Characteristics and Ar-Ar Dating of Mafic Dykes in Hongshiquan Area, Gansu Province
-
摘要: 基性岩脉是研究地幔和地幔变化的"窗口",并且与金、铀、金刚石等矿床有重要关系.甘肃红石泉地区产有我国最典型的白岗岩型铀矿床,其中发育有多条基性岩脉.研究区基性岩新鲜面呈灰绿色,具有典型的煌斑结构,块状构造,斑晶矿物主要为角闪石,基质主要由斜长石和黑云母组成,副矿物主要有磁铁矿、磷灰石及锆石等,据此确定基性岩为闪斜煌斑岩.岩石具有富碱、高钾、贫铁以及富集轻稀土元素和大离子亲石元素等地球化学特征,进而判断其属于钾质钙碱性煌斑岩.通过40Ar-39Ar全岩测定,获得煌斑岩成岩年龄为237.2±2.6 Ma,煌斑岩的岩浆来源于EMII型富集地幔,形成于板内拉张环境,岩浆在上升侵位过程中遭受了地壳物质的混染,属于早中生代古亚洲洋闭合、陆陆碰撞后伸展的产物.红石泉煌斑岩与铀矿床铀成矿没有直接成因关系,对于铀矿只有后期改造作用.Abstract: The basic vein is a "window" for studying mantle and its evolution, and has important relationship with gold, uranium, diamond deposits and the others. The most typical alaskite type uranium deposit in China occurs in Hongshiquan area of Gansu Province among which there are a number of basic veins. The fresh surface of the basic rocks in the study area is gray-green, with typical lamprophyre structure, and massive structure. The porphyry minerals are mainly hornblende, the matrix mainly is composed of plagioclase and biotite, and accessory minerals are mainly magnetite, apatite, zircon etc.. Based on this characteristics, it is determined that the basic rock is diorite lamprophyre. The characteristics of elemental geochemistry ascertain that the lamprophyres are rich in alkali, high in potassium, poor in iron, and enriched in LREE and LILE, indicating that they belong to potash calc-alkaline lamprophyres. The whole-rock 40Ar-39Ar dating yields a lamprophyre diagenetic age of 237.2±2.6 Ma. The magma of the lamprophyre originated from EMII-enriched mantle and formed in the intraplate extensional environment. The magma was contaminated with crustal materials during the process of rising emplacement, which was the product of the extension following closure of the Late Asian Paleozoic Paleo-Asian Ocean and continental collision. There is no direct genetic relationship between the uranium metallogenesis of the Hongshiquan lamprophyre and the uranium deposit, but only late-stage transformation of uranium deposits.
-
Key words:
- lamprophyre /
- petrography /
- geochemistry /
- Ar-Ar whole-rock dating /
- Hongshiquan /
- petrology
-
图 1 甘肃龙首山区域地质及铀矿分布
1.第四系; 2.新近系中晚期; 3.新近系; 4.第三系; 5.上白垩统; 6.下白垩统; 7.石炭系; 8.震旦系; 9.元古界; 10.太古界; 11.华力西期花岗岩; 12.加里东期花岗岩; 13.片麻状花岗闪长岩; 14.花岗闪长岩; 15.区域大断裂; 16.大断裂; 17.砂砾岩型铀矿床、矿点; 18.泥岩型铀矿床、矿点; 19.花岗岩型铀矿床、矿点; 20.碱交代型铀矿床、矿点; 21.地质界线; 22.城市名; 23.地名; 24.研究区.图据203研究所资料(2011)《甘肃地质志》修改
Fig. 1. Distribution of Gansu Longshoushan regional geology and uranium ore
图 4 煌斑岩的(K2O+Na2O)-SiO2(a)和K/Al-K/(K+Na)(b)图解
UML.超铁镁煌斑岩; LL.钾镁煌斑岩; CAL.钙碱性煌斑岩; AL.碱性煌斑岩; Ⅰ.钠质煌斑岩; Ⅰ′.弱钾质煌斑岩; Ⅱ.钾质煌斑岩; Ⅲ.超钾质煌斑岩; Ⅳ.过钾质煌斑岩; Ⅴ.钾镁煌斑岩.图中数据据路凤香等(1991)
Fig. 4. (K2O+Na2O)-SiO2(a) and K/Al-K/(K+Na)(b) diagrams of lamprophyres
图 6 微量元素原始地幔标准化蛛网图
Fig. 6. Primitive mantle-normalized spider diagrams for trace elements
图 7 稀土元素球粒陨石标准化配分模式
Fig. 7. Chondrite-normalized REE patterns for rare earth elements
图 8 红石泉煌斑岩87Sr /86Sr-206Pb/204Pb(a)和143Nd /144Nd-206Pb/204Pb(b)相关图解
EMII.EMII型富集地幔; EMI.EMI型富集地幔; MORB.洋中脊玄武岩; DM.亏损地幔; PREMA.普通地幔; HIMU.具有高U/Pb比值地幔; BSE.全硅酸盐地球数值.底图据Rollison(2000)
Fig. 8. 87Sr/86Sr-206Pb/204Pb (a) and 143Nd/144Nd-206Pb/204Pb (b) diagrams of the lamprophyres from Hongshiquan area
图 10 红石泉煌斑岩La/Yb-Nb/Ta图解
Fig. 10. La/Yb-Nb/Ta diagram of lamprophyres from Hongshiquan
图 12 红石泉地区煌斑岩FeO*-MgO-Al2O3(a)、TiO2-Zr(b)和Zr-Zr/Y(c)构造环境判别图
Ⅰ.洋中脊或洋底玄武岩; Ⅱ.洋岛玄武岩; Ⅲ.大陆玄武岩; Ⅳ.扩张性中央岛玄武岩; Ⅴ.造山带玄武岩; WPB.板内玄武岩; MORB.洋中脊玄武岩; VAB.火山岛弧玄武岩; IAB.岛弧玄武岩.图a据Münker(1998); 图b据李昌年(1992); 图c据Rollison(2000)
Fig. 12. FeO*-MgO-Al2O3(a), TiO2-Zr(b) and Zr-Zr/Y(c) tectonic discrimination diagrams of lamprophyre in Hongshiquan area
表 1 采样位置及岩性
Table 1. Sampling location and lithology
样品号 坐标 样品岩性 X Y H LSS14-37 4 297 970 434 739 2 318 闪斜煌斑岩 LSS14-44 4 297 992 434 659 2 347 闪斜煌斑岩 LSS14-46 4 297 999 434 757 2 347 闪斜煌斑岩 LSS14-57 4 298 029 435 151 2 373 闪斜煌斑岩 LSS14-59 4 298 144 435 088 2 460 闪斜煌斑岩 表 2 红石泉地区煌斑岩Sr、Nd、Pb同位素数据(误差2δ计)
Table 2. Sr, Nd and Pb isotope data of lamprophyres in Hongshiquan area (error 2δ)
样品号 LSS14-37 LSS14-57 LSS13-59 87Rb/86Sr 1.752 0 1.788 0 1.807 1 147Sm/144Nd 0.096 481 0.082 673 0.106 112 87Sr/86Sr 0.711 956 0.712 965 0.712 828 143Nd/144Nd 0.511279 0.511 837 0.511 994 206Pb/204Pb 18.977 19.461 20.067 207Pb/204Pb 15.557 15.493 15.564 208Pb/204Pb 38.487 38.767 38.955 (87Sr/86Sr)i=237.2 0.706 042 0.706 930 0.706 728 εNd(t=237.2) -23.49 -12.18 -9.28 表 3 红石泉地区煌斑岩阶段加热法40Ar/39Ar分析结果
Table 3. Lamprophyre phasewise heating method 40Ar/39Ar analysis results of Hongshiquan area
T(℃) (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m (38Ar/39Ar)m 40Ar(%) F 39Ar
(10-14 mol)39Ar
(Cum) (%)Age
(Ma)±1σ
(Ma)LSS14-37 全岩 W=30.77 mg J=0.005 958 800 215.164 7 0.685 8 5.279 4 0.157 6 5.99 12.941 5 0.29 1.60 134.0 3.2 850 90.045 4 0.236 0 1.552 6 0.063 1 22.67 20.435 3 0.54 4.57 207.3 2.9 900 51.357 2 0.093 8 0.177 6 0.031 7 46.03 23.642 1 1.16 10.91 237.7 2.3 940 32.720 4 0.025 8 0.213 4 0.018 2 76.70 25.100 9 1.93 21.45 251.4 2.4 980 31.509 1 0.013 0 0.108 3 0.015 1 87.80 27.668 7 3.93 42.92 275.3 2.6 1010 35.514 6 0.025 6 0.190 2 0.017 6 78.74 27.966 7 1.36 50.35 278.0 2.8 1050 48.236 6 0.054 8 0.273 1 0.024 5 66.44 32.053 8 0.97 55.64 315.3 3.4 1090 57.924 4 0.046 1 0.866 7 0.026 2 76.57 44.386 4 0.81 60.07 423.3 3.8 1130 47.059 8 0.037 5 0.514 6 0.022 3 76.52 36.023 5 1.17 66.47 350.8 3.2 1170 48.588 4 0.038 3 0.798 1 0.023 8 76.82 37.351 2 2.09 77.85 362.5 3.4 1210 48.769 6 0.015 0 0.730 0 0.019 1 90.99 44.402 6 2.23 90.02 423.4 3.8 1300 34.863 7 0.009 9 0.294 5 0.015 5 91.66 31.962 5 1.32 97.22 314.5 3.0 1400 35.534 0 0.030 6 0.141 9 0.016 7 82.91 29.463 0 0.51 100.00 291.8 2.8 LSS14-53 全岩 W=73.71 mg J=0.005 784 800 101.416 5 0.314 7 7.213 7 0.103 4 8.80 8.975 0 0.30 2.09 91.3 5.9 840 48.979 2 0.109 6 2.260 6 0.030 6 34.18 16.772 2 0.37 4.71 167.0 8.2 900 52.147 5 0.113 5 0.914 1 0.039 1 35.78 18.671 4 0.93 11.21 185.0 4.2 950 37.209 4 0.049 4 1.729 6 0.025 9 61.07 22.754 7 0.98 18.12 223.1 2.3 1000 37.419 3 0.044 2 3.023 6 0.026 0 65.66 24.631 0 1.47 28.46 240.3 2.3 1040 45.519 0 0.051 6 6.902 3 0.033 7 67.54 30.917 0 0.94 35.06 296.8 2.8 1080 40.921 5 0.039 4 5.477 1 0.029 8 72.46 29.782 5 1.75 47.32 286.7 2.7 1120 40.048 6 0.040 2 3.382 8 0.026 7 70.92 28.479 2 1.67 59.04 275.1 2.8 1160 41.564 3 0.043 7 2.732 5 0.025 8 69.38 28.902 8 1.31 68.20 278.9 2.7 1200 47.214 2 0.052 4 4.444 6 0.030 5 67.87 32.159 0 1.42 78.15 307.7 2.8 1250 40.451 8 0.027 2 4.289 2 0.025 0 80.90 32.838 5 1.97 91.97 313.7 2.9 1300 65.808 8 0.087 1 11.413 4 0.049 8 62.13 41.268 8 1.03 99.20 386.2 3.5 1400 167.066 2 0.415 5 17.789 3 0.118 7 27.26 46.201 0 0.11 100.00 427.2 6.9 LSS14-59 全岩 W=27.96 mg J=0.005 614 700 340.331 5 1.112 8 1.012 0 0.318 4 3.40 11.589 7 0.02 0.09 114 76 800 45.100 3 0.135 6 0.625 8 0.049 2 11.25 5.075 7 0.41 1.67 50.7 1.3 860 46.887 5 0.117 0 0.134 5 0.038 9 26.26 12.314 5 1.55 7.72 120.6 1.3 900 28.748 4 0.037 3 0.102 6 0.020 3 61.67 17.731 3 1.26 12.62 171.2 1.8 950 26.708 0 0.016 8 0.075 0 0.016 2 81.40 21.742 4 1.37 17.95 207.8 2.0 990 31.363 2 0.026 7 0.220 7 0.018 9 74.89 23.492 8 1.81 25.01 223.5 2.2 1030 45.743 2 0.072 4 0.148 0 0.028 0 53.18 24.331 2 1.99 32.75 231.0 2.2 1070 50.802 9 0.087 6 0.108 8 0.030 8 49.06 24.925 0 2.73 43.39 236.3 2.2 1110 30.289 7 0.018 1 0.075 6 0.016 1 82.30 24.930 5 3.50 57.01 236.3 2.3 1150 27.759 5 0.008 5 0.064 9 0.014 3 90.90 25.234 9 4.64 75.09 239.0 2.2 1200 27.511 3 0.005 5 0.042 1 0.013 7 94.11 25.891 9 3.33 88.04 244.8 2.3 1300 29.118 7 0.005 6 0.037 1 0.013 4 94.32 27.464 1 2.61 98.20 258.7 2.4 1400 30.627 6 0.009 5 0.244 3 0.014 6 91.91 27.849 3 0.46 100.00 262.1 2.9 注:表中下标m代表样品中测定的同位素比值 Total age =311.0 Ma, F=40Ar*/39Ar. -
[1] Chen, N.S., Wang, X.Y., Zhang, H.F., et al., 2007. Geochemistry and Nd-Sr-Pb Isotopic Compositions of Granitoids from Qaidam and Oulongbuluke Micro-Blocks, NW China: Constraints on Basement Nature and Tectonic Affinity. Earth Science, 32(1): 7-21(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a71631285a6f30cfadd12e61f77d4c4c&encoded=0&v=paper_preview&mkt=zh-cn [2] Chen, S., Li, X.P., Kong, F.M., et al., 2018. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5): 1219-1235. https://doi.org/10.1007/s12583-017-0956-9 [3] Chen, W., Wan, Y.S., Li, H.Q., et al., 2011. Isotope Geochronology: Technique and Application. Acta Geologica Sinica, 85(11): 1917-1947(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/fxhx201703002 [4] Chen, X.Y., Li, H.Z., Lu, W.J., et al., 2011. Overview of Research Advances in Lamprophyre. Journal of the Graduates Sun Yat-Sen University(Natural Sciences, Medicine), 32(4): 21-29(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8524623 [5] Chen, Y.C., Chang, Y.F., Pei, R.F., et al., 2007.China Metallogenic System and Regional Metallogenic Evaluation. Geological Publishing House, Beijing (in Chinese with English abstract). [6] DePaolo, D.J., Wasserburg, G. J., 1976. Inferences about Magma Sources and Mantle Structure from Variations of 143Nd/144Nd. Geophysical Research Letters, 3(12): 743-746. https://doi.org/10.1029/gl003i012p00743 [7] Dupuy, C., Dostal, J., 1984. Trace Element Geochemistry of Some Continental Tholeiites. Earth and Planetary Science Letters, 67(1): 61-69. https://doi.org/10.1016/0012-821x(84)90038-4 [8] Faure, G., 1986.Principles of Isotope Geology. John Wiley and Sons, New York, 93-96. [9] Guan, T., Huang, Z.L., Xie, L.H., et al., 2003. Geochemistry of Lamprophyres in Baimazhai Nickel Deposit, Yunnan Province, Ⅰ. Major and Trace Elements. Acta Mineralogica Sinica, 23(3): 278-288(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200303016 [10] Hart, S.R., Li, S.G., Zheng, S.G., et al., 1989.Timing of Collision between the North and South China Blocks—The Sm-Nd Isotopic Age Evidence. Science in China, 32(11):1393-1400. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=639b1c63668588712169cf07e016815a [11] Hou, G.T., 2012.North China Basic Dyke Swarm. Science Press, Beijing(in Chinese). [12] Hu, R.Z., Jin, J.F., 1990. The Origin of Lamprophyre in Guidong Granitic Complex. Mineralogy and Petrology, 10(4): 1-7(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS199004001.htm [13] Huang, Z.L., Liu, C.Q., Zhu, C.M., et al., 1999.Genesis of Lamprophyre in Laowangzhai Gold Deposit, Yunnan and Its Relationship with Gold Mineralization. Geological Publishing House, Beijing(in Chinese). [14] Jacobsen, S. B., Wasserburg, G. J., 1980. Sm-Nd Isotopic Evolution of Chondrites. Earth and Planetary Science Letters, 50(1): 139-155. https://doi.org/10.1016/0012-821x(80)90125-9 [15] Li, S.C., Zhang, L.Y., Li, P.C., et al., 2017.Discovery and Tectonic Implications of Early Triassic O-Type Adakite in Middle of Great Xing'an Range.Earth Science, 42(12):2117-2128(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201712002 [16] Li, T., Ni, S.B., 1997. Element Abundances of the Continental Lithosphere in China. Geology and Prospecting, 33(1): 31-37(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=73a6c8b605c3deec63814f462655713c [17] Li, X.H., Zhou, H.W., Wei, G.J., et al., 2002. Geochemistry and Sr-Nd Isotopes of Cenozoic Ultrapotassic Lamprophyres in Western Yunnan: Constraints on the Composition of Subcontinental Lithospheric Mantle. Geochimica, 31(1): 26-34(in Chinese with English abstract). [18] Li, Y.J., Li, G.Y., Tong, L.L., et al., 2015.Discrimination of Ratios of Ta, Hf, Th, La, Zr and Nb for Tectonic Setting in Basalts. Journal of Earth Sciences and Environment, 37 (3): 14-21(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201503004.htm [19] Ling, H.F., Xu, S.J., Shen, W.Z., et al., 1998. Nd, Sr, Pb and O Isotopic Compositions of Late Proterozoic Gezong- and Donggu-Granites in the West Margin of Yangtze Plate and Comparison with Other Coeval Granitoids. Acta Petrologica Sinica, 14(3): 269-277(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98199803001 [20] Liu, S., Hu, R.Z., Feng, G.Y., et al., 2010. Distribution and Significance of the Mafic Dyke Swarms since Mesozoic in North China Craton. Geological Bulletin of China, 29(2-3): 259-267(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201002010 [21] Liu, Z.H., Wu, X.B., 2009.Relationship between Meso-Basic Veins and Uranium Mineralization. Modern Mining, 25(3):77-80(in Chinese). http://cn.bing.com/academic/profile?id=317946ac0c5053c20433d1e70c6d641e&encoded=0&v=paper_preview&mkt=zh-cn [22] Lu, L.X., Du, M., Shao, H.S., 2015. Comparison and Discussion of K-Ar and Ar-Ar Dating Methods. Liaoning Chemical Industry, 44(8): 1025-1027(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lnhg201508041 [23] Lu, F.X., Shu, X.X., Zhao, C.H., 1991. A Suggestion on Classification of Lamprophyres. Geological Science and Technology Information, 10(Suppl.): 55-62(in Chinese with English abstract). [24] Ma, C.Q., Li, Z. C., Ehlers, C., et al., 1998. A Post-Collisional Magmatic Plumbing System: Mesozoic Granitoid Plutons from the Dabieshan High-Pressure and Ultrahigh-Pressure Metamorphic Zone, East-Central China. Lithos, 45(1-4): 431-456. https://doi.org/10.1016/s0024-4937(98)00043-7 [25] Ma, Y.F., Liu, Y.J., Wen, Q.B., et al., 2017.Petrogenesis and Tectonic Settings of Volcanic Rocks from Late Triassic Hadataolegai Fm. at Central Part of Great Xing'an Range. Earth Science, 42(12):2146-2173(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201712004 [26] Menzies, M.A., 1983.Mantle Ultramafic Xenoliths in Alkaline Magmas: Evidence for Mantle Heterogeneity Modified by Magmatic Activity. In: Hawkesworth, C.J., Norry, M.J., eds., Continental Basalts and Mantle Xenoliths. Shiva, London, 92-110. [27] Münker, C., 1998. Nb/Ta Fractionation in a Cambrian Arc/back Arc System, New Zealand: Source Constraints and Application of Refined ICPMS Techniques. Chemical Geology, 144(1-2): 23-45. https://doi.org/10.1016/s0009-2541(97)00105-8 [28] Song, X.Y., Qin, G.J., 1994.The Metallogenc Significance of Lamprophyre. Mineral Resources and Geology, 8(2): 81-87(in Chinese with English abstract). [29] Rollison, H.R., 2000. Petro-Geochemistry(Yang, X.M., Yang, X.Y., Chen, S.X., Translated). Press of University of Science and Technology of China, Hefei, 186-187. [30] Rong, J.S., Han, Z.H., Xia, Y.L., 1984.Granitic Pluton Type of Mineralization Characteristics of Uranium Deposits and Mineralization in China. Radioactive Geology, 2(2):1-11(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201802003 [31] Sun, J.G., Hu, S.X., Ling, H.F., et al., 2000. Element Geochemistry and Origin of High Potassic-Potassic Dike Rocks in Two Types of Goldfields in Northwest Jiaodong, Shandong, China. Geochimica, 29(2): 143-152(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=cfbc7f91f0e59ad5274ea5b23062483f&encoded=0&v=paper_preview&mkt=zh-cn [32] Sun, S.S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [33] Sun, Y., Li, J.C., Ding, J., et al., 2017. Characteristics and Genesis of Lamprophyre Vein Type Uranium Mineralization in the West of Mianning, Sichuan. Acta Geologica Sichuan, 37(2): 209-213(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdzxb201702008 [34] Tarney, J., Jones, C. E., 1994. Trace Element Geochemistry of Orogenic Igneous Rocks and Crustal Growth Models. Journal of the Geological Society, 151(5): 855-868. https://doi.org/10.1144/gsjgs.151.5.0855 [35] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. [36] Wang, Z.Q., Li, Z.Y., Zhang, G.Y., et al., 2007. Geochemical Characteristics and the Provenance of Cretaceous Basic Dikes in Zhongdong Area of Xiazhuang Uranium Ore Field. Uranium Geology, 23(4): 218-225, 248(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz200704005 [37] Waxilali, Li, H.Z., Liang, J., et al., 2011. Review of the Species, Petrogenesis of Lamprophyre and Its Relationship with Mineralization. Journal of the Graduates Sun Yat-Sen University(Natural Sciences, Medicine), 32(4): 1-13(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c6e8caf65cb5594232ced58b71194c1d&encoded=0&v=paper_preview&mkt=zh-cn [38] Xiao, C.D., Zhang, Z.L., Zhao, L.Q., 2004. Nd, Sr and Pb Isotope Geochemistry of Yanshanian Granitoids in Eastern Inner Mongolia and Their Origins. Geology in China, 31(1): 57-63(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200401008 [39] Xin, C.L., Ma, W.Y., An, G.B., et al., 2013. Geological Characteristics and Mineralization Mechanism of the No.207 Uranium Deposit in Longshoushan, Gansu Province. Acta Geologica Sinica, 87(4): 577-590(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201304011 [40] Xu, D.R., 2000. Relationship between Lamprophyre and Gold Mineralization in the Gezhen Gold-Bearing Shear Zone in Hainan Province. Geotectonica et Metallogenia, 24(3): 258-265(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200003010 [41] Xu, J.F., Qiu, J.X., 1991.The Fractional Crystallization of Basaltic Magma in Shanwang, Shandong Province. Earth Science, 16(4):369-376(in Chinese with English abstract). [42] Yang, C.S., Zhang, S.M., Zhao, Y.Y., et al., 2015.Sr-Nd-Pb Isotopic Characteristics of Ore-Bearing Host Rocks in Hongshiquan Uranium Deposit, Gansu. Acta Mineralogica Sinica, 35(Suppl.):175-176(in Chinese). [43] Yang, W.T., Duan, L.Z., Zhang, Y., 2013. Studying in Middle-Tectonic Level and Rock Deformation Characteristic in Longshoushan Area. Northwestern Geology, 46(2): 44-53(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201302006 [44] Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China Earth Sciences, 41(8): 1037-1046(in Chinese). http://cn.bing.com/academic/profile?id=79b3f2b0efdb7e7af14fe8292e5588f5&encoded=0&v=paper_preview&mkt=zh-cn [45] Zhang, C., 1989.Diagenetic Characteristics and Geological Implications of Granite-Grained Granite in Hongshuquan Uranium Deposit. Northwestern Geology, 22(1): 28-34(in Chinese). [46] Zhang, W.L., Zou, M.Q., Shao, F., et al., 2009. Geological Characteristics of Dike-Structural Belt in Taoshan Orefield and Its Relationship to Uranium Deposits. World Nuclear Geoscience, 26(1): 38-42, 48(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjhdzkx200901006 [47] Zhang, Z.M., Ding, H.X., Dong, X., et al., 2018. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1005-1009. https://doi.org/10.1007/s12583-018-0852-y [48] Zhao, J.G., Wang, L.C., 2009. Discussion on Characteristics and Genesis Type of Hongshiquan Uranium Deposit. Gold Science and Technology, 17(1): 38-41(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxjs200901009 [49] Zhao, Z.X., Jia, Y.Q., Wang, J.R., et al., 2018.LA-ICP-MS Zircon U-Pb Age and Geochemistry of Monzonite Granite-Quartz Diorite Pluton in Xiaoheishan Area of Beishan Orogenic Belt and Its Geological Significance, Inner Mongolia.Earth Science, 43(Suppl.2):49-59(in Chinese with English abstract). [50] Zhou, D.W., Zhang, C.L., Liu, L., et al., 1998. Sm-Nd Dating of Basic Dykes from Wudang Block and a Discussion of Related Questions. Acta Geoscientia Sinica, 19(1): 25-30(in Chinese with English abstract). [51] Zhou, Z.L., 1987.Characteristics and Genesis of the Cenozoic Lamprophyre Reservoir in Chezhen Depression. Bulletin of Mineralogy, Petrology and Geochemistry, 6(2): 66-68(in Chinese). [52] 陈能松, 王新宇, 张宏飞, 等, 2007.柴-欧微地块花岗岩地球化学和Nd-Sr-Pb同位素组成:基底性质和构造属性启示.地球科学, 32(1):7-21. doi: 10.3321/j.issn:1000-2383.2007.01.002 [53] 陈文, 万渝生, 李华芹, 等, 2011.同位素地质年龄测定技术及应用.地质学报, 85(11):1917-1947. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201111009 [54] 陈宣谕, 李红中, 卢文姬, 等, 2011.煌斑岩相关研究进展综述.中山大学研究生学刊(自然科学·医学版), 32(4):21-29. http://d.old.wanfangdata.com.cn/Periodical/dtsj201728051 [55] 陈毓川, 常印佛, 裴荣富, 等, 2007.中国成矿体系与区域成矿评价.北京:地质出版社. [56] 管涛, 黄智龙, 谢力华, 等, 2003.云南白马寨镍矿区煌斑岩地球化学Ⅰ.主要元素和微量元素.矿物学报, 23(3):278-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200303016 [57] 侯贵廷, 2012.华北基性岩墙群.北京:科学出版社. [58] 胡瑞忠, 金景福, 1990.贵东花岗岩体中煌斑岩的成因.矿物岩石, 10(4):1-7. http://www.cqvip.com/Main/Detail.aspx?id=315222 [59] 黄智龙, 刘丛强, 朱成明, 等, 1999.云南老王寨金矿区煌斑岩成因及其与金矿化的关系.北京:地质出版社. [60] 李昌年, 1992.构造岩浆判别的地球化学方法及其讨论.地质科技情报, 11(3):73-78, 84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000361809 [61] 李世超, 张凌宇, 李鹏川, 等, 2017.大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义.地球科学, 42(12):2117-2128. http://d.old.wanfangdata.com.cn/Periodical/dqkx201712002 [62] 黎彤, 倪守斌, 1997.中国大陆岩石圈的化学元素丰度.地质与勘探, 33(1):31-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199701016715 [63] 李献华, 周汉文, 韦刚健, 等, 2002.滇西新生代超钾质煌斑岩的元素和Sr-Nd同位素特征及其对岩石圈地幔组成的制约.地球化学, 31(1):26-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200201005 [64] 李永军, 李甘雨, 佟丽莉, 等, 2015.玄武岩类形成的大地构造环境Ta、Hf、Th、La、Zr、Nb比值对比判别.地球科学与环境学报, 37(3):14-21. doi: 10.3969/j.issn.1672-6561.2015.03.004 [65] 凌洪飞, 徐士进, 沈渭洲, 等, 1998.格宗、东谷岩体Nd、Sr、Pb、O同位素特征及其与扬子板块边缘其它晋宁期花岗岩对比.岩石学报, 14(3):269-277. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199803001 [66] 刘燊, 胡瑞忠, 冯光英, 等, 2010.华北克拉通中生代以来基性岩墙群的分布及研究意义.地质通报, 29(2-3):259-267. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201002010 [67] 刘治恒, 巫晓兵, 2009.中基性脉岩与铀成矿的关系.现代矿业, 25(3):77-80. doi: 10.3969/j.issn.1674-6082.2009.03.022 [68] 卢磊勋, 杜萌, 邵瀚石, 2015. K-Ar法和Ar-Ar法两种定年方法的差异性对比及讨论.辽宁化工, 44(8):1025-1027. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lnhg201508041 [69] 路凤香, 舒小辛, 赵崇贺, 1991.有关煌斑岩分类的建议.地质科技情报, 10(S1):55-62. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ1991S1006.htm [70] 马永非, 刘永江, 温泉波, 等, 2017.大兴安岭中段晚三叠世哈达陶勒盖组火山岩成因及构造背景.地球科学, 42(12):2146-2173. http://d.old.wanfangdata.com.cn/Periodical/dqkx201712004 [71] 戎嘉树, 韩泽宏, 夏毓亮, 1984.我国一岩体型铀矿床的矿化特征及成矿作用.放射性地质, 2(2):1-11. http://www.cnki.com.cn/Article/CJFDTotal-YKDZ198402000.htm [72] 孙景贵, 胡受奚, 凌洪飞, 等, 2000.胶西北两类金矿田的高钾-钾质脉岩元素地球化学与成岩作用研究.地球化学, 29(2):143-152. doi: 10.3321/j.issn:0379-1726.2000.02.006 [73] 孙悦, 李巨初, 丁俊, 等, 2017.冕西煌斑岩脉型铀矿化特征及成因.四川地质学报, 37(2):209-213. doi: 10.3969/j.issn.1006-0995.2017.02.008 [74] 宋新宇, 覃功炯, 1994, 煌斑岩的成矿意义.矿产与地质, 8(2):81-87. http://d.old.wanfangdata.com.cn/Periodical/scyj201706009 [75] 瓦西拉里, 李红中, 梁锦, 等, 2011.煌斑岩的种类、成因及其与成矿作用的关系.中山大学研究生学刊(自然科学.医学版), 32(4):1-13. http://www.cnki.com.cn/Article/CJFDTotal-YJSK201104003.htm [76] 王正其, 李子颖, 张国玉, 等, 2007.下庄中洞地区白垩纪基性脉岩地球化学特征及其源区性质.铀矿地质, 23(4):218-225, 248. doi: 10.3969/j.issn.1000-0658.2007.04.005 [77] 肖成东, 张忠良, 赵利青, 2004.东蒙地区燕山期花岗岩Nd、Sr、Pb同位素及其岩石成因.中国地质, 31(1):57-63. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200401008 [78] 辛存林, 马维云, 安国堡, 等, 2013.甘肃龙首山207铀矿床成矿地质特征及其成矿机制探讨.地质学报, 87(4):577-590. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201304011 [79] 许德如, 2000.海南岛戈枕含金剪切带煌斑岩与金成矿关系研究.大地构造与成矿学, 24(3):258-265. doi: 10.3969/j.issn.1001-1552.2000.03.010 [80] 许继锋, 邱家骧, 1991.山东临朐山旺地区玄武岩浆的分离结晶.地球科学, 16(4):369-376. http://www.cnki.com.cn/Article/CJFDTotal-DQKX199104003.htm [81] 杨春四, 张树明, 赵亚云, 等, 2015.甘肃红石泉铀矿床含矿主岩Sr-Nd-Pb同位素特征及意义.矿物学报, 35(S1):175-176. http://d.old.wanfangdata.com.cn/Conference/9132894 [82] 杨望暾, 段立志, 张阳, 2013.龙首山地区中深构造层次及岩石变形特征研究.西北地质, 46(2):44-53. doi: 10.3969/j.issn.1009-6248.2013.02.006 [83] 翟明国, 2011.克拉通化与华北陆块的形成.中国科学:地球科学, 41(8):1037-1046. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201108001.htm [84] 张诚, 1989.红石泉铀矿床含矿伟晶状白岗岩成岩特征及其地质意义.西北地质, 22(1):28-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003277011 [85] 张万良, 邹茂卿, 邵飞, 等, 2009.桃山矿田脉岩-构造带地质特征及其与铀成矿的关系.世界核地质科学, 26(1):38-42, 48. doi: 10.3969/j.issn.1672-0636.2009.01.006 [86] 赵建国, 王龙成, 2009.红石泉铀矿床矿化特征及成因类型探讨.黄金科学技术, 17(1):38-41. doi: 10.3969/j.issn.1005-2518.2009.01.009 [87] 赵志雄, 贾元琴, 王金荣, 等, 2018.内蒙古小黑山地区二长花岗岩和石英闪长岩的锆石U-Pb年代学、元素地球化学及其地质意义.地球科学, 43(S2):49-59. http://www.cnki.com.cn/Article/CJFDTotal-DQKX2018S2005.htm [88] 周鼎武, 张成立, 刘良, 等, 1998.武当地块基性岩墙群的Sm-Nd定年及其相关问题讨论.地球学报, (1):25-30. http://www.cnki.com.cn/Article/CJFDTotal-DQXB801.003.htm [89] 周自立, 1987.车镇凹陷中生代煌斑岩储油层的特征及成因.矿物岩石地球化学通讯, 6(2):66-68. http://www.cnki.com.cn/Article/CJFDTotal-KYDH198702007.htm -
dqkx-44-10-3469-TableS1.pdf