Geochronology and Petrogenesis of the Donghe Pt-Pd-Bearing Ultramafic Dykesin the Northern Margin of the Yangtze Block: Constraints from Zircon Geochronology, Geochemistry and Sr-Nd-Hf Isotpopes
-
摘要: 东河铂钯矿化超基性岩脉位于扬子陆块北缘房县东河地区,铂钯矿体产于超基性岩辉石岩脉中.LA-ICP-MS锆石U-Pb测年表明该超基性岩脉结晶侵位年龄为433.2±2.9 Ma,属于早志留世.地球化学特征上,岩石具有较低含量的SiO2(39.73%~47.46%,均值为41.41%)、中等偏低的Mg#(46.98~67.37)和高铝(11.25%~15.46%)的特征,整体上属于高铝质超基性岩类.微量和稀土元素方面,岩石具有较高的稀土总量、轻稀土富集和无明显的Eu正异常特征(∑REE=59.59×10-6~375.02×10-6,(LaN/YbN)=3.94~19.13,δEu=0.93~1.13),所有岩石富集Rb、Ba、Sr、Nb、Ti等元素,亏损K、Hf、P等元素,且具有显著不同于地壳的不相容元素组成.Sr、Nd、Hf同位素研究表明,东河超基性岩具有低的(87Sr/86Sr)i(0.703 26~0.704 15),正的εNd(t)(4.37~5.27)和正的εHf(t)(7.29~10.26).综合研究表明:东河超基性岩来自亏损的岩石圈地幔源区,可能有富集岩石圈地幔组分的加入,原始岩浆在上升侵位过程中地壳物质的混染不明显.微量元素构造环境判别显示其形成于板内构造环境,通过分析表明东河地区在早志留世应处于被动大陆边缘,拉张伸展的状态,研究区出露的两期超基性岩床(脉)为岩石圈处于拉张状态下大陆裂谷早期阶段的产物.Abstract: The Donghe Pt-Pd-bearing ultramafic dykes are located in the northern margin of the Yangtze block in Fangxian, the Pt-Pd ore bodys are present in the ultramafic dykes of pyroxene veins. The LA-ICP-MS zircon U-Pb dating indicates that the ultrabasic dykes were emplaced with age of 433.2±2.9 Ma, belonging to the early Silurian.The rocks are characterized by low SiO2 (39.73%-47.46%, mean 41.41%), moderate Mg# (46.98-67.37) and high alumina (11.25%-15.46%), belonging to high-alumina ultrabasic rocks. The rocks have higher total REE, with slightly enriched LREE and without significant Eu positive anomaly (∑REE=59.59×10-6 to 375.02×10-6, (LaN/YbN)=3.94-19.13, δEu=0.93-1.13). All rocks are enriched in Rb, Ba, Sr, Nb, Ti, etc., depleted in Nb, Hf, P, etc. and have significantly different ratios of incompatible elements to that in the crust. Sr, Nd and Hf isotope studies show that the Donghe ultramafic rocks have low initial 87Sr/86Sr ratios (0.703 26-0.704 15), positive εNd(t)(4.37~5.27) and positive εHf(t) (7.29-10.26).Based on the above discussion, we propose that the studied ultramafic rocks were derived from a depleted lithospheric mantle(garnet-lherzolite) source which may be enriched lithospheric mantle components. Magma in the rising process was not significantly affected by the crust material mixed. The tectonic discrimination of trace elements shows that it formed in intraplate tectonic environment. The analysis shows the Donghe region should be on the passive continental margin during the Early Silurian and should be in extensional state. The two-stage ultramafic bedrocks (veins) exposed in the study area were the products of the early stage of the continental rift in the state of extensional of the lithosphere.
-
Key words:
- ultramafic rocks /
- zircon geochronology /
- pyroxenite /
- Sr-Nd-Hf isotopes /
- Donghe area /
- Yangtze block /
- geochemistry
-
图 1 扬子地块与南秦岭造山带构造单元划分(a)及北大巴山地区基性火山岩分布(b)
a.据董有浦等(2011); b.据邹先武等(2011); BKB.碧口地体;MCB.米仓山隆起;FPB.佛坪地体;WDB.武当地体;SNB.神农架地体;LMST.龙门山冲断褶皱带;MCT.米仓山冲断褶皱带:DBT.大巴山冲断褶皱带;CDT.川东冲断褶皱带;MLS.勉略缝合带;SDS.商丹缝合带;1.褶皱带;2.缝合线;3.冲断层;4.刚性地体;5.造山带;6.研究区; 7.扬子陆块区;8.扬子陆块北部陆缘区;9.前寒武隆起区;10.苦橄榄-碱性玄武岩;11.基性岩脉(墙);12.粗面岩;13.石英闪长岩;14.断层
Fig. 1. Sketch map of tectonic units of the South Qinling orogen and Yangtze block
图 4 东河超基性岩岩石标本及岩石镜下特征照片
a.灰绿色块状构造变辉石岩;b.灰绿色含黄铁矿矿化块状构造角闪辉石岩;c.灰绿色块状角闪辉石岩;d.辉石式解理及简单双晶;e.不规则粒状角闪石,少量钛铁矿、磁铁矿;f.针状透闪石交代角闪石及辉石;g.透辉石、角闪石、绿帘石及绿泥石等沿边缘及裂隙交代普通辉石;h.棕褐色不规则粒状角闪石沿辉石、透辉石边缘及裂隙交代;i.发育聚片双晶结构的斜长石;j.辉石式解理及简单双晶;k.棕褐色不规则粒状角闪石沿辉石、透辉石边缘及裂隙交代,呈残余结构;l.不规则粒状斜长石被绿帘石、黝帘石及绿泥石等交代强烈呈假象结构; Aug.普通辉石;HbI.普通角闪石;PI.斜长石;Ab.钠长石;Di.透辉石;Mt.磁铁矿;Ilm.钛铁矿;Chl.绿泥石;Zo.黝帘石;Ep.绿帘石
Fig. 4. Rocks sample photographs and microphotographs of rocks of the ultramafic rocks in Donghe area
图 7 扬子陆块北缘东河超基性岩TAS分类图解
据Middlemost(1994); 镇坪辉绿岩数据来源于邹先武等(2011);北大巴碱性岩墙群数据来源于张成立等(2002);北大巴基性岩墙群数据来源于王存智等(2009);兰家畈基性火山岩数据来源于董云鹏等(1998)
Fig. 7. TAS nomination diagram for rock classification from the Donghe ultramafic rocks in northern margin of Yangtze platform
图 8 东河超基性岩脉的球粒陨石标准化稀土配分图(a)和原始地幔标准化微量元素分布图(b)
Fig. 8. Chondrite-normalized REE abundances (a) and primitive mantle-normalized trace element abundances (b) of the Donghe ultramafic rocks
图 9 东河超基性岩(87Sr/86Sr)i-εNd(t)图解
其中数字表示地壳物质参与的比例,计算采用的参数Nd(10-6)、εNd(t)、Sr(10-6)、(87Sr/86Sr)i值如下:软流圈地幔(DM)分别为1.2、+8、20和0.703;玄武岩分别为15、+8、200和0.704;上地壳(UCC)分别为30、-12、250和0.740,据Jahn et al.(2000);下地壳(LCC)分别为20、-15、230和0.708,据Wu et al.(2000)
Fig. 9. (87Sr/86Sr)i vs.εNd(t) diagram for the Donghe ultramafic rocks
图 11 东河超基性岩143Nd/144Nd对87Sr/86Sr相关图解
DM.亏损地幔,EMⅠ、EMⅡ.富集地幔,据Zindler and Hart(1986)
Fig. 11. 143Nd/144Nd vs. 87Sr/86Sr plot for the Donghe ultramafic rocks
图 12 东河超基性岩脉Th/Yb-Nb/Yb(a)、Ba/Th-TH/Nb(b)和Nb/Zr-Th/Zr(c)图解
a.据Pearce(2008); b.据Hanyu et al.(2006); c.据Woodhead et al.(2001)
Fig. 12. Th/Yb-Nb/Yb (a), Ba/Th-TH/Nb (b) and Nb/Zr-Th/Zr (c) diagrams of the Donghe ultramafic rocks
图 13 东河超基性岩脉构造环境判别图
a.据Pearce(1979); b.据Wood(1979); c.据Meschede(1986); d.据Nisbet et al.(1977)
Fig. 13. Discrimination diagrams of tectonic settings for the Donghe ultramafic rocks
表 2 东河超基性岩元素地球化学组成(主量元素:%;微量元素:10-6)
Table 2. Element compositions of the Donghe ultramafic rocks (major element: %; trace element: 10-6)
样品编号 DH-B3 DH-B4 DH-B5 DH-B8 DH-B11 DH-B13 DH-B14 DH-B15 DH-B16 DH-B17 样品名称 蚀变
辉石岩蚀变
辉石岩含长
辉石岩角闪
辉石岩蚀变
辉石岩蚀变
辉石岩蚀变
辉石岩蚀变
辉石岩蚀变
辉石岩蚀变
辉石岩SiO2 43.86 42.21 47.46 40.81 40.07 41.09 38.93 40.59 39.73 39.37 Al2O3 4.55 8.90 7.05 8.47 11.09 14.40 9.80 11.25 15.46 11.38 Fe2O3 7.32 8.10 4.79 7.74 8.21 9.03 10.08 5.92 11.86 10.52 FeO 9.07 8.11 6.25 9.82 9.09 4.97 8.64 10.32 2.22 7.62 CaO 12.77 13.44 17.06 12.82 13.41 16.58 14.40 11.70 20.59 12.38 MgO 16.24 10.14 12.23 12.77 8.69 5.92 8.71 9.01 8.56 8.49 K2O 0.093 0.652 0.202 0.455 0.887 0.377 0.190 0.295 0.088 1.30 Na2O 0.391 1.54 1.18 0.593 1.32 1.33 0.491 2.00 0.880 1.18 TiO2 3.62 4.24 2.20 4.12 4.73 3.28 6.33 5.26 3.70 4.05 P2O5 0.054 0.238 0.189 0.066 0.621 1.04 0.041 0.723 0.780 0.614 MnO 0.186 0.171 0.174 0.215 0.225 0.101 0.166 0.249 0.063 0.176 LOI 1.98 2.70 1.33 2.20 1.39 2.22 2.34 2.11 2.41 2.36 Total 98.69 98.79 99.02 98.62 98.62 99.03 98.71 98.60 99.27 98.75 Na2O/K2O 4.20 2.36 5.84 1.30 1.49 3.53 2.58 6.78 10.00 0.91 Mg# 64.90 54.00 67.37 57.56 48.46 54.36 50.20 50.66 50.06 46.98 La 6.42 26.6 15.5 10.0 22.6 47.1 9.92 20.9 77.6 36.2 Ce 19.7 66.9 43.0 27.6 60.0 118 20.8 56.5 157 74.0 Pr 2.80 8.01 5.78 3.70 7.60 14.0 2.74 7.67 16.8 8.90 Nd 14.6 36.3 28.8 18.5 36.6 64.1 14.2 38.8 71.0 42.4 Sm 3.96 8.13 7.18 4.65 8.36 13.8 3.94 9.23 14.3 9.67 Eu 1.22 2.34 2.23 1.59 2.69 4.54 1.34 3.23 4.80 3.03 Gd 3.52 7.00 6.28 4.13 7.32 12.1 3.60 7.95 12.5 8.41 Tb 0.58 1.08 1.01 0.68 1.12 1.80 0.60 1.22 1.86 1.30 Dy 3.36 5.74 5.71 3.78 6.13 9.54 3.35 6.51 9.72 7.12 Ho 0.60 1.01 1.02 0.68 1.07 1.67 0.58 1.13 1.68 1.26 Er 1.40 2.36 2.39 1.57 2.45 3.83 1.34 2.61 4.00 2.93 Tm 0.19 0.31 0.32 0.22 0.31 0.48 0.18 0.33 0.51 0.38 Yb 1.10 1.77 1.92 1.29 1.78 2.68 1.00 1.89 2.91 2.17 Lu 0.14 0.21 0.24 0.16 0.22 0.31 0.12 0.23 0.34 0.26 Y 12.6 21.5 22.2 14.6 23.4 37.2 12.6 24.6 38.5 27.5 ΣREE 59.59 167.76 121.38 78.55 158.25 293.95 63.71 158.20 375.02 198.03 LREE 48.70 148.28 102.49 66.04 137.85 261.54 52.94 136.33 341.50 174.20 HREE 10.89 19.48 18.89 12.51 20.40 32.41 10.77 21.87 33.52 23.83 LREE/HREE 4.47 7.61 5.43 5.28 6.76 8.07 4.92 6.23 10.19 7.31 LaN/YbN 3.94 10.16 5.46 5.24 8.58 11.88 6.70 7.47 18.02 11.27 δEu 0.98 0.93 0.99 1.09 1.03 1.05 1.07 1.13 1.07 1.00 δCe 1.09 1.07 1.06 1.06 1.07 1.07 0.92 1.05 0.98 0.95 Pb 1.91 6.30 6.70 2.95 7.80 12.5 8.02 3.31 15.5 13.6 Cr 1 050 413 819 570 144 21.8 9.77 180 22.5 212 Ni 534 234 189 359 196 50.2 178 185 50.1 219 Co 95.8 94.8 60.2 93.2 77.9 92.7 52.3 77.7 166 74.7 Rb 4.12 18.0 5.65 12.1 21.3 8.57 5.50 7.87 3.05 39.8 Sr 624 521 550 410 837 2 290 1 120 806 3 820 1 300 Ba 51.5 76.8 145 46.9 28.6 24.3 30.2 59.9 26.4 36.2 V 350 451 324 438 540 516 620 417 499 462 Sc 61.8 55.9 73.3 56.8 58.4 26.8 56.1 40.7 22.5 39.5 Nb 14.6 32.6 10.2 16.2 25.3 47.6 22.8 35.2 83.6 36.9 Ta 0.21 1.24 0.50 0.36 0.77 1.84 0.90 1.69 4.19 1.48 Zr 87.1 193 113 119 127 213 114 102 351 138 Hf 1.98 4.94 3.24 3.03 3.50 5.10 3.13 2.61 9.30 3.72 U 0.10 0.62 0.11 0.18 0.20 0.79 0.14 0.14 2.30 0.43 Th 0.86 2.31 0.94 1.36 1.29 3.52 0.80 0.82 7.95 1.12 表 3 东河地区超基性岩锆石原位Hf同位素组成
Table 3. Zircon Lu-Hf isotopic compositions of the Donghe ultramafic rocks
点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 年龄(Ma) (176Hf/177Hf)i εHf(0) εHf(t) fLu/Hf tDM t2DM DH1-1 0.015 200 0.000 413 0.282 748 0.000 014 430 0.282 745 -0.85 8.52 -0.99 703 873 DH1-2 0.012 661 0.000 364 0.282 775 0.000 017 421 0.282 737 -1.17 8.03 -0.99 714 898 DH1-3 0.037 026 0.001 121 0.282 761 0.000 034 447 0.282 760 -0.28 9.42 -0.98 683 829 DH1-4 0.032 398 0.000 885 0.282 756 0.000 017 434 0.282 778 0.35 9.77 -0.99 656 794 DH1-5 0.027 753 0.000 773 0.282 755 0.000 019 436 0.282 761 -0.18 9.22 -0.98 682 833 DH1-6 0.027 525 0.000 733 0.282 751 0.000 016 426 0.282 744 -0.71 8.39 -0.97 708 877 DH1-7 0.019 274 0.000 530 0.282 753 0.000 016 433 0.282 706 -2.12 7.20 -0.98 759 958 DH1-8 0.022 381 0.000 621 0.282 796 0.000 020 442 0.282 782 0.50 10.09 -0.98 652 782 DH1-9 0.019 556 0.000 540 0.282 741 0.000 016 427 0.282 781 0.46 9.72 -0.98 654 794 DH1-10 0.028 259 0.000 765 0.282 735 0.000 018 435 0.282 772 0.11 9.58 -0.99 665 809 DH1-11 0.017 352 0.000 474 0.282 776 0.000 015 423 0.282 752 -0.39 8.61 -0.97 698 861 DH1-12 0.010 994 0.000 321 0.282 739 0.000 016 441 0.282 749 -0.57 8.90 -0.97 701 858 DH1-13 0.022 548 0.000 619 0.282 712 0.000 015 435 0.282 749 -0.60 8.77 -0.98 700 861 DH1-14 0.019 478 0.000 535 0.282 764 0.000 016 489 0.282 744 -0.74 9.79 -0.98 705 837 DH1-15 0.016 175 0.000 447 0.282 782 0.000 016 441 0.282 749 -0.67 8.90 -0.98 698 857 DH1-16 0.024 815 0.000 683 0.282 767 0.000 016 427 0.282 791 0.85 10.08 -0.98 640 771 DH1-17 0.036 630 0.000 999 0.282 752 0.000 016 430 0.282 737 -1.10 8.23 -0.98 715 891 DH1-18 0.025 703 0.000 689 0.282 712 0.000 016 441 0.282 729 -1.31 8.19 -0.98 728 903 DH1-19 0.019 464 0.000 528 0.282 786 0.000 018 430 0.282 772 0.14 9.47 -0.99 665 811 DH1-20 0.020 349 0.000 563 0.282 785 0.000 015 432 0.282 707 -2.12 7.22 -0.98 757 957 表 4 东河超基性岩脉全岩Sr-Nd同位素组成
Table 4. Whole-rock isotope compositions of the Donghe ultramafic rocks
样品号 Rb(10-6) Sr (10-6) 87Rb/86Sr 87Sr/86Sr 2σ (87Sr/86Sr)i εSr(t) Sm(10-6) Nd(10-6) 147Sm/ 144Nd 143Nd/ 144Nd εNd(t) INd fSm/Nd tDM(Ga) t2DM(Ga) DH-B3 1.574 52.14 0.087 010 0.703 88 5 0.703 34 -9.2 3.781 14.03 0.163 0 0.512 782 4.68 0.512 320 -0.17 1.111 0.792 DH-B4 18.170 471.30 0.111 100 0.704 22 3 0.703 53 -6.5 7.820 35.28 0.134 1 0.512 705 4.78 0.512 325 -0.32 0.855 0.784 DH-B5 4.454 486.90 0.026 370 0.704 02 5 0.703 86 -1.9 6.866 27.99 0.148 4 0.512 760 5.05 0.512 339 -0.25 0.914 0.761 DH-B8 12.670 368.00 0.099 180 0.703 87 3 0.703 26 -10.4 4.404 17.53 0.152 0 0.512 755 4.76 0.512 324 -0.23 0.980 0.785 DH-B11 4.512 1 006.00 0.012 920 0.704 23 7 0.704 15 2.3 3.780 13.90 0.164 5 0.512 813 5.21 0.512 347 -0.16 1.050 0.749 DH-B13 7.335 703.20 0.030 060 0.703 71 2 0.703 52 -6.7 8.882 37.71 0.142 5 0.512 713 4.47 0.512 309 -0.28 0.939 0.809 DH-B14 21.550 720.40 0.086 190 0.704 17 4 0.703 64 -5.0 8.193 36.16 0.137 1 0.512 718 4.86 0.512 329 -0.30 0.863 0.777 DH-B15 6.942 2 148.00 0.009 312 0.704 04 2 0.703 98 -0.1 13.780 65.28 0.127 7 0.512 696 4.96 0.512 334 -0.35 0.808 0.770 DH-B16 2.164 2 945.00 0.002 117 0.704 06 3 0.704 05 0.9 14.550 73.34 0.120 0 0.512 690 5.27 0.512 350 -0.39 0.751 0.744 DH-B17 43.320 1 207.00 0.103 400 0.704 40 1 0.703 76 -3.3 9.849 43.50 0.137 0 0.512 692 4.37 0.512 304 -0.30 0.914 0.818 -
[1] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons.Nature, 399(6733):252-255. https://doi.org/10.1038/20426 [2] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [3] Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258. https://doi.org/10.1016/s0012-821x(97)00040-x [4] Cao, L., Zhang, Q.X., Hu, S.J., et al., 2015.LA-ICP-MS Zircon U-Pb Age of Diabase Porphyry from the Donghe Area, Fangxian in South Daba Mountain and Its Tectonic Significance.Acta Geologica Sinica, 89(12):2314-2322(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201512009.htm [5] Corfu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003.Atlas of Zircon Textures.Reviews in Mineralogy and Geochemistry, 53:469-495. https://doi.org/10.2113/0530469 [6] DePaolo, D.J., Wasserburg, G.J., 1976.Inferences about Magma Sources and Mantle Structure from Variations of 143Nd/144Nd.Geophysical Research Letters, 3(12):743-746. https://doi.org/10.1029/gl003i012p00743 [7] Dong, Y.P., Shen, Z.Y., Xiao, A.C., et al., 2011.Construction and Structural Analysis of Regional Geological Sections of the Southern Daba Shan Thrust-fold Belts.Acta Petrologica Sinica, 27(3):689-698(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201103009 [8] Dong, Y.P., Zhou, D.W., Zhang, G.W., et al., 1998.Geochemistry of the Caledonian Basic Volcanic Rocks in the South Margin of Qinling Orogenic Belt and Their Tectonic Implications.Geochimica, 27(5):432-441(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQHB199903000.htm [9] Feng, Y.M., Cao, X.D., Zhang, E.P., et al., 2002.Texture, Orogenic Process and Dynamics of the West Qinling Orogenic Belt-Geotectonic Map of the West Qinling Orogenic Belt and Its Neibourings in 1:1 000 000-Scale.Xi'anCartographic Press, Xi'an (in Chinese). [10] Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. https://doi.org/10.1016/0009-2541(94)00145-x [11] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LA-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [12] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3/4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [13] Hanyu, T., Tatsumi, Y., Nakai, S., et al., 2006.Contribution of Slab Melting and Slab Dehydration to Magmatism in the NE Japan Arc for the Last 25 Myr:Constraints from Geochemistry.Geochemistry, Geophysics, Geosystems, 7(8):1-29. https://doi.org/10.1029/2005gc001220 [14] He, J.K., Lu, H.F., Zhu, B., 1999.The Tectonic Inversion and Its Geodynamic Processes in Northern Daba Mountains of Eastern Qinling Orogenic Belt.Scientia Geologica Sinica, 34(2):139-153 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900082947 [15] Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027 [16] Hu, J.M., Men, Q.R., Bai, W.M., et al., 2002.Mid-Late Paleozoic Extension of the Wudang Block in the South Qinling Tectonic Blet, China.Geological Bulletin of China, 21(8-9):471-477 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2002Z2003.htm [17] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012.Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391. https://doi.org/10.1039/c2ja30078h [18] Huang, Y.H., 1993.Mineralogical Characteristics of Phlogopite-Amphibole-Pyroxenite Mantle Xenoliths Included in the Alkali Mafic-Ultramafic Subvolcanic Complex from Langao County, China.Acta Petrologica Sinica, 9(4):367-378(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB199304004.htm [19] Huang, Y.H., Ren, Y.Y., Xia, L.X., et al., 1992.Early Palaeozoic Bimodal Igneous Suite on Northern Daba Mountains-Gaotan Diabase and Haoping Trachyte as Examples.Acta Petrologica Sinica, 8(3):243-256(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004882587 [20] Jahn, B.M., Wu, F.Y., Hong, D.W., 2000.Important Crustal Growth in the Phanerozoic:Isotopic Evidence of Granitoids from East-Central Asia.Journal of Earth System Science, 109(1):5-20. https://doi.org/10.1007/bf02719146 [21] Ji, R.S., Qin, D.Y., Gao, C.L., 1990.Closing of Eastern Qingling Palaeoocean and Collaging Between the North China an Yangtze Blocks.Experimental Petroleum Geology, 12(4):353-365 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-sysd199004002.htm [22] Kalfoun, F., Ionov, D., Merlet, C., 2002.HFSE Residence and Nb/Ta Ratios in Metasomatised, Rutile-Bearing Mantle Peridotites.Earth and Planetary Science Letters, 199(1-2):49-65. https://doi.org/10.1016/s0012-821x(02)00555-1 [23] Li, C.Y., Liu, Y.W., Zhu, B.Q., et al., 1978.Tectonic Development of the Qinling and Qilian Mountains.In: Geological Memoir of International Exchange(1).Geological Publishing House, Beijing, 174-187(in Chinese). [24] Li, C.Y., Wang, Q., Liu, X.Y., et al., 1982.Explanatory Notes to the Tectonic Map of Asia.Cartographic Publishing House, Beijing (in Chinese). [25] Li, X.H., 1996.A Discussion on the Model and Isochron Ages of Sm-Nd Isotopic Systematics:Suitability and Limitation.Scientia Geologica Sinica, 31(1):97-104(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX601.010.htm [26] Liu, J.L., Sun, F.Y., Zhang, Y.J., et al., 2016.Zircon U-Pb Geochronolog, Geochemistry and Hf Isotopes of Nankouqian Granitic Intrusion in Qingyuan Region, Liaoning Province.Earth Science, 41(1):55-66 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201601004 [27] Liu, Y., Gao, S., Hu, Z., et al., 2010b.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [28] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [29] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010a.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [30] Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, 4:1-70. doi: 10.1016-j.immuni.2011.10.010/ [31] Meschede, M., 1986.A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram.Chemical Geology, 56(3-4):207-218. https://doi.org/10.1016/0009-2541(86)90004-5 [32] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [33] Mohr, P.A., 1987.Crustal Contamination in Mafic Sheets:A Summary.In:Halls, H.C., Fahrig, W.C., eds., Mafic Dyke Swarms.Special Publication-Geological Association of Canada, 34:75-80. [34] Mullen, E.D., 1983.MnO/TiO2/P2O5:A Minor Element Discriminant for Basaltic Rocks of Oceanic Environments and its Implications for Petrogenesis.Earth and Planetary Science Letters, 62(1):53-62. https://doi.org/10.1016/0012-821x(83)90070-5 [35] Münker, C., 1998.Nb/Ta Fractionation in a Cambrian Arc/back Arc System, New Zealand:Source Constraints and Application of Refined ICPMS Techniques.Chemical Geology, 144(1-2):23-45. https://doi.org/10.1016/s0009-2541(97)00105-8 [36] Ni, S.Z., Yang, D.L., 1994.Paleozoic Strata and Sedimentary Facies of the Southern Belt in the Eastern Section of East Qinling Mountains.China University of Geosciences Press, Wuhan (in Chinese). [37] Nisbet, E.G., Pearce, J.A., 1977.Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings.Contributions to Mineralogy and Petrology, 63(2):149-160. https://doi.org/10.1007/bf00398776 [38] Pearce, J.A., 2008.Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust.Lithos, 100(1-4):14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [39] Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses.Earth and Planetary Science Letters, 19(2):290-300. https://doi.org/10.1016/0012-821x(73)90129-5 [40] Pearce, J.A., Norry, M.J., 1979.Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology, 69(1):33-47. https://doi.org/10.1007/bf00375192 [41] Robertson, A.H.F., 1994.Role of the Tectonic Facies Concept in Orogenic Analysis and Its Application to Tethys in the Eastern Mediterranean Region.Earth-Science Reviews, 37(3/4):139-213. https://doi.org/10.1016/0012-8252(94)90028-0 [42] Rollison, H.R., 1993.Using Geochemical Date:Evaluation, Presentation, Interpretation.Longman Group UK, London. [43] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [44] Vervoort, J.D., Patchett, P.J., Gehrels, G.E., et al., 1996.Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes.Nature, 379(6566):624-627. https://doi.org/10.1038/379624a0 [45] Wang, C.Z., Yang, K.G., Xu, Y., et al., 2009.Geochemistry and LA-ICP-MS Zircon U-Pb Age of Basic Dike Swarms in North Daba Mountains and Its Tectonic Significance.Geological Science and Technology Information, 28(3):19-26 (inChinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ200903003.htm [46] Wang, G., 2014.Met Allogeny of the Mesozoic and Paleozoic Volcanic Igneous Event in Ziyang-Langao Areas, North Daba Mountain(Dissertation).China University of Geosciences, Beijing (in Chinese). [47] Wang, K.M., 2014.Study on Petrogenesis, Tectonic Environment and Mineralization of Mafic Rocks in Ziyang-Langao Areas(Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese). [48] Wang, R.R., Xu, Z.Q., Liang, F.H., 2013.Origin of the Dabashan Salient:Evidence from Numerical Modelling.Acta Geologica Sinica, 87(10):1-9 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dizhixb201310001.aspx [49] Wang, R.R., Zhang, Y.Q., Xie, G.A., et al., 2011.Origin of the Dabashan Foreland Salient:Insights from Sandbox Modeling.Acta Geologica Sinica, 85(9):1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201109003.htm [50] Wang, Z.Q., Yan, Q.R., Yan, Z., et al., 2009.New Division of the Main Tectonic Units of the Qinling Orogenic Belt, Central China.Acta Geologica Sinica, 83(11):1527-1546 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200911003.htm [51] Weaver, B.L., 1991.The Origin of Ocean Island Basalt End-Member Compositions:Trace Element and Isotopic Constraints.Earth and Planetary Science Letters, 104(2-4):381-397. https://doi.org/10.1016/0012-821x(91)90217-6 [52] Wood, D.A., 1979.A Variably Veined Suboceanic Upper Mantle-Genetic Significance for Mid-Ocean Ridge Basalts from Geochemical Evidence.Geology, 7(10):499.https://doi.org/10.1130/0091-7613(1979)7<499:avvsum>2.0.co;2 doi: 10.1130/0091-7613(1979)7<499:avvsum>2.0.co;2 [53] Wood, D.A., Tarney, J., Varet, J., et al., 1979.Geochemistry of Basalts Drilled in the North Atlantic by IPOD Leg 49:Implications for Mantle Heterogeneity.Earth and Planetary Science Letters, 42(1):77-97. https://doi.org/10.1016/0012-821x(79)90192-4 [54] Woodhead, J.D., Hergt, J.M., Davidson, J.P., et al., 2001.Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes.Earth and Planetary Science Letters, 192(3):331-346. https://doi.org/10.1016/s0012-821x(01)00453-8 [55] Wu, F.Y., Jahn, B.M., Wilde, S., et al., 2000.Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China.Tectonophysics, 328(1-2):89-113. https://doi.org/10.1016/s0040-1951(00)00179-7 [56] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [57] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1007/bf03184122 [58] Xia, L.X., Xia, Z.C., Zhang, C., et al., 1994.Petro-Geochemistry of Alkali Mafic-Ultramafic Subvolcanic Complex in Northern Daba Mountains.Geological Publishing House, Beijing, 62-75(in Chinese). [59] Xia, Z.C., Xia, L.X., Zhang, C., 1992.The Study of Pyroxene Minerals of Alkali-Basic-Ultrabasic Subvolcanic Complex from Northern Daba Mountain.Northwest Geoscience, 13(2):32-30(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBFK199202003.htm [60] Xu, J.H., Sun, S., Wang, Q.C., et al., 1998.Tectonic Facies Map of China.Science Press, Beijing (in Chinese). [61] Xu, X.Y., Xia, L.X., Xia, Z.C., et al., 2001.Geochemical Characteristics and Petrogenssis of the Early Paleozoic Alkali Lamprophyre Complex from Langao County.Acta Geoscientia Sinica, 22(1):55-60(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQXB200101010.htm [62] Xu, Z.Q., Lu, Y.L., Tang, Y.Q., et al., 1998.The Formation of the East Qinling Composite Mountain Chain:Deformation, Evolution and Plate Dynamics.China Environmental Science Press, Beijing (in Chinese). [63] Yang, F.C., Sun, J.G., Song, Y.H., et al., 2016.SHRIMP U-Pb Age, Hf Isotope Composition and Geochemical Characteristics of Neoarchean Granitic Complex in Liaodong Lianshanguan Area, NE China.Earth Science, 41(12):2008-2018 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201612003 [64] Zhang, B.R., 2001.Magmatic Activities from Plume-Source in the Qinling Orogenic Belt and Its Dynamic Significance.Earth Science Frontiers, 8(3):57-66(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200103008.htm [65] Zhang, C.L., Gao, S., Yuan, H.L., et al., 2007.Sr-Nd-Pb Isotopes of the Early Paleozoic Mafic-Ultramafic Dykes and Basalts from South Qinling Belt and Their Implications for Mantle Composition.Science in China (Series D):Earth Sciences, 32(10):37(7):857-865(in Chinese with English abstract). doi: 10.1007/s11430-007-0088-7 [66] Zhang, C.L., Gao, S., Zhang, G.W., et al., 2016.Geochemistry of Early Paleozoic Alkali Dyke Swarms in South Qinling and Its Geological Significance.Science in China (Series D):Earth Sciences, 32(10):819-828(in Chinese with English abstract). http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/BF02883254 [67] Zhang, G.W., Mei, Z.C., Li, T.H., 1988.Formation and Evolution of the Qinling Orogenic Belt.Northwest University Press, Xi'an, 86-98(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xddz201802003 [68] Zhang, G.W., Meng, Q.R., Yu, Z.P., et al., 1996.The Orogenic Process of Qinling Orogenic Belt and Its Dynamic Characteristics.Science in China (Series D):Earth Sciences, 26(3):193-200 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000004882 [69] Zhang, G.W., Zhang, B.R., Yuan, X.C., et al., 2010.Qinling Orogenic Belt and Continental Dynamics.Science and Technology Press, Beijing, 227-240(in Chinese). [70] Zhang, G.W., Zhang, Z.Q., Dong, Y.P., 1995.Nature of Main Tectono-Lithostratigraphic Units of the Qinling Orogen:Implications for the Tectonic Evolution.Acta Petrologica Sinica, 11(2):101-104(in Chinese with English abstract). [71] Zhang, G.W., Zhou, D.W., Yu, Z.P., et al., 1991.The Feature of Composition, Structure and Evolution of the Qinling Orogenic Belt.In: Ye, L.J., Qian, X.L., Zhang G.W., eds., Selected Papers of the Qinling Orogenic Belt Symposium.Northwest University Press, Xi'an, 121-138(in Chinese). [72] Zhang, Y.Q., Shi, W., Li, J.H., et al., 2010.Formation Mechanism of the Dabashan Foreland Arc-Shaped Structural Belt.Acta Geologica Sinica, 84(9):1300-1315 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dizhixb201009005 [73] Zhao, F.F., Sun, F.Y., Liu, J.L., 2017.Zircon U-Pb Geochronology and Geochemistry of the Gneissic Granodiorite in Manite Area from East Kunlun, with Implications for Geodynamic Setting.Earth Science, 42(6):927-940 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201706006.htm [74] Zheng, Y.F., Zhao, Z.F., Wu, Y.B., et al., 2006.Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen.Chemical Geology, 231(1-2):135-158. https://doi.org/10.1016/j.chemgeo.2006.01.005 [75] Zhu, J., Cheng, C.H., Wang, L.X., et al., 2016.Some New Knowledge Concerning Silurian Alkaline Magmatism and Related Nb-REE Mineralization in the Zhushan Region, South Qinling.Acta Petrologica et Mineralogica, 36(5):681-690 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSKW201705009.htm [76] Zhu, X.Y., Chen, F.K., Nie, H., et al., 2014.Neoproterozoic Tectonic Evolution of South Qinling, China:Evidence from Zircon Ages and Geochemistry of the Yaolinghe Volcanic Rocks.Precambrian Research, 245:115-130. https://doi.org/10.1016/j.precamres.2014.02.005 [77] Zindler, A., Hart, S., 1986.Chemical Geodynamics.Annual Review of Earth and Planetary Sciences, 14(1):493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 [78] Zou, X.W., Duan, Q.F., Tang, C.Y., et al., 2011.SHRIMP Zircon U-Pb Dating and Lithogeochemical Characteristics of Diabase from Zhenping Area in North Daba Mountain.Geology in China, 38(2):282-291(in Chinese with English abstract). http://www.cqvip.com/QK/90050X/201102/37867328.html [79] 曹亮, 张权绪, 胡尚军, 等, 2015.大巴山南部房县东河辉绿玢岩LA-ICP-MS锆石U-Pb测年及其构造意义.地质学报, 89(12):2314-2322. doi: 10.3969/j.issn.0001-5717.2015.12.009 [80] 董有浦, 沈中延, 肖安成, 等, 2011.南大巴山冲断褶皱带区域构造大剖面的构建和结构分析.岩石学报, 27(3):689-698. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201103009 [81] 董云鹏, 周鼎武, 张国伟, 等, 1998.秦岭造山带南缘早古生代基性火山岩地球化学特征及其大地构造意义.地球化学, 27(5):432-441. doi: 10.3321/j.issn:0379-1726.1998.05.004 [82] 冯益民, 曹宣铎, 张二朋, 等, 2002.西秦岭造山带结构造山过程及动力学——1:100万西秦岭造山带及邻区大地构造说明书.西安:西安地图出版社. [83] 何建坤, 卢华复, 朱斌, 1999.东秦岭造山带南缘北大巴山构造反转及其动力学.地质科学, 34 (2):139-153. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX902.001.htm [84] 胡健民, 孟庆任, 白武明, 等, 2002.南秦岭构造带中-晚古生代伸展构造作用.地质通报, 21 (8-9):471-477. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200208004 [85] 黄月华, 1993.岚皋碱性镁铁-超镁铁质潜火山杂岩中金云角闪辉石岩类地幔捕虏体矿物学特征.岩石学报, 9(4):367-378. http://www.cnki.com.cn/Article/CJFDTotal-YSXB199304004.htm [86] 黄月华, 任有祥, 夏林圻, 等, 1992.北大巴山早古生代双模式火成岩套——以高滩辉绿岩和嵩坪粗面岩为例.岩石学报, 8(3):243-256. doi: 10.3321/j.issn:1000-0569.1992.03.004 [87] 吉让寿, 秦德余, 高长林, 1990.古东秦岭洋关闭和华北与扬子两地块拼合.石油实验地质, 12(4):353-365. http://www.cnki.com.cn/Article/CJFDTotal-SYSD199004002.htm [88] 李春昱, 刘仰文, 朱宝清, 等, 1978.秦岭及祁连山构造发展史.见: 国际交流地质学术论文集(1).北京: 地质出版社, 174-187. [89] 李春昱, 王荃, 刘雪亚, 等, 1982.亚洲大地构造图及说明书.北京:地图出版社. [90] 李献华, 1996.Sm-Nd模式年龄和等时线年龄的适用性与局限性.地质科学, 31(1):97-104. http://www.cqvip.com/qk/94066X/199601/2190915.html [91] 刘金龙, 孙丰月, 张雅静, 等, 2016.辽宁省清原县南口前岩体锆石U-Pb年代学、地球化学及Hf同位素.地球科学, 41(1):55-66. doi: 10.3969/j.issn.1672-6561.2016.01.006 [92] 倪世钊, 杨德骊, 1994.东秦岭东段南带古生代地层和沉积相.武汉:中国地质大学出版社. [93] 王存智, 杨坤光, 徐扬, 等, 2009.北大巴基性岩墙群地球化学特征、LA-ICP-MS锆石U-Pb定年及其大地构造意义.地质科技情报, 28(3):19-26. doi: 10.3969/j.issn.1000-7849.2009.03.004 [94] 王刚, 2014.北大巴山紫阳-岚皋地区古生代火山岩浆事件与中生代成矿作用(博士学位论文).北京: 中国地质大学. [95] 王坤明, 2014.紫阳-岚皋地区镁铁质岩岩石成因、构造环境及成矿作用研究(博士学位论文).北京: 中国地质科学院. [96] 王瑞瑞, 许志琴, 梁凤华, 2013.大巴山弧形构造的成因——来自数值模拟的证据.地质学报, 87 (10):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310001.htm [97] 王瑞瑞, 张岳桥, 解国爱, 等, 2011.大巴山前陆弧形构造的成因-来自砂箱实验的认识.地质学报, 85(9):1-9. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201109002 [98] 王宗起, 闫全人, 闫臻, 等, 2009.秦岭造山带主要大地构造单元的新划分.地质学报, 83(11):1527-1546. doi: 10.3321/j.issn:0001-5717.2009.11.001 [99] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 [100] 夏林圻, 夏祖春, 张诚, 等, 1994.北大巴山碱质基性-超基性潜火山杂岩岩石地球化学.北京:地质出版社, 62-75. http://hn.sslibrary.com/showbook.do?dxNumber=11134689&d=5EC450000E8016E4D7FBCB7C7BC5D6B2&fFenleiID=0P5008 [101] 夏祖春, 夏林圻, 张诚, 1992.北大巴山碱质基性-超基性潜火山杂岩的辉石矿物研究.西北地质科学, 13(2):32-30. http://www.cnki.com.cn/Article/CJFDTotal-XBFK199202003.htm [102] 许靖华, 孙枢, 王清晨, 等, 1998.中国大地构造相图.北京:科学出版社. [103] 徐学义, 夏林圻, 夏祖春, 等, 2001.岚皋早古生代碱性煌斑杂岩地球化学特征及成因探讨.地球学报, 22(1):55-60. doi: 10.3321/j.issn:1006-3021.2001.01.011 [104] 许志琴, 卢一伦, 汤耀庆, 等, 1988.东秦岭复合山链的形成.北京:中国环境科学出版社. [105] 杨凤超, 孙景贵, 宋运红, 等, 2016.辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义.地球科学, 41(12):2008-2018. http://earth-science.net/WebPage/Article.aspx?id=3397 [106] 张本仁, 2001.秦岭地幔柱源岩浆活动及其动力学意义.地学前缘, 8(3):57-66. doi: 10.3321/j.issn:1005-2321.2001.03.007 [107] 张成立, 高山, 袁洪林, 等, 2007.南秦岭早古生代地幔性质:来自超镁铁质、镁铁质岩脉及火山岩的Sr-Nd-Pb同位素证据.中国科学(D辑):地球科学, 37(7):857-865. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200707001 [108] 张成立, 高山, 张国伟, 等, 2002.南秦岭早古生代碱性岩墙群的地球化学及其地质意义.中国科学(D辑):地球科学, 32(10):819-828. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200210005 [109] 张国伟, 梅志超, 李桃红, 1988.秦岭造山带的形成及其演化.西安:西北大学出版社, 86-98. [110] 张国伟, 孟庆任, 于在平, 等, 1996.秦岭造山带的造山过程及其动力学特征.中国科学(D辑):地球科学, 26(3):193-200. http://cdmd.cnki.com.cn/Article/CDMD-10697-2004104020.htm [111] 张国伟, 张宗清, 董云鹏, 1995.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义.岩石学报, 11(2):101-104. doi: 10.3321/j.issn:1000-0569.1995.02.002 [112] 张国伟, 周鼎武, 于在平, 等, 1991.秦岭造山带岩石圈组成、结构和演化特征.见: 叶连俊, 钱祥麟, 张国伟, 编, 秦岭造山带学术讨论会论文选集.西安: 西北大学出版社, 121-138. [113] 张岳桥, 施炜, 李建华, 等, 2010.大巴山前陆弧形构造带形成机理分析.地质学报, 84(9):1300-1315. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201009005 [114] 赵菲菲, 孙丰月, 刘金龙, 2017.东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景.地球科学, 42(6):927-940. http://earth-science.net/WebPage/Article.aspx?id=3588 [115] 朱江, 程昌红, 王连训, 等, 2017.南秦岭竹山地区早古生代碱性岩浆活动及其相关铌稀土成矿的若干认识.岩石矿物学杂志, 36(5):681-690. doi: 10.3969/j.issn.1000-6524.2017.05.008 [116] 邹先武, 段其发, 汤朝阳, 等, 2011.北大巴山镇坪地区辉绿岩锆石SHRIMP U-Pb定年和岩石地球化学特征.中国地质, 38(2):282-291. doi: 10.3969/j.issn.1000-3657.2011.02.005