• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏南木林县拉隆地区花岗闪长岩体的时代、岩石地球化学特征及构造背景

    吉雪峰 魏启荣 李世杰 许欢 王旭东 陈泰一 王健 欧波 赵闪 杨长青

    吉雪峰, 魏启荣, 李世杰, 许欢, 王旭东, 陈泰一, 王健, 欧波, 赵闪, 杨长青, 2018. 西藏南木林县拉隆地区花岗闪长岩体的时代、岩石地球化学特征及构造背景. 地球科学, 43(12): 4566-4585. doi: 10.3799/dqkx.2018.271
    引用本文: 吉雪峰, 魏启荣, 李世杰, 许欢, 王旭东, 陈泰一, 王健, 欧波, 赵闪, 杨长青, 2018. 西藏南木林县拉隆地区花岗闪长岩体的时代、岩石地球化学特征及构造背景. 地球科学, 43(12): 4566-4585. doi: 10.3799/dqkx.2018.271
    Ji Xuefeng, Wei Qirong, Li Shijie, Xu Huan, Wang Xudong, Chen Taiyi, Wang Jian, Ou Bo, Zhao Shan, Yang Changqing, 2018. Geochronology, Geochemistry and Tectonic Settings of Granodiorite in Lalong Area, Namling, Tibet. Earth Science, 43(12): 4566-4585. doi: 10.3799/dqkx.2018.271
    Citation: Ji Xuefeng, Wei Qirong, Li Shijie, Xu Huan, Wang Xudong, Chen Taiyi, Wang Jian, Ou Bo, Zhao Shan, Yang Changqing, 2018. Geochronology, Geochemistry and Tectonic Settings of Granodiorite in Lalong Area, Namling, Tibet. Earth Science, 43(12): 4566-4585. doi: 10.3799/dqkx.2018.271

    西藏南木林县拉隆地区花岗闪长岩体的时代、岩石地球化学特征及构造背景

    doi: 10.3799/dqkx.2018.271
    基金项目: 

    中国地质调查局项目 DD20160015

    详细信息
      作者简介:

      吉雪峰(1992-), 男, 在读硕士研究生, 主要从事岩浆岩与成矿研究

      通讯作者:

      魏启荣

    • 中图分类号: P597

    Geochronology, Geochemistry and Tectonic Settings of Granodiorite in Lalong Area, Namling, Tibet

    • 摘要: 冈底斯印支期构造-岩浆-成矿的研究比较缺乏.以出露在冈底斯隆格尔-念青唐古拉复合古岛弧带的拉隆花岗闪长岩体为研究对象,通过野外地质调查、岩石学、LA-ICP-MS锆石U-Pb定年、岩石地球化学和锆石Lu-Hf同位素等方面的研究,探讨了其岩石成因和形成的构造背景.结果显示,拉隆花岗闪长岩体的LA-ICP-MS锆石U-Pb年龄为223.5±3.9 Ma~225.4±4.9 Ma,形成于晚三叠世(T3),属印支晚期构造-岩浆活动的产物;花岗闪长岩体表现出低Ti(w(TiO2)=0.46%~0.73%),富Si(w(SiO2)=63.24%~67.94%)、Al(w(Al2O3)=14.14%~15.85%)、Na(w(Na2O)=2.58%~3.04%)、K(w(K2O)=3.06%~4.89%),高钾钙碱性-钾玄岩系列和弱过铝质的主量元素地球化学特征;岩体稀土总量∑REE为138.62×10-6~255.53×10-6,配分模式为轻稀土元素富集的右倾斜型,其(La/Yb)N值为8.35~17.90,具明显的负Eu异常(Eu/Eu*=0.54~0.69),无Ce异常(Ce/Ce*=0.92~1.02);微量元素表现出Ba、Nb、Ta、Sr、Ti、P元素亏损和Rb、K、Th、U、Zr、Hf元素富集的特征.岩体的εHft)为-6.4~2.5,其两阶段模式年龄tDM2为980~1 479 Ma,相当于念青唐古拉群形成的地质时代.拉隆花岗闪长岩体属A型花岗岩,为古老下地壳物质部分熔融的岩浆产物,并有少量地幔物质的加入,形成于古特提斯俯冲碰撞形成的岛弧背景下局部拉张的构造环境.

       

    • 图  1  冈底斯带岩浆岩分布简图

      JSSZ.金沙江缝合带;BNSZ.班公湖-怒江缝合带;YZSZ.雅鲁藏布江缝合带;LMF.沙莫勒-麦拉-洛巴堆-米拉山断裂;GLZCF.噶尔-隆格尔-扎日南木措-措麦断裂带;SNMZ.狮泉河-拉果错-永珠-纳木错-嘉黎蛇绿混杂岩带;STDS.喜马拉雅带藏南拆离系;MCT.主中央逆冲断裂;NG.北冈底斯;MG.中冈底斯;GRUB.冈底斯弧背断隆带;SG.南冈底斯;LH.低喜马拉雅;GH.高喜马拉雅;TH.特提斯喜马拉雅;底图据朱弟成等(2008, 2009).年龄数据据李才等(2003)和钟铧等(2006)张宏飞等(2007)Zhu et al.(2011)彭建华等(2013)王程等(2014)卜涛等(2015)

      Fig.  1.  Magmatic rock distribution diagram of Gangdese

      图  2  西藏南木林县拉隆地区地质简图

      a.据潘桂棠等(2006).Ⅰ.喜马拉雅板块;Ⅱ.冈底斯-念青唐古拉板块(Ⅱ-1.冈底斯-下察隅晚燕山-喜山期岩浆弧带;Ⅱ-2.隆格尔-念青唐古拉复合古岛弧带;Ⅱ-3.革吉-申扎弧后盆地带;Ⅱ-4.它日错-班戈-那曲前陆盆地);Ⅲ.羌塘板块;YZSZ.雅鲁藏布江缝合带;BNSZ.班公湖-怒江缝合带.1.古新统年波组;2.上石炭统永珠组;3.晚三叠世白云母二长花岗岩;4.晚三叠世花岗闪长岩;5.地质界线;6.角度不整合界线;7.角岩化带;8.性质不明断层;9.正断层;10.岩石地球化学样采样位置;11.同位素年龄样采样位置;12.锆石U-Pb同位素年龄;13.研究区位置;14.产状(°)

      Fig.  2.  Geologic sketch of Lalong area, Namling, Tibet

      图  3  西藏南木林县拉隆地区剖面

      1.含砾石英砂岩;2.花岗闪长岩;3.巨斑似斑状花岗闪长岩;4.黑云母花岗闪长岩;5.闪长岩;6.石英二长岩;7.闪长岩脉;8.云煌岩脉;9.上石炭统永珠组;10.晚三叠世花岗闪长岩;11.晚三叠世黑云母花岗闪长岩;12.晚三叠世闪长岩;13.晚三叠世石英二长岩;14.地质界线;15.岩相分界线;16.采样位置及样品编号;17.硅酸盐样品采集点;18.锆石样品采集点;19.地层产状(°)

      Fig.  3.  The geogical section of Lalong area, Namling, Tibet

      图  4  西藏南木林县拉隆地区花岗闪长岩野外及显微结构特征

      a.中细粒花岗闪长岩; b.巨斑似斑状花岗闪长岩.Qtz.石英;Pl.斜长石;Or.正长石;Amp.角闪石;Bi.黑云母

      Fig.  4.  Photos of outcrop and microphotographs from Lalong granodiorite masses in Namling, Tibet s

      图  5  西藏南木林县拉隆地区花岗闪长岩体的锆石阴极发光(CL)图像

      实线圈为锆石U-Pb测点,直径为32 μm;虚线圈为Lu-Hf测点,直径为44 μm

      Fig.  5.  CL images of zircon of the Lalong granodiorite masses in Namling, Tibet

      图  6  西藏南木林县拉隆地区花岗闪长岩体的锆石U-Pb年龄谐和图

      Fig.  6.  U-Pb zircon concordia diagram of the Lalong granodiorite masses in Namling, Tibet

      图  7  西藏南木林县拉隆地区花岗闪长岩体的(Na2O+K2O)-SiO2图(a)、AFM图(b)、K2O-SiO2图(c)和A/NK-A/CNK图解(d)

      1.橄榄辉长岩; 2.辉长岩; 3.辉长闪长岩; 4.闪长岩; 5.花岗闪长岩; 6.花岗岩; 7.硅英岩; 8.二长辉长岩; 9.二长闪长岩; 10.二长岩; 11.石英二长岩; 12.正长岩; 13.似长辉长岩; 14.似长二长闪长岩; 15.似长正长闪长岩; 16.似长正长岩; 17.似长岩; 18.霓方钠岩/磷霞岩/粗白榴岩; A.碱性系列;S.亚碱性系列;Ir(Irvine)分界线据Irvine and Baragar(1971);TH.拉斑玄武岩系列;CA.钙碱性系列.a.据Cox et al.(1979); b.据Irvine and Baragar(1971);c.实线据Peccerillo and Taylor (1976), 虚线据Middlemost(1986);d.据Maniar and Piccoli(1989)

      Fig.  7.  (Na2O+K2O)-SiO2 (a), AFM (b), K2O-SiO2 (c) and A/NK-A/CNK (d) diagrams of the Lalong granodiorite masses in Namling, Tibet

      图  8  西藏南木林县拉隆地区花岗闪长岩体稀土元素配分模式(a)和微量元素比值蛛网图(b)

      Sun and McDonough(1989)

      Fig.  8.  REE distribution pattern (a) and trace elements spidergram (b) of the Lalong granodiorites in Namling, Tibet

      图  9  西藏南木林县拉隆地区花岗闪长岩体的锆石εHf(t)值和Hf两阶段模式年龄tDM2值分布

      Fig.  9.  Zircon εHf(t) value diagrams and Hf two-phase model age (tDM2) value diagrams of the Lalong granodiorite masses in Namling, Tibet

      a.BP07-5-1;b.B1305-1;c.BP07-5-1;d.B1305-1

      图  10  西藏拉隆地区花岗闪长岩体的10 000×Ga/Al-(Zr+Ce+Nb+Y)图解

      A.A型花岗岩;FG.分异的长英质I和S型花岗岩类;OGT.未分异I、S和M型花岗岩类;底图据Eby(1990)

      Fig.  10.  10 000×Ga/Al-(Zr+Ce+Nb+Y) diagram of the Lalong granodiorite masses in Namling, Tibet

      图  11  西藏拉隆地区花岗闪长岩体的Na2O-K2O(a)、FeOT/MgO-SiO2(b)、Th-Eu/Eu*(c)判别图

      I.I型花岗岩;S.S型花岗岩;A.A型花岗岩;底图据Collins et al.(1982)

      Fig.  11.  Na2O-K2O (a), FeOT/MgO-SiO2 (b), Th-Eu/Eu* (c) diagrams of the Lalong granodiorite masses in Namling, Tibet

      图  12  西藏南木林县拉隆地区花岗闪长岩体εHf(t)锆石U-Pb年龄(t)图解

      CHUR.球粒陨石均一源储(chondrite uniform reservoir);DM.亏损地幔(depleted mantle);底图据Yang et al.(2006)

      Fig.  12.  Age (t) versus εHf(t) values diagram of the Lalong granodiorite massess in Namling, Tibet

      图  13  西藏拉隆地区花岗闪长岩体的Al2O3/(MgO+FeOT)-CaO/(MgO+FeOT)和La/Sm-La图解

      a.据Altherr et al.(2000); b.据Treuil and Joron (1975)

      Fig.  13.  Al2O3/(MgO+FeOT)-CaO/(MgO+FeOT) and La/Sm-La diagrams of the Lalong granodiorite masses in Namling, Tibet

      图  14  西藏拉隆地区花岗闪长岩体的Ta-Yb (a)、Nb-Y (b)、Rb-(Y+Nb) (c)和Rb/30-Hf-3Ta(d)图解

      WPG.板内花岗岩;VAG.火山弧花岗岩;ORG.洋脊花岗岩;syn-COLG.同碰撞花岗岩;a.据Pearce et al.(1984); b.据Harris(1986)

      Fig.  14.  Ta-Yb (a), Nb-Y (b), Rb-(Y+Nb) (c) and Rb/30-Hf-3Ta (d) diagrams of the Lalong granodiorite masses in Namling, Tibet

      表  1  西藏南木林县拉隆地区花岗闪长岩体LA-ICP-MS锆石U-Pb同位素分析结果

      Table  1.   LA-ICP-MS U-Pb data from the Lalong granodiorite masses in Namling, Tibet

      点号 含量(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
      Pb Th U 比值 ±1σ 比值 ±1σ 比值 ±1σ 年龄(Ma) ±1σ 年龄(Ma) ±1σ
      样品B1305-1(灰色似斑状花岗闪长岩)
      1 192.0 923.5 2 357.6 0.39 0.052 4 0.001 6 0.254 9 0.008 1 0.034 9 0.000 5 230.5 6.56 221.2 3.1
      2 187.2 1 041.2 2 610.8 0.40 0.051 1 0.001 8 0.238 7 0.008 6 0.033 7 0.000 6 217.4 7.03 213.9 3.9
      3 112.2 547.3 1 744.2 0.31 0.057 8 0.002 5 0.274 0 0.012 4 0.034 4 0.000 6 245.9 9.92 218.2 3.6
      4 114.8 542.5 1 680.9 0.32 0.055 6 0.004 2 0.269 6 0.021 4 0.036 1 0.000 8 242.3 17.10 228.5 5.3
      5 147.3 748.8 2 362.4 0.32 0.059 0 0.005 8 0.273 6 0.028 3 0.034 8 0.000 8 245.6 22.54 220.7 4.9
      6 188.6 1 055.0 2 868.4 0.37 0.055 4 0.006 1 0.252 1 0.029 3 0.034 4 0.000 8 228.3 23.75 218.0 5.3
      7 85.7 324.5 1 249.3 0.26 0.063 2 0.007 1 0.305 4 0.035 9 0.036 5 0.000 9 270.6 27.89 231.3 5.6
      8 139.3 803.0 1 772.0 0.45 0.055 4 0.005 6 0.270 4 0.028 4 0.036 8 0.000 8 243.0 22.69 233.1 5.3
      9 242.7 1 571.0 2 446.9 0.64 0.053 9 0.004 7 0.258 7 0.023 4 0.035 9 0.000 7 233.6 18.86 227.3 4.6
      10 350.1 2 364.2 2 677.7 0.88 0.051 8 0.003 9 0.254 6 0.019 9 0.036 4 0.000 7 230.3 16.12 230.8 4.3
      11 210.4 920.7 2 497.9 0.37 0.057 2 0.004 1 0.271 0 0.021 9 0.034 3 0.000 9 243.5 17.49 217.6 5.3
      12 180.7 1 066.7 1 842.6 0.58 0.051 1 0.002 5 0.241 0 0.011 9 0.034 4 0.000 7 219.3 9.70 218.3 4.1
      样品BP07-5-1(灰色中细粒花岗闪长岩)
      1 361.6 1 110.9 5 370.9 0.21 0.050 6 0.001 9 0.258 6 0.010 7 0.036 9 0.000 9 233.5 8.6 233.8 5.4
      2 289.0 1 119.8 2 162.7 0.52 0.050 3 0.002 4 0.234 7 0.011 1 0.034 8 0.001 0 214.1 9.2 220.3 6.0
      3 325.7 1 045.9 5 030.7 0.21 0.051 3 0.002 1 0.240 0 0.009 8 0.034 2 0.000 6 218.4 8.0 216.8 3.9
      4 389.3 1 190.9 5 319.0 0.22 0.052 4 0.001 9 0.253 3 0.009 9 0.035 8 0.001 0 229.3 8.0 226.4 6.0
      5 312.9 988.6 5 176.3 0.19 0.050 4 0.001 7 0.247 7 0.009 1 0.035 7 0.000 8 224.7 7.4 225.9 4.8
      6 305.8 959.1 3 907.1 0.25 0.050 9 0.001 9 0.245 4 0.009 3 0.035 2 0.000 7 222.8 7.6 223.1 4.1
      7 573.8 2 144.5 4 958.8 0.43 0.050 4 0.002 0 0.238 8 0.010 2 0.034 9 0.000 8 217.4 8.4 221.0 5.3
      8 456.7 1 380.3 5 782.5 0.24 0.053 4 0.002 4 0.250 5 0.011 3 0.035 0 0.001 0 227.0 9.2 221.9 6.2
      9 408.8 1 258.8 6 784.4 0.19 0.052 2 0.002 0 0.241 1 0.009 8 0.034 9 0.001 2 219.4 8.1 221.0 7.4
      10 400.1 1 416.3 6 144.3 0.23 0.051 1 0.001 7 0.261 0 0.008 9 0.036 9 0.000 6 235.4 7.2 233.4 3.6
      11 335.1 1 234.0 3 976.4 0.31 0.052 9 0.002 2 0.256 1 0.010 9 0.035 2 0.000 7 231.6 8.8 222.8 4.6
      下载: 导出CSV

      表  2  西藏南木林县拉隆地区花岗闪长岩体主量元素含量(%)及有关参数

      Table  2.   Major element compositions (%) and relevant parameters of the Lalong granodiorite masses in Namling, Tibet

      样品编号 花岗闪长岩 花岗闪长岩 花岗闪长岩 似斑状花岗闪长岩 黑云花岗闪长岩 巨斑似斑状花岗闪长岩 巨斑似斑状花岗闪长岩
      岩石名称 P02-2-1 BP07-1-1 BP07-5-1 B1305-1 B0255-1 B8785-2 B9094-1
      SiO2 63.86 64.14 63.24 66.19 67.94 67.53 67.28
      TiO2 0.73 0.70 0.73 0.65 0.46 0.49 0.56
      Al2O3 15.39 15.53 15.85 14.66 14.14 14.83 14.51
      Fe2O3 0.52 0.31 0.30 0.29 0.07 0.29 0.22
      FeO 4.07 4.10 4.37 3.94 3.33 3.20 3.67
      MnO 0.08 0.08 0.08 0.07 0.07 0.07 0.07
      MgO 1.75 1.76 1.75 1.52 1.22 1.32 1.34
      CaO 2.87 2.71 3.32 2.97 2.00 2.54 2.12
      Na2O 2.89 2.88 2.82 3.04 2.58 2.86 2.93
      K2O 4.19 4.75 4.40 3.06 4.84 4.89 4.15
      P2O5 0.20 0.19 0.21 0.19 0.14 0.15 0.16
      H2O+ 1.47 1.23 1.10 1.54 1.45 0.76 1.57
      CO2 1.40 1.04 1.25 1.22 1.13 0.54 0.73
      Total 99.43 99.42 99.43 99.33 99.38 99.46 99.31
      A/NK 1.45 1.35 1.46 1.62 1.26 1.27 1.37
      A/CNK 1.06 1.03 1.03 1.12 1.02 0.98 1.08
      K2O/Na2O 1.45 1.65 1.56 1.88 1.01 1.71 1.42
      FeOT/MgO 2.60 2.49 2.65 2.77 2.77 2.63 2.88
      刚玉(c) 4.70 3.65 3.87 4.04 4.32 1.82 3.49
      注:分析测试单位为西南冶金地质测试所;A/NK=Al2O3/(Na2O+K2O)摩尔比;A/CNK= Al2O3/(CaO+Na2O+K2O)摩尔比;FeOT=FeO+0.9Fe2O3.
      下载: 导出CSV

      表  3  西藏南木林县拉隆地区花岗闪长岩体稀土元素分析结果(10-6)及有关参数

      Table  3.   REE element compositions (10-6) and relevant parameters of the Lalong granodiorite masses in Namling, Tibet

      样品编号 BP02-2-1 BP07-1-1 BP07-5-1 B1305-1 B0255-1 B8785-2 B9094-1
      La 49.22 47.07 55.76 40.67 27.92 32.79 50.43
      Ce 101.14 96.54 108.94 82.89 57.65 61.44 94.73
      Pr 11.37 10.91 12.14 9.21 6.43 7.68 11.49
      Nd 44.78 44.28 48.50 36.89 27.48 29.77 42.43
      Sm 7.80 7.51 8.15 6.29 4.88 5.70 7.08
      Eu 1.37 1.50 1.61 1.28 1.09 1.18 1.24
      Gd 7.47 6.82 7.52 5.78 4.58 5.22 5.90
      Tb 1.03 0.91 1.00 0.79 0.62 0.84 0.84
      Dy 5.45 4.79 5.28 4.06 3.30 4.82 4.56
      Ho 1.03 0.92 1.00 0.78 0.63 0.97 0.91
      Er 2.89 2.59 2.69 2.16 1.77 2.75 2.54
      Tm 0.43 0.40 0.40 0.32 0.28 0.45 0.38
      Yb 2.43 2.31 2.23 1.80 1.75 2.82 2.38
      Lu 0.35 0.33 0.32 0.26 0.26 0.41 0.34
      Y 26.76 25.09 24.83 20.34 16.85 28.31 25.19
      ΣREE 236.76 226.88 255.53 193.17 138.62 156.83 225.25
      (La/Yb)N 14.52 14.59 17.90 16.21 11.47 8.35 15.23
      Eu/Eu* 0.54 0.63 0.62 0.64 0.69 0.65 0.57
      Ce/Ce* 1.01 1.01 0.98 1.01 1.02 0.92 0.93
      注:分析测试单位为西南冶金地质测试所
      下载: 导出CSV

      表  4  西藏南木林县拉隆地区花岗闪长岩体微量元素分析结果(10-6)

      Table  4.   Trace element compositions (10-6) of the Lalong granodiorite masses in Namling, Tibet

      样品号 BP02-2-1 BP07-1-1 BP07-5-1 B1305-1 B0255-1 B8785-2 B9094-1
      Rb 258.06 269.78 232.00 182.65 194.39 287.52 232.69
      Sr 233.90 276.37 218.10 207.62 145.70 153.12 168.88
      Ba 680.12 928.24 800.92 418.54 538.57 518.00 432.60
      Th 31.14 35.17 32.84 33.82 27.69 30.90 38.42
      U 4.50 4.30 3.81 5.06 3.62 4.22 4.35
      Nb 14.92 14.73 15.70 14.79 11.85 15.35 12.59
      Ta 1.52 1.38 1.43 1.44 1.19 2.44 1.28
      Zr 268.41 236.10 284.44 263.07 207.27 191.70 232.08
      Hf 7.75 7.23 8.27 7.52 6.33 6.07 7.01
      Ga 20.19 20.10 22.90 21.28 18.39 18.45 16.31
      Sc 12.07 11.60 13.31 11.47 8.90 7.24 7.04
      V 68.63 69.50 71.52 64.72 45.20 42.39 47.49
      Cr 33.09 32.90 32.85 38.00 30.81 24.43 23.19
      Co 10.26 9.82 10.91 9.69 6.98 8.31 7.81
      Ni 10.25 11.05 9.97 10.24 8.70 7.35 6.95
      Cu 8.51 13.21 13.78 39.95 6.07 7.99 22.24
      Pb 43.72 51.00 54.27 46.53 75.40 63.34 47.87
      Zn 64.04 63.29 64.23 65.49 49.07 43.93 48.57
      注:分析测试单位为西南冶金地质测试所
      下载: 导出CSV

      表  5  西藏南木林县拉隆地区花岗闪长岩体锆石Lu-Hf同位素分析数据

      Table  5.   Lu-Hf isotope compositions of the Lalong granodiorite masses in Namling, Tibet

      测点号 Hf(10-6) Lu(10-6) fLu/Hf 年龄(Ma) 同位素比值 εHf(0) ±1σ εHf(t) ±1σ tDM1(Ma) tDM2(Ma)
      176Hf/177Hf ±1σ 176Lu/177Hf ±1σ
      B1305-1灰色似斑状细-中粒花岗闪长岩
      B1305-1HF.1 4 736 39 -0.97 228.96 0.282 505 0.000 022 0.001 112 0.000 028 -9.5 0.9 -4.6 1.0 1 060 1 385
      B1305-1HF.2 5 478 44 -0.97 221.18 0.282 528 0.000 022 0.001 020 0.000 010 -8.6 0.9 -3.9 0.9 1 025 1 342
      B1305-1HF.3 4 683 31 -0.97 218.17 0.282 576 0.000 040 0.000 900 0.000 023 -6.9 1.5 -2.3 1.5 954 1 247
      B1305-1HF.4 2 418 16 -0.97 228.50 0.282 641 0.000 036 0.000 861 0.000 016 -4.6 1.4 0.3 1.4 862 1 115
      B1305-1HF.5 6 497 53 -0.97 220.73 0.282 552 0.000 022 0.001 070 0.000 022 -7.8 0.9 -3.1 0.9 992 1 295
      B1305-1HF.6 2 325 21 -0.96 218.03 0.282 713 0.000 048 0.001 174 0.000 015 -2.1 1.8 2.5 1.8 767 980
      B1305-1HF.7 2 855 13 -0.98 231.27 0.282 575 0.000 048 0.000 598 0.000 006 -7.0 1.8 -2.0 1.8 948 1 241
      B1305-1HF.8 3 802 37 -0.96 227.33 0.282 598 0.000 020 0.001 249 0.000 016 -6.2 0.9 -1.4 0.9 932 1 204
      B1305-1HF.9 4 415 34 -0.97 230.75 0.282 547 0.000 028 0.001 001 0.000 008 -8.0 1.1 -3.0 1.1 997 1 300
      B1305-1HF.10 4 498 28 -0.98 218.31 0.282 486 0.000 028 0.000 799 0.000 006 -10.1 1.1 -5.5 1.1 1 078 1 424
      BP07-5-1灰色中细粒花岗闪长岩
      BP07-5-1HF.1 4 068 25 -0.98 220.34 0.282 560 0.000 025 0.000 805 0.000 021 -7.5 1.0 -2.8 1.0 974 1277
      BP07-5-1HF.2 6 872 60 -0.97 226.44 0.282 494 0.000 019 0.001 141 0.000 017 -9.8 0.8 -5.0 0.9 1 076 1 407
      BP07-5-1HF.3 5 291 32 -0.98 225.89 0.282 481 0.000 024 0.000 793 0.000 004 -10.3 1.0 -5.4 1.0 1 084 1 429
      BP07-5-1HF.4 6 115 28 -0.98 223.07 0.282 456 0.000 022 0.000 598 0.000 009 -11.2 0.9 -6.4 0.9 1 114 1 479
      BP07-5-1HF.5 6 105 55 -0.97 220.96 0.282 545 0.000 020 0.001 157 0.000 006 -8.0 0.9 -3.4 0.9 1 005 1 310
      BP07-5-1HF.6 5 176 42 -0.97 221.89 0.282 524 0.000 020 0.001 043 0.000 010 -8.8 0.9 -4.0 0.9 1 031 1 349
      BP07-5-1HF.7 4 915 33 -0.97 221.02 0.282 526 0.000 021 0.000 880 0.000 004 -8.7 0.9 -4.0 0.9 1 024 1 344
      BP07-5-1HF.8 7 971 49 -0.98 222.82 0.282 481 0.000 017 0.000 795 0.000 006 -10.3 0.8 -5.5 0.8 1 084 1 431
      注:分析测试在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成.
      下载: 导出CSV

      表  6  拉隆花岗闪长岩体与典型花岗岩体相关特征对比

      Table  6.   The features between the Lalong granodiorite masses and the typical granite

      矿物 I型 S型 A型 M型 拉隆花岗闪长岩
      长英质矿物 石英不太多,长石可呈粉红色 石英较多,长石常呈白色 条纹碱性长石常见 可见显微纹象钾长石 正长石常见
      常见铁镁矿物 黑云母Mg/Fe高,白云母较罕见 黑云母Mg/Fe低,白云母较常见 黑云母形成晚,充填于粒间(富铁Fe2+) 角闪石、黑云母、辉石 黑云母分布于长石之间
      不透明矿物 磁铁矿物±钛铁矿±黄铁矿 钛铁矿(<0.1%)±磁黄铁矿、石墨、独居石 磁铁矿 磁铁矿 磁铁矿
      w(SiO2) 53%~76% 65%~79% 60%~80% 54%~73% 63.24%~67.94%
      w(Na2O) >3.2% 变化大 >2.8% >3.2% 2.58%~3.04%
      w(K2O)/w(Na2O) 低(<1) 高(>1) 一般较高 很低 1.08~1.88
      A/CNK <1.1 >1.1 变化大 <1.2 0.99~1.13
      w(SiO2)=66%时的w(CaO) >3.7% <3.7% 低,如1.1% 1.94%~3.46%
      CIPW刚玉分子 <1% >1% 1.82%~4.70%
      包含岩类 花岗岩-辉长岩 淡色花岗岩-花岗闪长岩 碱性花岗岩-斜长岩 闪长岩-辉长岩 花岗闪长岩
      注:各类花岗岩据路凤香和桑隆康(2002)桑隆康和马昌前(2012);“?”表示无明确数据.
      下载: 导出CSV
    • [1] Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany).Lithos, 50(1-3):51-73. https://doi.org/10.1016/s0024-4937(99)00052-3
      [2] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      [3] Bu, T., Wei, Q.R., Ding, P.F., et al., 2015.LA-ICP-MS Zircon U-Pb Ages and Petrogenesis of Rindu Intrusion near Namling, Middle Gangdise Magmatic Belt.Geologcal Bulletin of China, 34(12):2254-2265 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201512012
      [4] Cao, Z.Q., Cai, Y.T., Zeng, Z.X., et al., 2017.Discovery of Neoproterozoic A-Type Granite in Northern Yangtze Craton and Its Tectonic Significance.Earth Science, 42(6):957-973 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201706008
      [5] Chen, Y.J., Pirajno, F., Qi, J.P., 2008.The Shanggong Gold Deposit, Eastern Qinling Orogen, China:Isotope Geochemistry and Implications for Ore Genesis.Journal of Asian Earth Sciences, 33(3-4):252-266. https://doi.org/10.1016/j.jseaes.2007.12.002
      [6] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200. https://doi.org/10.1007/bf00374895
      [7] Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979.The Interpretation of Igneous Rocks.Allen & Unwin, Canberra.
      [8] Ding, P.F., Wei, Q.R., Wang, C., et al., 2014.Chronology, Geochemical Characteristics and Tectonic Settings of the Late Yanshanian Granitoids in Zexue Area, Tibet.Geological Science and Technology Information, 33(4):37-45, 59 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201404007.htm
      [9] Dong, G.C., Mo, X.X., Zhao, Z.D., et al., 2006.Magma Mixing in Middle Part of Gangdise Magma Belt:Evidences from Granitoid Complex.Acta Petrologica Sinica, 22(4):835-844 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200604007.htm
      [10] Eby, G.N., 1990.The A-Type Granitoids:A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis.Lithos, 26(1-2):115-134. https://doi.org/10.1016/0024-4937(90)90043-z
      [11] Eby, G.N., 1992.Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications.Geology, 20(7):641.https://doi.org/10.1130/0091-7613(1992)020<0641:csotat<2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
      [12] Geng, Q.R., Pan, G.T., Wang, L.Q., et al., 2011.Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet.Geologcal Bulletin of China, 30(8):1261-1274 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201108013
      [13] Gu, L.X., 1990.Geological Features, Petrogenesis and Metallogeny of A-Type Granites.Geological Science and Technology Information, 9(1):25-31 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000361518
      [14] Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986.Geochemical Characteristics of Collision-Zone Magmatism.Geological Society, London, Special Publications, 19(1):67-81. https://doi.org/10.1144/gsl.sp.1986.019.01.04
      [15] Harris, N.B.W., Ronghua, X., Lewis, C.L., et al., 1988.Plutonic Rocks of the 1985 Tibet Geotraverse, Lhasa to Golmud.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594):145-168. https://doi.org/10.1098/rsta.1988.0124
      [16] He, Z.H., Yang, D.M., Zheng, C.Q., et al., 2006.Isotopic Dating of the Mamba Granitoid in the Gangdise Tectonic Belt and Its Constraint on the Subduction Time of the Neotethys.Geological Review, 52(1):100-106 (in Chinese with English abstract).
      [17] Hong, D.W., Wang, S.G., Han, B.F., et al., 1995.The Tectonic Classification and Identification Characterictics of Alkali Granites.Science in China (Series B:Chemistry), 25(4):418-426(in Chinese).
      [18] Hou, Z.Q., Wang, E.Q., 2008.Metallogenesis of the Indo-Asian Collisional Orogen:New Advances.Acta Geoscientica Sinica, 29(3):275-292 (in Chinese with English abstract).
      [19] Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055
      [20] Li, C., Wang, T.W., Li, H.M., et al., 2003.Discovery of Indosinian Megaporphyritic Granodiorite in the Gangdise Area:Evidence for the Existence of Paleo-Gangdise.Geological Bulletin of China, 22(5):364-366 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200305010.htm
      [21] Li, F.Q., Liu, W., Wang, B.D., et al., 2012.The Continuation of the Subduction of Paleo-Tethys Ocean within Lhasa Block in Early-Middle Triassic:Evidence from Volcanic Rocks and HP Metamorphic Rocks.Acta Petrologica et Mineralogica, 31(2):119-132 (in Chinese with English abstract).
      [22] Li, H.Q., Cai, Z.H., Chen, S.Y., et al., 2008.The Indosinian Orogenesis Occurred in Lhasa Terrain and the Evidence from Muscovite 40Ar-39Ar Geochronology.Acta Petrologica Sinica, 24(7):1595-1604 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807015
      [23] Li, T., 1995.Element Abundances of China's Continental Crust and Its Sedimentary Layer and Upper Continental Crust.Chinese Journal of Geochemistry, 14(1):26-32(in Chinese with English abstract). doi: 10.1007-BF02840380/
      [24] Liao, Z.L., Mo, X.X., Pan, G.T., et al., 2006.Characteristics and Implication of the Topology of Zircons from the Peraluminous Granites in Tibet.Geotectonica et Metallogenia, 30(1):63-71 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200601008
      [25] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [26] Lu, F.X., Sang, L.K., 2002.Petrology.Geological Publishing House, Beijing (in Chinese).
      [27] Ludwig, K.R., 2003.User's Manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley.
      [28] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      [29] McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      [30] Middlemost, E.A.K., 1986.Magmas and Magmatic Rocks: An Introduction to Igneous Petrology.Longman, London.
      [31] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution.Geological Journal of China Universities, 11(3):281-290 (in Chinese with English abstract).
      [32] Mo, X.X., Pan, G.T., 2006.From the Tethys to the Formation of the Qinghai-Tibet Plateau:Constrained by Tectono-Magmatic Events.Earth Science Frontiers, 13(6):43-51 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY200606007.htm
      [33] Mo, X.X., Zhao, Z.D., DePaolo, D.J., et al., 2006.Three Types of Collisional and Post-Collisional Magmatism in the Lhasa Block, Tibet and Implications for India Intra-Continental Subduction and Mineralization:Evidence from Sr-Nd Isotopes.Acta Petrologica Sinica, 22(4):795-803 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200604004.htm
      [34] Niu, Y.L., 2012.ChemInform Abstract:Earth Processes Cause Zr-Hf and Nb-Ta Fractionations, but Why and How? Chem.Inform., 43(29):3587-3591. https://doi.org/10.1002/chin.201229230
      [35] Pan, G.T., Ding, J., Yao, D.S., et al., 2004.Geological Map of Qinghai-Xizang (Tibet) Plataeu and Adjancent Areas (with a Guidebook) (1:1 500 000).Chengdu Cartographic Publishing House, Chengdu (in Chinese).
      [36] Pan, G.T., Mo.X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      [37] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      [38] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
      [39] Peng, J.H., Zhao, X.L., He, J., et al., 2013.Discovery of Indosinian Magmatic Rocks and Its Significance in Western Gangdise Tibet.Journal of East China Institute of Technology, 36(S2):21-26 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-HDDZ2013S2004.htm
      [40] Rui, Z.Y., Hou, Z.Q., Qu, X.M., et al., 2003.Metallogenetic Epoch of Gangdese Porphyry Copper Belt and Uplift of Qinghai-Tibet Plateau.Mineral Deposits, 22(3):217-225 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200303001
      [41] Sang, L.K., Ma, C.Q., 2012.Petrology (Second Edition).Geological Publishing House, Beijing (in Chinese).
      [42] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [43] Treuil, M., Joron, J.M., 1975.Utilisation des Elements Hygromagmatophiles Pour La Simplifications de la Modelisation Quantitative des Precessus Magmatiques.Soc.It.Mine.Petro., 31:74-125.
      [44] Wang, C., Wei, Q.R., Liu, X.N., et al., 2014.Post-Collision Related Late Indosinian Granites of Gangdise Terrane:Evidences from Zircon U-Pb Geochronology and Petrogeochemistry.Earth Science, 39(9):1277-1288, 1300 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201409003.htm
      [45] Wang, L.Q., Pan, G.T., 2010.Description of Geological Map of 1:15 000 Geological Map of Qinghai-Tibet Plateau and Adjacent Areas.Geological Publishing House, Beijing(in Chinese).
      [46] Wang, T.H., Mao, J.W., Wang, Y.B., 2008.Research on SHRIMP U-Pb Chronology in Xiaoqinling-Xiongershan Area:The Evidence of Delamination of Lithosphere in Qinling Orogenic Belt.Acta Petrologica Sinica, 24(6):1273-1287(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200806011.htm
      [47] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics Discrimination and Petrogenesis.Contrib.Mineral Petrol., 95:407-419. doi: 10.1007/BF00402202
      [48] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001
      [49] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese with English abstract). doi: 10.1007/BF03184122
      [50] Xu, Y.P., 2014.Study on the Metallogenic Regularity and Tectonic Activity in Middle Section of Gangdise Metallogenic Belt(Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [51] Xu, Z.Q., Li, H.B., Yang, J.S., 2006.An Orogenic Plateau-The Orogenic Collage and Orogenic Types of the Qinghai-Tibet Plateau.Earth Science Frontiers, 13(4):1-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200604001.htm
      [52] Yang, J., Wu, F., Shao, J., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3-4):336-352. https://doi.org/10.1016/j.epsl.2006.04.029
      [53] Yang, Z., Jiang, H., Yang, M.G., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance.Earth Science, 42(3):339-356 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.026
      [54] Yuan, Z.X., 2001.A Discussion on the Naming of A-Type Granite.Acta Petrologica et Mineralogica, 20(3):293-296 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200103010.htm
      [55] Zhang, B.L., Su, J., Shen, X.L., et al., 2011.Preliminary Study on Deep Prospecting of Hydrothermal Vein-Like Silver-Lead-Zinc-Copper Ore Deposits in the Background of Extensional Structure-Taking Several Mining Areas in Yunnan, Inner Mongolia and Shandong as Examples.Acta Mineralogica Sinica, 31(S1):989-990 (in Chinese).
      [56] Zhang, H.F., Xu, W.C., Guo, J.Q., et al., 2007.Indosinian Orogenesis of the Gangdise Terrane:Evidences Zircon U-Pb Dating and Petrogenesis of Granitoids.Earth Science, 32(2):155-166 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200702001.htm
      [57] Zhang, Q., Ran, H., Li, C.D., 2012.A-Type Granite:What is the Essence? Acta Petrologica et Mineralogica, 31(4):621-626 (in Chinese with English abstract). http://www.cqvip.com/QK/94932X/201204/42855769.html
      [58] Zhao, Z.H., Xiong, X.L., Wang, Q., et al., 2008.Some Aspects on Geochemistry of Nb and Ta.Geochimica, 37(4):304-320(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200804004.htm
      [59] Zhu, D.C., Mo, X.X., Niu, Y.L., et al., 2009.Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Terrane, Tibet.Chemical Geology, 268(3-4):298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008
      [60] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2009.Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution:New Perspective.Earth Science Frontiers, 16(2):1-20 (in Chinese with English abstract).
      [61] Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008.Tempo-Spatial Variations of Mesozoic Magmatic Rocks in the Gangdise Belt, Tibet, China, with a Discussion of Geodynamic Setting-Related Issues.Geological Bulletin of China, 27(9):1535-1550(in Chinese with English abstract).
      [62] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      [63] 卜涛, 魏启荣, 丁鹏飞, 等, 2015.西藏冈底斯带中段南木林县仁堆侵入体LA-ICP-MS锆石U-Pb年龄及岩石成因.地质通报, 34(12):2254-2265. doi: 10.3969/j.issn.1671-2552.2015.12.012
      [64] 曹正琦, 蔡逸涛, 曾佐勋, 等, 2017.扬子克拉通北缘新元古代A型花岗岩的发现及大地构造意义.地球科学, 42(6):957-973. http://earth-science.net/WebPage/Article.aspx?id=3590
      [65] 丁鹏飞, 魏启荣, 王程, 等, 2014.西藏则学地区俄穷瓦二长岩体的年代学、岩石地球化学特征及构造环境分析.地质科技情报, 33(4):37-45, 59. doi: 10.3969/j.issn.1009-6248.2014.04.005
      [66] 董国臣, 莫宣学, 赵志丹, 等, 2006.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据.岩石学报, 22(4):835-844. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604007
      [67] 耿全如, 潘桂棠, 王立全, 等, 2011.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报, 30(8):1261-1274. doi: 10.3969/j.issn.1671-2552.2011.08.013
      [68] 顾连兴, 1990.A型花岗岩的特征、成因及成矿.地质科技情报, 9(1):25-31. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200804004
      [69] 和钟铧, 杨德明, 郑常青, 等, 2006.冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束.地质论评, 52(1):100-106. doi: 10.3321/j.issn:0371-5736.2006.01.013
      [70] 洪大卫, 王式洸, 韩宝福, 等, 1995.碱性花岗岩的构造环境分类及其鉴别标志.中国科学(B辑:化学), 25(4):418-426. http://www.cqvip.com/Main/Detail.aspx?id=1671107
      [71] 侯增谦, 王二七, 2008.印度-亚洲大陆碰撞成矿作用主要研究进展.地球学报, 29(3):275-292. doi: 10.3321/j.issn:1006-3021.2008.03.003
      [72] 李才, 王天武, 李惠民, 等, 2003.冈底斯地区发现印支期巨斑花岗闪长岩——古冈底斯造山的存在证据.地质通报, 22(5):364-366. doi: 10.3969/j.issn.1671-2552.2003.05.011
      [73] 李奋其, 刘伟, 王保弟, 等, 2012.拉萨地块内部古特提斯洋早中三叠世仍在俯冲——来自火山岩和高压变质岩的证据.岩石矿物学杂志, 31(2):119-132. doi: 10.3969/j.issn.1000-6524.2012.02.001
      [74] 李化启, 蔡志慧, 陈松永, 等, 2008.拉萨地体中的印支造山事件及年代学证据.岩石学报, 24(7):1595-1604. http://cdmd.cnki.com.cn/Article/CDMD-82501-2010024366.htm
      [75] 黎彤, 1995.中国陆壳及其沉积层和上陆壳的化学元素丰度.地球化学, 14(1):26-32. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX402.004.htm
      [76] 廖忠礼, 莫宣学, 潘桂棠, 等, 2006.西藏过铝花岗岩锆石群型的成因信息.大地构造与成矿学, 30(1):63-71. doi: 10.3969/j.issn.1001-1552.2006.01.008
      [77] 路凤香, 桑隆康, 2002.岩石学.北京:地质出版社.
      [78] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
      [79] 莫宣学, 潘桂棠, 2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 13(6):43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007
      [80] 莫宣学, 赵志丹, Depaolo, D.J., 等, 2006.青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据.岩石学报, 22(4):795-803. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604004
      [81] 潘桂棠, 丁俊, 姚冬生, 等, 2004.青藏高原及林区地质图(1:1 500 000, 附说明书).成都:成都地图出版社.
      [82] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      [83] 彭建华, 赵希良, 何俊, 等, 2013.西藏冈底斯西部地区印支期岩浆岩的发现及其意义.东华理工大学学报(自然科学版), 36(S2):21-26. http://www.cqvip.com/QK/92652B/2013S2/1005607332.html
      [84] 芮宗瑶, 侯增谦, 曲晓明, 等, 2003.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质, 22(3):217-225. doi: 10.3969/j.issn.0258-7106.2003.03.001
      [85] 桑隆康, 马昌前, 2012.岩石学(第二版).北京:地质出版社.
      [86] 王程, 魏启荣, 刘小念, 等, 2014.冈底斯印支晚期后碰撞花岗岩:锆石U-Pb年代学及岩石地球化学证据.地球科学, 39(9):1277-1288, 1300. http://earth-science.net/WebPage/Article.aspx?id=2935
      [87] 王立全, 潘桂棠, 2010.青藏高原及邻区1:150万地质图说明书.北京:地质出版社.
      [88] 王团华, 毛景文, 土彦斌, 2008.小秦岭-熊耳山地区岩培钻石SHRIMP年代学研究——秦岭造山带岩石圈拆沉的证据.岩石学报, 24(6):1273-1287. http://www.cqvip.com/qk/94579X/200806/28567319.html
      [89] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001
      [90] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [91] 许远平, 2014.冈底斯成矿带中段构造活动与成矿规律研究(博士学位论文).成都: 成都理工大学.
      [92] 许志琴, 李海兵, 杨经绥, 2006.造山的高原——青藏高原巨型造山拼贴体和造山类型.地学前缘, 13(4):1-17. doi: 10.3321/j.issn:1005-2321.2006.04.002
      [93] 杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3):339-356. http://earth-science.net/WebPage/Article.aspx?id=3545
      [94] 袁忠信, 2001.关于A型花岗岩命名问题的讨论.岩石矿物学杂志, 20(3):293-296. doi: 10.3969/j.issn.1000-6524.2001.03.011
      [95] 张宝林, 苏捷, 沈晓丽, 等, 2011.伸展构造背景下热液脉状银铅锌铜矿区深部找矿初步研究——以云南、内蒙古、山东几个矿区为例.矿物学报, 31(S1):989-990. http://d.old.wanfangdata.com.cn/Conference/7684685
      [96] 张宏飞, 徐旺春, 郭建秋, 等, 2007.冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据.地球科学, 32(2):155-166. doi: 10.3321/j.issn:1000-2383.2007.02.002
      [97] 张旗, 冉皞, 李承东, 2012.A型花岗岩的实质是什么?岩石矿物学杂志, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
      [98] 赵振华, 熊小林, 王强, 等, 2008.铌与钽的某些地球化学问题.地球化学, 37(4):304-320. doi: 10.3321/j.issn:0379-1726.2008.04.005
      [99] 朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2):1-20. doi: 10.3321/j.issn:1005-2321.2009.02.001
      [100] 朱弟成, 潘桂棠, 王立全, 等, 2008.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报, 27(9):1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013
    • 加载中
    图(14) / 表(6)
    计量
    • 文章访问数:  4697
    • HTML全文浏览量:  1909
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-07-12
    • 刊出日期:  2018-12-15

    目录

      /

      返回文章
      返回