MMEs in the Tangjiangqiongguo Pluton in the North Lhasa Block Formed by Magma Mixing of Different Episodes of the Same Sourced Magma: A New Petrogenetic Model for the MMEs
-
摘要: 在西藏北拉萨块体中段唐江穷果岩体中发现了一种新的岩石成因的暗色包体.唐江穷果岩体中暗色包体呈椭球状,与寄主岩之间呈不紧密胶结,在暗色包体和寄主岩的接触面上通常形成一个明显的风化间隙面.暗色包体为角闪闪长斑岩,寄主岩为花岗闪长岩,暗色包体明显较寄主岩更基性,更富Na2O、CaO、MgO和Fe2O3T.暗色包体和寄主岩具有明显不同的稀土元素,暗色包体的稀土元素除La、Ce元素外,整体含量较寄主岩高,且轻重稀土分异弱.两者都具有弧岩浆岩的特征,富集Rb、Cs、K等大离子亲石元素和Th、U,而亏损Nb、Ta、Ti等高场强元素.暗色包体成岩年龄为113.9±1.0 Ma,寄主岩的成岩年龄为110±1.1 Ma,暗色包体成岩年龄较寄主岩早约4 Ma.此外,两者具有一致的锆石原位Lu-Hf同位素特征.以上岩相学、年代学、元素地球化学和同位素地球化学证据表明,唐江穷果暗色包体和寄主岩来源于同源母岩浆,暗色包体在二次岩浆房中经历了较弱的斜长石结晶分离作用,寄主岩在二次岩浆房中经历了较强的角闪石结晶分离作用.经过结晶分离作用的寄主岩岩浆在侵位过程中将较早形成处于半塑性状态下的暗色包体裹挟至近地表.唐江穷果暗色包体最可能的成因模式可以解释为同源岩浆不同期次间的物理混合.Abstract: This paper proposes a new petrogenetic model for the MMEs (mafic microgranular enclaves) based on a study on the Tangjiangqiongguo pluton in the middle part of the North Lhasa Block,Tibet. The MMEs found in the Tangjiangqiongguo host granitic diorites are hornblende diorites usually presenting axiolite and non-compactly cement with the host rock,with an apparent clearance plane with host rocks. The MMEs have higher Na2O,CaO,MgO and Fe2O3T contents than the host rocks. The MMEs have distinct REE characteristics from host rocks,with higher REE contents (except La and Ce) and weaker fractionation between LREE and HREE. Both the MMEs and host rocks show characteristics of arc rocks with enrichment in LILEs (large ion lithophile elements) Rb,Cs,K,etc.,and Th and U elements,but depletion in HFSEs (high field strength elements) Nb,Ta and Ti elements. Zircon LA-ICP-MS U-Pb dating yields a 113.9±1.0 Ma age and a 110±1.1 Ma age for the MMEs and host rocks,respectively. Although the MMEs are 4 Ma earlier than the host rocks,they have consistent zircon Lu-Hf isotopes. Synthesizing above petrography,geochemistry and isotopic evidence,we suggest the MMEs are derived from the same source rocks with host rocks. The MMEs experienced a weak plagioclase fractional crystallization,but the host rocks experienced a relatively strong hornblende fractional crystallization in respective secondary magma chamber. The differential magma of the host rock wrapped and carried the earlier formed MMEs (in semiplastic) to subsurface. The most probable petrogenetic model for the Tangjiangqiongguo MMEs mingling between magmas of different periods sourced from the same rock.
-
Key words:
- North Lhasa Block /
- mafic microgranular enclaves /
- zircon U-Pb dating /
- geochemistry /
- Lu-Hf isotopes /
- petrogenesis
-
图 1 青藏高原构造单元划分(a)和唐江穷果岩体地质简图(b)
图a据Zhang et al.(2012)、Zhu et al.(2012)修改;图b据曲永贵等(2002)修改
Fig. 1. Tectonic units of the Tibet (a) and geologic map of the Tangjiangqiongguo pluton (b)
图 4 唐江穷果岩体及暗色包体SiO2 vs. ALK图解(a),SiO2 vs. K2O(b), A/CNK vs. A/NK图解(c)及SiO2 vs. Mg#(d)
图a据Middlemost (1994);图b据Peccerillo and Taylor (1976);图c据Maniar and Piccoli (1989);图d据Jiang et al. (2010)及文内参考文献
Fig. 4. Total alkali vs. silica (TAS) diagram (a), SiO2 vs. K2O diagram (b), A/CNK vs. A/NK diagram (c) and SiO2 vs. Mg# (d) of Tangjiangqiongguo pluton and MMEs
图 6 唐江穷果岩体及暗色包体稀土元素配分(a)和微量元素(b)蛛网图
球粒陨石和元素地幔标准化数据据Sun and Mcdonough(1989)
Fig. 6. Chondrite-normalized REE diagram (a) and primitive mantle-normalized trace element diagram (b) of the Tangjiangqiongguo pluton and MMEs
图 9 REE在斜长石(安山岩中)和角闪石(英安岩中)与熔体间的分配系数(a)和瑞利结晶分离作用模型(b)
图a中REE在斜长石与熔体间的分配系数据Fujimaki et al.(1984),La为0.302,Ce为0.221,Nd为0.149,Sm为0.102,Eu为1.214,Gd为0.067,Dy为0.050,Er为0.045,Yb为0.041,Lu为0.039;REE在角闪石与熔体间分配系数据Giraud et al.(1986),Ce为0.899,Nd为2.89,Sm为3.99,Eu为3.44,Gd为5.48,Dy为6.20,Er为5.94,Yb为4.89,Lu为4.53;图b中CL为熔体中稀土元素含量;Co为结晶分离过程中母岩浆中稀土元素含量;F为结晶分离过程中液相的含量;D为分配系数
Fig. 9. Distribution coefficients of the plagioclase/melt (in andesite) and the amphibole/melt (in dacite) (a) and Rayleigh fractional crystallization model (b)
-
[1] Baker, D. R., 1989. Tracer Versus Trace Element Diffusion: Diffusional Decoupling of Sr Concentration from Sr Isotope Composition. Geochimica et Cosmochimica Acta, 53(11): 3015-3023. https://doi.org/10.1016/0016-7037(89)90177-4 [2] Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1-4): 155-177. https://doi.org/10.1016/j.lithos.2004.05.010 [3] Baxter, S., Feely, M., 2002. Magma Mixing and Mingling Textures in Granitoids: Examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76(1-2): 63-74. https://doi.org/10.1007/s007100200032 [4] Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x [5] Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/s0263593300007720 [6] Chappell, B. W., White, A. J. R., Williams, I. S., et al., 2000. Lachlan Fold Belt Granites Revisited: High‐ and Low‐Temperature Granites and Their Implications. Australian Journal of Earth Sciences, 47(1): 123-138. https://doi.org/10.1046/j.1440-0952.2000.00766.x [7] Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111 [8] Chen, Y. D., Price, R. C., White, A. J. R., 1989. Inclusions in Three S-Type Granites from Southeastern Australia. Journal of Petrology, 30(5): 1181-1218. https://doi.org/10.1093/petrology/30.5.1181 [9] Chen, B., Chen, Z. C., Jahn, B. M., 2009. Origin of Mafic Enclaves from the Taihang Mesozoic Orogen, North China Craton. Lithos, 110(1-4): 343-358. https://doi.org/10.1016/j.lithos.2009.01.015 [10] Dahlquist, J. A., 2002. Mafic Microgranular Enclaves: Early Segregation from Metaluminous Magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth Sciences, 15(6): 643-655. https://doi.org/10.1016/s0895-9811(02)00112-8 [11] Didier, J., 1987. Contribution of Enclave Studies to the Understanding of Origin and Evolution of Granitic Magmas. Geologische Rundschau, 76(1): 41-50. https://doi.org/10.1007/bf01820572 [12] Didier, J., Barbarin, B., 1991. Enclaves and Granite Petrology. Developments in Petrology. Elsevier Science Publishers, Amsterdam. [13] Donaire, T., Pascual, E., Pin, C., et al., 2005. Microgranular Enclaves as Evidence of Rapid Cooling in Granitoid Rocks: The Case of the Los Pedroches Granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3): 247-265. https://doi.org/10.1007/s00410-005-0652-0 [14] Dong, H.W., Meng, Y.K., Xu, Z.Q., et al., 2019. Timing of Displacement along the YardoiDetachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology. Journal of Earth Science, 30(3): 535-548. https://doi.org/10.1007/s12583-019-1223-z [15] Dong, X., Zhang, Z. M., Santosh, M., et al., 2011. Late Neoproterozoic Thermal Events in the Northern Lhasa Terrane, South Tibet: Zircon Chronology and Tectonic Implications. Journal of Geodynamics, 52(5): 389-405. https://doi.org/10.1016/j.jog.2011.05.002 [16] Dorais, M. J., Whitney, J. A., Roden, M. F., 1990. Origin of Mafic Enclaves in the Dinkey Creek Pluton, Central Sierra Nevada Batholith, California. Journal of Petrology, 31(4): 853-881. https://doi.org/10.1093/petrology/31.4.853 [17] Elhlou, S., Belousova, E., Griffin, W. L., et al., 2006. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation. Geochimica et Cosmochimica Acta, 70(18): A158. https://doi.org/10.1016/j.gca.2006.06.1383 [18] Fujimaki, H., Tatsumoto, M., Aoki, K. I., 1984. Partition Coefficients of Hf, Zr, and REE between Phenocrysts and Groundmasses. Journal of Geophysical Research, 89(S02):B662. https://doi.org/10.1029/jb089is02p0b662 [19] Giraud, A., Dupuy, C., Dostal, J., 1986. Behaviour of Trace Elements during Magmatic Processes in the Crust: Application to Acidic Volcanic Rocks of Tuscany (Italy). Chemical Geology, 57(3-4): 269-288. https://doi.org/10.1016/0009-2541(86)90054-9 [20] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [21] Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [22] Holden, P., Halliday, A. N., Ed Stephens, W., et al., 1991. Chemical and Isotopic Evidence for Major Mass Transfer between Mafic Enclaves and Felsic Magma. Chemical Geology, 92(1-3): 135-152. https://doi.org/10.1016/0009-2541(91)90053-t [23] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025 [24] Hu, D. G., 2005. SHRIMP Zircon U-Pb Age and Nd Isotopic Study on the Nyainqêntanglha Group in Tibet. Science in China (Series D), 48(9): 1377. https://doi.org/10.1360/04yd0183 [25] Jiang, Y. H., Jin, G. D., Liao, S. Y., et al., 2010. Geochemical and Sr–Nd–Hf Isotopic Constraints on the Origin of Late Triassic Granitoids from the Qinling Orogen, Central China: Implications for a Continental Arc to Continent–Continent Collision. Lithos, 117(1-4): 183-197. https://doi.org/10.1016/j.lithos.2010.02.014 [26] Jiang, Y. H., Ling, H. F., Jiang, S. Y., et al., 2005. Petrogenesis of a Late Jurassic Peraluminous Volcanic Complex and Its High-Mg, Potassic, Quenched Enclaves at Xiangshan, Southeast China. Journal of Petrology, 46(6): 1121-1154. https://doi.org/10.1093/petrology/egi012 [27] Johnston, A. D., Wyllie, P. J., 1988. Interaction of Granitic and Basic Magmas: Experimental Observations on Contamination Processes at 10 kbar with H2O. Contributions to Mineralogy and Petrology, 98(3): 352-362. https://doi.org/10.1007/bf00375185 [28] Kumar, S., Rino, V., 2006. Mineralogy and Geochemistry of Microgranular Enclaves in Palaeoproterozoic Malanjkhand Granitoids, Central India: Evidence of Magma Mixing, Mingling, and Chemical Equilibration. Contributions to Mineralogy and Petrology, 152(5): 591-609. https://doi.org/10.1007/s00410-006-0122-3 [29] Lesher, C. E., 1994. Kinetics of Sr and Nd Exchange in Silicate Liquids: Theory, Experiments, and Applications to Uphill Diffusion, Isotopic Equilibration, and Irreversible Mixing of Magmas. Journal of Geophysical Research: Solid Earth, 99(B5): 9585-9604. https://doi.org/10.1029/94jb00469 [30] Li, Z.L., Yang, J.S., Li, T.F., et al., 2019. Helium Isotopic Composition of the Songduo Eclogites in the Lhasa Terrane, Tibet: Information from the Deep Mantle. Journal of Earth Science, 30(3): 563-570. https://doi.org/10.1007/s12583-019-1226-9 [31] Liu, L., Qiu, J. S., Li, Z., 2013. Origin of Mafic Microgranular Enclaves (MMEs) and Their Host Quartz Monzonites from the Muchen Pluton in Zhejiang Province, Southeast China: Implications for Magma Mixing and Crust-Mantle Interaction. Lithos, 160-161: 145-163. https://doi.org/10.1016/j.lithos.2012.12.005 [32] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [33] Ludwig, K. R., 2003. Users Manualf or Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [34] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [35] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [36] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745 [37] Qu, Y.G., Wang, Y.S., Duan, J.X., et al., 2002. The People's Republic of China Regional Geological Report 1:250 000 Duoba Sheet. China University of Geosciences Press, Wuhan (in Chinese). [38] Shellnutt, J. G., Jahn, B. M., Dostal, J., 2010. Elemental and Sr–Nd Isotope Geochemistry of Microgranular Enclaves from Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province, SW China. Lithos, 119(1-2): 34-46. https://doi.org/10.1016/j.lithos.2010.07.011 [39] Shi, R. D., Yang, J. S., Xu, Z. Q., et al., 2008. The Bangong Lake Ophiolite (NW Tibet) and Its Bearing on the Tectonic Evolution of the Bangong-Nujiang Suture Zone. Journal of Asian Earth Sciences, 32(5-6): 438-457. https://doi.org/10.1016/j.jseaes.2007.11.011 [40] Slaby, E., Martin, H., 2008. Mafic and Felsic Magma Interaction in Granites: The Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49(2): 353-391. https://doi.org/10.1093/petrology/egm085 [41] Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu–Hf and U–Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 [42] Sun, M., Chen, W., Qu, X.M., et al., 2018. Petrogenesis of the Late Cretaceous Jiangba Volcanic Rocks and Its Indications for the Thinning of the Thickened Crust in Xiongmei Area, Tibet. Earth Science, 43(9):3234-3251 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201809022 [43] Sun, G. M., Li, X. P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026-1039. https://doi.org/10.1007/s12583-018-0854-9 [44] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [45] Vernon, R. H., 1984. Microgranitoid Enclaves in Granites-Globules of Hybrid Magma Quenched in a Plutonic Environment. Nature, 309(5967): 438-439. https://doi.org/10.1038/309438a0 [46] White, R. V., Tarney, J., Kerr, A. C., et al., 1999. Modification of an Oceanic Plateau, Aruba, Dutch Caribbean: Implications for the Generation of Continental Crust. Lithos, 46(1): 43-68. https://doi.org/10.1016/s0024-4937(98)00061-9 [47] Yang, T.L., Jiang, S.Y., 2015. Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves (MMEs) from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province: Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes. Earth Science, 40(12):2002-2030 (in Chinese with English abstract). [48] Zhang, L.L., Zhu, D.C., Zhao, Z.D., et al., 2011. Early Cretaceous Granitoids in Xainza, Tibet:Evidence of Slab Break-off. Acta Petrologica Sinica, 27(7):1938-1948 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003 [49] Zhang, K. J., 2004. Secular Geochemical Variations of the Lower Cretaceous Siliciclastic Rocks from Central Tibet (China) Indicate a Tectonic Transition from Continental Collision to Back-Arc Rifting. Earth and Planetary Science Letters, 229(1-2): 73-89. https://doi.org/10.1016/j.epsl.2004.10.030 [50] Zhang, K. J., Li, Q. H., Yan, L. L., et al., 2017. Geochemistry of Limestones Deposited in Various Plate Tectonic Settings. Earth-Science Reviews, 167: 27-46. https://doi.org/10.1016/j.earscirev.2017.02.003 [51] Zhang, K. J., Xia, B., Zhang, Y. X., et al., 2014. Central Tibetan Meso-Tethyan Oceanic Plateau. Lithos, 210-211: 278-288. https://doi.org/10.1016/j.lithos.2014.09.004 [52] Zhang, K. J., Zhang, Y. X., Tang, X. C., et al., 2012. Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision. Earth-Science Reviews, 114(3-4): 236-249. https://doi.org/10.1016/j.earscirev.2012.06.001 [53] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract). [54] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 [55] Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2011. Lhasa Terrane in Southern Tibet Came from Australia. Geology, 39(8): 727-730. https://doi.org/10.1130/g31895.1 [56] 侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10): 2595-2604. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200710025 [57] 曲永贵, 王永胜, 段建祥, 等, 2002.中华人民共和国区域地质调查报告1:250 000多巴幅.武汉:中国地质大学出版社. [58] 孙渺, 陈伟, 曲晓明, 等, 2018.西藏雄梅地区晚白垩世江巴组火山岩岩石成因及对加厚地壳减薄的指示.地球科学, 43(9):3234-3251. doi: 10.3799/dqkx.2018.146 [59] 杨堂礼, 蒋少涌. 2015.江西九瑞矿集区东雷湾矿区中酸性侵入岩及其铁镁质包体的成因:锆石U-Pb年代学、地球化学与Sr-Nd-Pb-Hf同位素制约.地球科学, 40(12):2002-2020. doi: 10.3799/dqkx.2015.179 [60] 张亮亮, 朱弟成, 赵志丹, 等, 2011.西藏申扎早白垩世花岗岩类:板片断离的证据.岩石学报, 27(7): 1938-1948. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003 [61] 朱弟成, 赵志丹, 牛耀龄, 等, 2012.拉萨地体的起源和古生代构造演化.高校地质学报, 18(1): 1-15. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201201001 -
dqkx-45-1-17-Table1-3.pdf