 15CL156-3-20 125 155.6 335.1 0.46 0.055 1 0.000 5 0.541 2 0.013 2 0.071 2 0.001 7 443.4 10.0 15CL156-3-23 199 252.3 480.9 0.52 0.055 5 0.000 4 0.539 1 0.010 8 0.070 5 0.001 4 439.0 8.3 15CL156-3-24 148 174.1 502.0 0.35 0.055 7 0.000 4 0.556 9 0.012 4 0.072 5 0.001 6 451.3 9.4 15CL156-3-25 234 267.4 657.2 0.41 0.057 6 0.000 6 0.578 5 0.009 8 0.072 8 0.001 5 453.3 9.1 15CL156-3-26 181 212.5 554.2 0.38 0.055 1 0.000 3 0.558 1 0.012 2 0.073 5 0.001 6 456.9 9.4 15CL156-3-27 62.4 67.2 276.0 0.24 0.055 5 0.000 7 0.555 9 0.014 6 0.072 6 0.001 5 451.6 9.3 15CL156-3-28 188 218.7 542.8 0.40 0.055 2 0.000 3 0.563 2 0.012 1 0.074 0 0.001 6 460.5 9.5 15CL156-3-29 196 209.7 612.8 0.34 0.061 4 0.000 4 0.601 6 0.013 5 0.071 1 0.001 4 442.6 8.7 15CL156-3-30 171 198.8 535.2 0.37 0.055 5 0.000 4 0.566 3 0.012 9 0.074 0 0.001 7 460.4 10.1 15CL152-3-02 527 611.3 3 508.1 0.17 0.056 7 0.000 3 0.526 0 0.010 7 0.067 2 0.001 2 419.3 7.4 15CL152-3-05 67 91.7 210.5 0.44 0.056 2 0.002 2 0.537 8 0.022 7 0.069 5 0.002 0 433.1 11.9 15CL152-3-07 520 670.5 2 134.2 0.31 0.056 3 0.000 4 0.538 3 0.017 1 0.069 3 0.001 9 432.2 11.7 15CL152-3-08 708 867.7 2 001.9 0.43 0.062 4 0.000 4 0.587 7 0.016 6 0.068 3 0.002 0 425.8 11.8 15CL152-3-10 1 039 1 034.3 4 081.8 0.25 0.064 1 0.000 8 0.589 2 0.010 6 0.066 8 0.001 5 416.8 9.2 15CL152-3-11 829 1 047.3 3 544.0 0.30 0.057 6 0.000 5 0.546 1 0.019 1 0.068 6 0.002 0 427.9 12.2 15CL152-3-12 487 792.5 2 131.4 0.37 0.058 8 0.000 8 0.548 3 0.011 7 0.067 8 0.001 9 422.6 11.4 15CL152-3-13 570 735.7 2 321.0 0.32 0.057 6 0.000 4 0.544 7 0.016 6 0.068 5 0.001 8 427.1 11.0 15CL152-3-18 466 617.1 1 600.3 0.39 0.057 2 0.000 6 0.539 4 0.010 3 0.068 5 0.001 4 426.9 8.8 15CL152-3-20 908 1 112.9 3 189.6 0.35 0.060 8 0.000 5 0.565 4 0.012 3 0.067 5 0.001 4 420.9 8.5 15CL152-3-22 151 141.4 791.5 0.18 0.062 9 0.002 2 0.583 5 0.027 7 0.067 1 0.001 2 418.9 7.2 15CL152-3-25 347 421.0 1 055.6 0.40 0.061 5 0.001 2 0.565 5 0.013 0 0.066 7 0.001 2 416.3 7.5 15CL152-3-27 706 977.0 2 177.4 0.45 0.059 6 0.000 7 0.557 8 0.016 2 0.067 8 0.001 4 422.8 8.6 15CL152-3-28 467 672.6 2 477.9 0.27 0.055 6 0.000 5 0.526 1 0.018 5 0.068 6 0.002 3 427.5 14.1 15CL152-3-29 344 519.7 900.4 0.58 0.056 6 0.000 5 0.525 7 0.011 9 0.067 4 0.001 2 420.3 7.5 15CL152-3-30 474 692.5 1 403.0 0.49 0.056 5 0.000 5 0.531 4 0.011 0 0.068 2 0.001 5 425.2 9.3 15CL154-3-01 138 185.0 200.5 0.92 0.057 3 0.000 6 0.548 3 0.019 6 0.069 3 0.002 1 432.1 12.9 15CL154-3-03 1 263 649.8 3 332.3 0.20 0.084 1 0.002 4 0.771 8 0.018 7 0.066 7 0.001 0 416.1 6.1 15CL154-3-05 387 656.3 1 248.6 0.53 0.059 1 0.000 4 0.565 5 0.012 7 0.069 3 0.001 5 432.2 9.2 15CL154-3-06 1 614 984.7 6 076.2 0.16 0.076 4 0.001 1 0.738 9 0.025 6 0.070 0 0.001 7 436.4 10.4 15CL154-3-07 243 354.7 442.8 0.80 0.059 1 0.000 6 0.548 7 0.016 1 0.067 3 0.001 5 419.9 9.2 15CL154-3-08 578 560.7 2 600.4 0.22 0.062 3 0.000 6 0.589 0 0.013 8 0.068 6 0.002 1 427.9 12.7 15CL154-3-09 106 136.6 324.2 0.42 0.055 5 0.000 5 0.535 1 0.014 5 0.069 9 0.001 9 435.5 11.2 15CL154-3-10 593 716.2 1 586.9 0.45 0.059 5 0.002 2 0.573 6 0.030 5 0.069 6 0.001 4 434.0 8.3 15CL154-3-11 783 886.7 2 293.1 0.39 0.063 2 0.001 8 0.608 8 0.030 1 0.069 6 0.001 5 433.7 9.3 15CL154-3-13 603 741.1 1 457.0 0.51 0.062 2 0.001 2 0.599 3 0.013 5 0.069 9 0.001 6 435.7 9.8 15CL154-3-14 704 827.5 1 712.1 0.48 0.063 4 0.000 9 0.585 3 0.012 2 0.067 0 0.001 4 418.3 8.4 15CL154-3-17 83 109.0 195.0 0.56 0.055 0 0.001 2 0.520 5 0.017 4 0.068 6 0.001 5 427.8 9.2 15CL154-3-18 155 227.1 211.2 1.08 0.054 7 0.001 3 0.515 5 0.017 9 0.068 3 0.001 7 426.2 10.0 15CL154-3-22 625 614.6 1 792.9 0.34 0.065 4 0.002 0 0.603 5 0.016 5 0.067 1 0.001 6 418.6 9.5 15CL154-3-23 496 528.7 1 603.8 0.33 0.061 3 0.001 4 0.586 8 0.022 8 0.069 3 0.001 9 432.1 11.5 15CL154-3-24 521 627.6 1 283.2 0.49 0.061 8 0.001 3 0.596 5 0.017 6 0.070 0 0.001 3 436.2 7.7 15CL154-3-27 60 77.8 163.6 0.48 0.055 8 0.000 8 0.537 7 0.018 8 0.069 9 0.002 0 435.3 11.9 15CL154-3-28 385 518.7 1 288.3 0.40 0.055 9 0.000 6 0.537 2 0.011 9 0.069 7 0.001 4 434.1 8.6 15CL154-3-29 97 103.6 242.2 0.43 0.070 4 0.004 5 0.674 1 0.067 7 0.068 4 0.002 5 426.6 15.3 15CL154-3-30 798 842.6 2 525.7 0.33 0.067 2 0.000 8 0.629 7 0.023 0 0.067 9 0.002 1 423.3 12.5 表 2 玉苏普阿勒克塔格岩体花岗岩化学成分
Table 2. Chemical composition of granites in Yusupuleke pluton
样品 15CL
147-215CL
148-215CL
149-215CL
150-215CL
155-215CL
156-215CL
156-515CL
151-215CL
152-215CL
153-215CL
154-2期次 早期花岗岩 晚期花岗岩 SiO2 66.22 71.20 73.98 74.57 69.52 68.82 69.50 74.05 77.91 74.10 76.05 TiO2 0.82 0.40 0.13 0.16 0.54 0.60 0.58 0.29 0.20 0.20 0.19 Al2O3 13.81 13.65 13.31 13.35 14.09 13.57 14.06 13.20 11.15 13.53 12.29 Fe2O3 1.80 0.86 0.52 0.59 0.89 1.00 0.91 1.89 0.65 0.46 0.46 FeO 2.52 1.55 0.62 0.75 2.90 2.93 2.28 0.08 1.05 1.25 1.08 MnO 0.068 0.045 0.028 0.035 0.071 0.072 0.065 0.031 0.033 0.032 0.033 MgO 1.57 0.76 0.21 0.21 0.63 0.89 1.24 0.45 0.22 0.22 0.14 CaO 2.88 1.33 1.12 1.00 1.90 1.89 2.42 0.93 0.97 0.96 0.83 Na2O 3.97 2.83 3.15 3.19 3.53 3.27 3.23 3.63 2.64 3.28 3.01 K2O 3.39 5.76 5.97 5.46 4.95 4.61 4.63 4.30 4.40 5.15 5.24 P2O5 0.210 0.096 0.029 0.045 0.130 0.160 0.150 0.068 0.040 0.045 0.045 H2O+ 1.61 0.95 0.36 0.34 0.45 1.37 0.66 0.84 0.46 0.58 0.35 LOI 2.627 1.426 0.887 0.594 0.701 2.064 0.833 1.030 0.699 0.744 0.571 Total 99.89 99.91 99.95 99.96 99.85 99.89 99.90 99.95 99.96 99.95 99.95 TFeO 4.253 2.364 1.098 1.286 3.729 3.926 3.125 1.800 1.642 1.681 1.513 ALK 7.58 8.72 9.21 8.70 8.57 8.07 7.94 8.03 7.10 8.49 8.30 K/Na 0.853 2.038 1.896 1.710 1.401 1.409 1.436 1.188 1.669 1.573 1.748 DI 76.34 86.93 92.49 91.84 83.15 81.67 80.24 90.2 91.46 90.91 92.7 AR 2.578 3.683 4.437 4.021 3.267 3.085 2.823 3.557 3.773 3.775 4.388 MF 72.64 75.63 83.46 86.09 85.49 81.35 71.66 80.18 88.3 88.54 91.07 A/CNK 0.893 1.025 0.972 1.028 0.962 0.981 0.953 1.071 1.024 1.063 1.013 A/NK 1.352 1.253 1.141 1.197 1.259 1.305 1.360 1.242 1.223 1.233 1.156 Li 24.9 33.1 59.3 76.1 28.9 25.8 62.1 40.7 69.2 32.3 61.2 Be 3.18 3.77 4.36 5.77 3.35 3.67 4.23 7.95 4.23 6.33 5.74 Sc 11.1 6.3 1.4 3.1 9.3 9.8 8.3 3.8 2.7 2.8 2.5 Cr 15.7 11.5 2.9 4.9 8.3 7.9 19.5 8.1 2.4 3.6 2.9 Co 10.3 4.2 0.9 1.1 4.2 6.1 7.6 3.3 1.2 1.3 1.3 Ni 9.41 4.95 0.64 1.45 2.47 2.87 9.82 3.32 0.39 0.60 0.63 Cu 10.2 3.5 1.5 5.3 8.5 6.1 5.8 6.6 2.7 3.8 1.9 Zn 69.8 43.9 21.7 29.8 72.4 80.8 50.0 69.1 32.0 41.1 32.1 Ga 23.0 19.1 19.3 20.0 23.1 22.1 20.1 19.3 18.2 22.9 20.0 Rb 156 278 345 343 171 183 227 309 279 313 329 Sr 171 100 61 52 102 140 145 78 52 60 47 Zr 338 194 83 110 428 347 234 167 153 161 154 Nb 27.1 24.3 13.5 24.8 29.4 27.0 22.7 22.5 22.1 22.7 26.5 Cs 2.38 8.49 9.64 12.49 6.57 2.20 12.35 13.79 9.98 7.18 12.03 Cd 0.075 0.058 0.030 0.037 0.077 0.063 0.090 0.020 0.043 0.046 0.044 Ba 430 497 308 232 891 586 472 204 150 241 220 Hf 10.6 6.2 2.7 3.7 14.9 10.5 6.5 5.4 5.0 5.3 4.5 Ta 2.40 3.13 1.83 3.18 2.18 1.78 2.52 4.13 2.72 2.91 2.86 Pb 15.4 30.0 35.0 42.4 23.0 22.1 21.9 31.1 27.9 34.8 32.1 Th 30.1 39.2 42.2 37.0 26.7 19.7 47.6 40.1 75.1 64.5 50.8 U 4.10 6.58 3.90 3.88 3.61 2.67 5.45 6.68 7.18 6.33 5.84 Bi 0.29 0.09 0.10 0.10 0.16 0.12 0.12 0.24 0.13 0.06 0.06 V 71.7 25.2 7.2 8.2 26.1 36.4 46.7 21.1 4.9 8.4 9.4 Mo 0.79 0.51 0.06 0.08 0.56 0.42 0.29 0.45 0.15 0.24 0.25 In 0.074 0.055 0.033 0.051 0.077 0.092 0.085 0.098 0.048 0.047 0.049 Sb 0.73 0.31 0.09 0.08 0.34 0.30 0.11 0.17 0.14 0.12 0.19 W 1.69 0.92 0.41 0.80 1.00 0.70 0.47 0.80 0.57 0.82 1.47 Y 56.5 49.1 29.8 38.6 47.6 61.4 53.0 43.2 40.0 46.2 40.0 La 99.4 50.1 36.6 36.8 78.5 70.4 59.9 43.5 60.9 51.0 54.8 Ce 181 98.6 72.7 66.6 147 136 121 81.7 116 98.5 102 Pr 20.5 12.0 9.12 8.34 16.9 17.2 14.4 9.54 13.9 11.7 11.8 Nd 72.3 45.6 32.7 31.1 61.8 67.0 54.2 33.9 50.4 42.8 42.1 Sm 12.9 9.70 6.34 6.82 11.0 13.6 10.9 6.62 10.4 9.08 8.11 Eu 1.60 0.97 0.64 0.65 2.02 1.55 1.36 0.78 0.59 0.69 0.66 Gd 11.8 8.77 5.21 6.29 10.0 12.4 9.64 6.21 8.85 7.99 7.11 Tb 1.90 1.59 0.84 1.18 1.63 2.13 1.64 1.11 1.44 1.42 1.21 Dy 10.7 9.38 4.92 7.05 9.22 12.3 9.76 6.90 7.94 8.26 7.03 Ho 2.13 1.85 1.00 1.44 1.85 2.42 1.94 1.49 1.52 1.68 1.44 Er 5.71 5.00 3.01 3.97 4.94 6.31 5.34 4.46 4.06 4.81 4.17 Tm 1.02 0.88 0.59 0.76 0.87 1.03 0.99 0.91 0.71 0.93 0.81 Yb 6.19 5.24 3.82 4.88 5.40 6.06 6.12 6.09 4.26 6.03 5.49 Lu 0.84 0.78 0.58 0.75 0.74 0.86 0.93 0.92 0.76 0.97 0.90 (La/Yb)N 11.53 6.86 6.87 5.41 10.42 8.33 7.02 5.12 10.26 6.06 7.16 ΣREE 428.0 250.5 178.0 176.7 351.4 348.8 298.3 204.0 282.2 245.8 247.3 LREE 387.7 217.0 158.1 150.3 316.7 305.4 261.9 175.9 252.7 213.7 219.1 HREE 40.26 33.49 19.96 26.31 34.70 43.49 36.35 28.08 29.53 32.10 28.17 LR/HR 9.63 6.48 7.92 5.71 9.13 7.02 7.20 6.27 8.56 6.66 7.78 δEu 0.39 0.32 0.33 0.30 0.58 0.36 0.40 0.37 0.18 0.24 0.26 Nb/Ta 11.32 7.76 7.36 7.82 13.50 15.21 9.02 5.44 8.12 7.79 9.26 Zr/Hf 32.02 31.54 30.66 29.47 28.63 33.14 36.03 31.06 30.67 30.48 34.23 Rb/Sr 0.91 2.78 5.63 6.60 1.66 1.31 1.57 3.95 5.32 5.18 7.04 Rb/Ba 0.36 0.56 1.12 1.48 0.19 0.31 0.48 1.51 1.86 1.30 1.50 注:主量元素单位为%;稀土及微量元素单位为10-6;ALK=K2O+Na2O; A/CNK=Al2O3/(Na2O+K2O+CaO);A/NK=Al2O3/(Na2O+K2O);DI.分异指数;AR.碱度率指数;MF.镁铁指数. -
[1] Allègre, C.J., Minster, J.F., 1978.Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1):1-25. https://doi.org/10.1016/0012-821x(78)90123-1 [2] Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3):605-626. https://doi.org/10.1016/s0024-4937(98)00085-1 [3] Cao, Y.T., Liu, L., Wang, C., et al., 2010. Geochemical, Zircon U-Pb Dating and Hf Isotope Compositions Studies for Tatelekebulake Granite in South Altyn Tagh. Acta Petrologica Sinica, 26(11):3259-3271 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201011008 [4] Chappell, B. W., 1999. Aluminium Saturation in Ⅰ- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3 [5] Chappell, B.W., White, A.J.R., 1992. Ⅰ- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1/2):1-26. https://doi.org/10.1017/s0263593300007720 [6] Che, Z.C., Liu, L., Liu, H.F., 1995. Discovery and Occurrence of High-Pressure Metapelitic Rocks from Altyn Mountain Areas. Chinese Science Bulletin, 40(14):1298-1300 (in Chinese). doi: 10.1360/csb1995-40-14-1298 [7] Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1):469-500. doi: 10.2113/0530469 [8] Dodge, F.C.W., Kistler, R.W., 1990.Some Additional Observations on Inclusions in the Granitic Rocks of the Sierra Nevada. Journal of Geophysical Research (Solid Earth and Planets), 95(B11):17841. https://doi.org/10.1029/jb095ib11p17841 [9] Dong, Z.C., Xiao, P.X., Xi, R.G., et al., 2011. Geochemical Characteristics and Isotopic Dating of Bojites in the Tectonic Melange Belt on South Margin of Altun. Geological Review, 57(2):207-216 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000003809 [10] Gorton, M.P., Schandl, E.S., 2000. From Continents to Island Arcs:A Geochemical Index of Tectonic Setting for Arc-Related and within-Plate Felsic to Intermediate Volcanic Rocks. Canadian Mineralogist, 38(5):1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065 [11] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [12] Guo, Z.J., Zhang, Z.C., Wang, J.J., 1998. Sm-Nd Isochron Age of Ophiolite Zone in Northern Margin of Altun Mountains and Its Tectonic Significance. Chinese Science Bulletin, 43(18):1981-1984 (in Chinese). doi: 10.1360/csb1998-43-18-1981 [13] Ju, Y.J., Zhang, X.L., Lai, S.C., et al., 2017. Permian-Triassic Highly-Fractionated Ⅰ-Type Granites from the Southwestern Qaidam Basin (NW China):Implications for the Evolution of the Paleo-Tethys in the Eastern Kunlun Orogenic Belt. Journal of Earth Science, 28(1):51-62. https://doi.org/10.1007/s12583-017-0745-5 [14] Kang, L., 2014. Early Paleozoic Multi-Stage Granitic Magmatism and the Geological Significance in the South Altyn Tagh HP-UHP Metamorphic Belt (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [15] Kang, L., Liu, L., Cao, Y.T., et al., 2013.Geochemistry, Zircon U-Pb Age and Its Geological Significance of the Gneissic Granite from the Eastern Segment of the Tatelekebulake Composite Granite in the South Altyn Tagh. Acta Petrologica Sinica, 29(9):3039-3048 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201309007 [16] Kang, L., Liu, L., Wang, C., et al., 2014. Geochemistry and Zircon U-Pb Dating of Changshagou Adakite from the South Altyn UHPM Terrane:Evidence of the Partial Melting of the Lower Crust. Acta Geologica Sinica (English Edition), 88(5):1454-1465. https://doi.org/10.1111/1755-6724.12311 [17] Liu, L., Che, Z.C., Wang, Y., et al., 1998. The Evidence of Sm-Nd Isochron Age for the Early Paleozoic Ophiolite in Mangya Area, Altun Mountains. Chinese Science Bulletin, 43(9):754-756. https://doi.org/10.1007/bf02898953 [18] Liu, L., Chen, D.L., Wang, C., et al., 2009. New Progress on Geochronology of High-Pressure/Ultrahigh-Pressure Metamorphic Rocks from the South Altyn Tagh, the North Qaidam and the North Qinling Orogenic, NW China and Their Geological Significance. Journal of Northwest University (Natural Science Edition), 39(3):472-479 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdxxb200903015 [19] Liu, L., Chen, D.L., Zhang, A.D., et al., 2005. Ultrahigh Pressure (>7 GPa) Gneissic K-Feldspar (-Bearing) Garnet Clinopyroxenite in the Altyn Tagh, NW China:Evidence from Clinopyroxene Exsolution in Garnet. Science China Earth Sciences, 48(7):1000-1010. https://doi.org/10.1360/04yd0166 [20] Liu, L., Kang, L., Cao, Y.T., et al., 2015. Early Paleozoic Granitic Magmatism Related to the Processes from Subduction to Collision in South Altyn, NW China. Science in China (Series D:Earth Sciences), 45(8):1126-1137(in Chinese). http://cn.bing.com/academic/profile?id=81386681b7ad36147e699a0c4b0c5913&encoded=0&v=paper_preview&mkt=zh-cn [21] Liu, L., Sun, Y., Xiao, P.Z., et al., 2002. Discovery of Ultrahigh-Pressure Magnesite-Bearing Garnet Lherzolite (>3.8 GPa) in the Altyn Tagh, Northwest China. Chinese Science Bulletin, 47(11):881-886. https://doi.org/10.1360/02tb9197 [22] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [23] Liu, Y.S., Yu, H.F., Xin, H.T., et al., 2009. Tectonic Units Division and Precambrian Significant Geological Events in Altyn Tagh Mountain, China. Geological Bulletin of China, 28(10):1430-1438 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200910009 [24] Ludwig, K.R., 2003.User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [25] Ma, Z.P., Li, X.M., Sun, J.M., et al., 2009. Discovery of Layered Mafic-Ultramaric Intrusion in Changshagou, Altyn Tagh, and Its Geological Implication:A Pilot Study on Its Petrological and Geochemical Characteristics. Acta Petrologica Sinica, 25(4):793-804 (in Chinese with English abstract). [26] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [27] Muller, D., Groves, D. I., 1994. Potasic Igneous Rocks and Associated Gold-Copper Mineralization. Lect. Notes Earth Sci., 56. https://doi.org/10.1007/978-3-319-23051-1 [28] Rickwood, P.C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4):247-263. https://doi.org/10.1016/0024-4937(89)90028-5 [29] Sun, J.M., Ma, Z.P., Tang, Z., et al., 2012. LA-ICP-MS Zircon Dating of the Yumuquan Magma Mixing Granite in the Southern Altyn Tagh and Its Tectonic Significance. Acta Geologica Sinica, 86(2):247-257 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201202004 [30] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [31] Wang, C., Liu, L., Xiao, P.X., et al., 2014. Geochemical and Geochronologic Constraints for Paleozoic Magmatism Related to the Orogenic Collapse in the Qimantagh-South Altyn Region, Northwestern China. Lithos, 202-203:1-20. https://doi.org/10.1016/j.lithos.2014.05.016 [32] Wang, C., Liu, L., Zhang, A.D., et al., 2008. Geochemistry and Petrography of Early Paleozoic Yusupuleke Tagh Rapakivi-Textured Granite Complex, South Altyn:An Example for Magma Mixing. Acta Petrologica Sinica, 24(12):2809-2819 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=f62d9921f11d7ad8a3bd3c651d9152ae&encoded=0&v=paper_preview&mkt=zh-cn [33] Wolf, M.B., London, D., 1994.Apatite Dissolution into Peraluminous Haplogranitic Melts:An Experimental Study of Solubilities and Mechanisms. Geochimica et Cosmochimica Acta, 58(19):4127-4145. https://doi.org/10.1016/0016-7037(94)90269-0 [34] Wu, C.L., Chen, H.J., Wu, D., et al., 2018. Paleozoic Granitic Magmatism and Tectonic Evolution of the South Altun Block, NW China:Constraints from Zircon U-Pb Dating and Lu-Hf Isotope Geochemistry. Journal of Asian Earth Sciences, 160:168-199. https://doi.org/10.1016/j.jseaes.2018.04.019 [35] Wu, C.L., Gao, Y.H., Lei, M., et al., 2014. Zircon SHRIMP U-Pb Dating, Lu-Hf Isotopic Characteristics and Petrogenesis of the Palaeozoic Granites in Mangya Area, Southern Altun, NW China. Acta Petrologica Sinica, 30(8):2297-2323 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408014 [36] Wu, C.L., Gao, Y.H., Wu, S.P., et al., 2008.Geochemistry and Zircon SHRIMP U-Pb Dating of Granitoids from the West Segment of the North Qaidam. Science in China (Series D:Earth Sciences), 38(8):930-949 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed200911009 [37] Wu, C.L., Lei, M., Wu, D., et al., 2016. Zircon U-Pb Dating of Paleozoic Granites from Sourth Altun and Response of the Magmatic Activity to the Tentonic Evolution of the Altun Orogenic Belt. Acta Geologica Sinica, 90(9):2276-2315 (in Chinese with English abstract). [38] Wu, S.P., Wu, C.L., Chen, Q.L., et al., 2007. Characteristics and Tectonic Setting of the Tula Aluminous A-Type Granite at the South Side of the Altyn Tagh Fault, NW China. Geological Bulletin of China, 26(10):1385-1392 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200710016 [39] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1360/04wd0130 [40] Xiao, Q.H., Deng, J.F., Ma, D.Q., et al., 2002. The Ways of Investigation on Granitoids. Geological Publishing House, Beijing (in Chinese). [41] Xu, Z. Q., Yang, J.S., Zhang, J.X., et al., 1999. A Comparison between the Tectonic Units on the Two Sides of the Altun Sinistral Strike-Slip Fault and the Mechanism of Lithospheric Shearing. Acta Geologica Sinica, 73(3):193-205 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXW199902006.htm [42] Yang, W.Q., Liu, L., Ding, H.B., et al., 2012. Geochemistry, Geochronology and Zircon Hf Isotopes of the Dimunalike Granite in South Altyn Tagn and Its Geological Significance. Acta Petrologica Sinica, 28(12):4139-4150 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201212026 [43] Yu, S.Y., Zhang, J.X., Gong, J.H., 2011. Zr-in-Rutile Thermometry in HP/UHT Granulite in the Bashiwake Area of the South Altun and Its Geological Implications. Earth Science Frontiers, 18(2):140-150 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201102012 [44] Yu, S.Y., Zhang, J.X., Li, S.Z., et al., 2016. "Barrovian-Type" Metamorphism and In-Situ Anatexis during Continental Collision:A Case Study from the South Altun Mountains, Western China. Acta Petrologica Sinica, 32(12):3703-3714 (in Chinese with English abstract). [45] Zhang, A.D., Liu, L., Sun, Y., et al., 2004. SHRIMP U-Pb Zircon Ages for the UHP Metamorphosed Granitoid Gneiss in Altyn Tagh and Their Geological Significance.Chinese Science Bulletin, 49(23):2527-2532. https://doi.org/10.1360/03wd0502 [46] Zhang, J.X., Meng, F.C., 2005.Sapphirine-Bearing High Pressure Mafic Granulite and Its Implications in the South Altyn Tagh. Chinese Science Bulletin, 50(3):265-269. https://doi.org/10.1360/04wd0250 [47] Zhang, J. X., Zhang, Z. M., Xu, Z. Q., et al., 1999. The Age of U-Pb and Sm-Nd for Eclogite from the Western Segment of Altyn Tagh Tectonic Belt. Chinese Science Bulletin, 44(10):1109-1112 (in Chinese). doi: 10.1360/csb1999-44-10-1109 [48] Zhao, T. Y., Qian, X., Feng, Q.L., 2016. Geochemistry, Zircon U-Pb Age and Hf Isotopic Constraints on the Petrogenesis of the Silurian Rhyolites in the Loei Fold Belt and Their Tectonic Implications. Journal of Earth Science, 27(3):391-402. https://doi.org/10.1007/s12583-016-0671-y [49] Zhu, X. H., Cao, Y. T., Liu, L., et al., 2014. P-T Path and Geochronology of High Pressure Granitic Granulite from Danshuiquan Area in Altyn Tagh. Acta Petrologica Sinica, 30(12):3717-3728 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201412021 [50] Zhu, X. H., Chen, D. L., Wang, C., et al., 2015. The Initiation, Development and Termination of the Neoproterozoic-Early Paleozoic Ocean in the Northern Margin of Qaidam Basin. Acta Geologica Sinica, 89(2):234-251 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a7348e1eecf104dc9167b2a7931ec27c&encoded=0&v=paper_preview&mkt=zh-cn [51] 曹玉亭, 刘良, 王超, 等, 2010.阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成.岩石学报, 26(11):3259-3271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201011008 [52] 车自成, 刘良, 刘洪福, 等, 1995.阿尔金山地区高压变质泥质岩石的发现及其产出环境.科学通报, 40(14):1298-1300. doi: 10.3321/j.issn:0023-074X.1995.14.015 [53] 董增产, 校培喜, 奚仁刚, 等, 2011.阿尔金南缘构造混杂岩带中角闪辉长岩地球化学特征及同位素测年.地质论评, 57(2):207-216. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201102006 [54] 郭召杰, 张志诚, 王建君, 1998.阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义.科学通报, 43(18):1981-1984. doi: 10.3321/j.issn:0023-074X.1998.18.018 [55] 康磊, 2014.南阿尔金高压-超高压变质带早古生代多期花岗质岩浆作用及其地质意义(博士学位论文).西安: 西北大学. [56] 康磊, 刘良, 曹玉亭, 等, 2013.阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义.岩石学报, 29(9):3039-3048. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201309007 [57] 刘良, 陈丹玲, 王超, 等, 2009.阿尔金、柴北缘与北秦岭高压-超高压岩石年代学研究进展及其构造地质意义.西北大学学报(自然科学版), 39(3):472-479. http://d.old.wanfangdata.com.cn/Periodical/xbdxxb200903015 [58] 刘良, 康磊, 曹玉亭, 等, 2015.南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用.中国科学(D辑:地球科学), 45(8):1126-1137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201508004 [59] 刘永顺, 于海峰, 辛后田, 等, 2009.阿尔金山地区构造单元划分和前寒武纪重要地质事件.地质通报, 28(10):1430-1438. doi: 10.3969/j.issn.1671-2552.2009.10.009 [60] 马中平, 李向民, 孙吉明, 等, 2009.阿尔金山南缘长沙沟镁铁-超镁铁质层状杂岩体的发现与地质意义——岩石学和地球化学初步研究.岩石学报, 25(4):793-804. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200904006 [61] 孙吉明, 马中平, 唐卓, 等, 2012.阿尔金南缘鱼目泉岩浆混合花岗岩LA-ICP-MS测年与构造意义.地质学报, 86(2):247-257. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201202004 [62] 王超, 刘良, 张安达, 等, 2008.阿尔金造山带南缘岩浆混合作用:玉苏普阿勒克塔格岩体岩石学和地球化学证据.岩石学报, 24(12):2809-2819. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200812015 [63] 吴才来, 郜源红, 雷敏, 等, 2014.南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因.岩石学报, 30(8):2297-2323. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408014 [64] 吴才来, 郜源红, 吴锁平, 等, 2008.柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征.中国科学(D辑:地球科学), 38(8):930-949. doi: 10.4037-ccn2010235/ [65] 吴才来, 雷敏, 吴迪, 等, 2016.南阿尔金古生代花岗岩U-Pb定年及岩浆活动对造山带构造演化的响应.地质学报, 90(9):2276-2315. doi: 10.3969/j.issn.0001-5717.2016.09.013 [66] 吴锁平, 吴才来, 陈其龙, 2007.阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境.地质通报, 26(10):1385-1392. doi: 10.3969/j.issn.1671-2552.2007.10.016 [67] 肖庆辉, 邓晋福, 马大铨, 等, 2002.花岗岩研究思维与方法.北京:地质出版社. [68] 许志琴, 杨经绥, 张建新, 等, 1999.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制.地质学报, 73(3):193-205. doi: 10.3321/j.issn:0001-5717.1999.03.001 [69] 杨文强, 刘良, 丁海波, 等, 2012.南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义.岩石学报, 28(12):4139-4150. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201212026 [70] 于胜尧, 张建新, 宫江华, 2011.南阿尔金巴什瓦克高压/超高温麻粒岩中金红石Zr温度计及其地质意义.地学前缘, 18(2):140-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201102012 [71] 于胜尧, 张建新, 李三忠, 等, 2016.大陆碰撞过程中的巴罗式变质作用及原地深熔作用:以南阿尔金为例.岩石学报, 32(12):3703-3714. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201612010.htm [72] 张建新, 张泽明, 许志琴, 等, 1999.阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄——阿尔金构造带中加里东期山根存在的证据.科学通报, 44(10):1109-1112. doi: 10.3321/j.issn:0023-074X.1999.10.021 [73] 朱小辉, 曹玉亭, 刘良, 等, 2014.阿尔金淡水泉花岗质高压麻粒岩P-T演化及年代学研究.岩石学报, 30(12):3717-3728. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201412021 [74] 朱小辉, 陈丹玲, 王超, 等, 2015.柴达木盆地北缘新元古代-早古生代大洋的形成、发展和消亡.地质学报, 89(2):234-251. http://d.old.wanfangdata.com.cn/Conference/9142412