Petrogenesis of the Late-Carboniferous Granites of Dalaimiao, Inner Mongolia and Its Implications for the Tectonic Transformation of Northern Margin of Xing'an-Mongolian Orogenic Belt
-
摘要: 达来庙岩体出露于内蒙古苏左旗北部中蒙边境一带,是二连-东乌旗晚古生代岛弧岩浆岩带的重要组成部分,对其开展研究可有效丰富对兴蒙造山带北缘构造演化的认识.野外观察、锆石U-Pb年代学、岩石地球化学及同位素地球化学研究结果表明,岩体由中部的中细粒黑云二长花岗岩和边部的中粒黑云二长花岗岩组成,岩石侵位年龄为301.2±2.1 Ma(MSWD=1.2,2σ).岩体总体上具有富硅、贫铁、弱过铝质的特征,但中细粒花岗岩相对富钠,中粒花岗岩钾含量则明显升高.两类花岗岩均富Rb、Th、U、Pb,亏损Ba、Sr、P以及Nb、Ta等高场强元素,不过中粒花岗岩重稀土更加富集,Eu负异常也更显著.岩体具有亏损的Sr-Nd-Hf同位素组成,(87Sr/86Sr)i=0.703 6~0.707 5,εNd(t)=0.08~2.77,εHf(t)=4.70~11.50.岩石学及地球化学分析显示,达来庙岩体为幔源物质底侵形成的新生地壳部分熔融的产物,岩石成因类型为I型,但具有向A型花岗岩过渡的特征,岩体产出于造山晚期挤压隆升向陆内拉张的过渡阶段,其侵位指示了晚石炭世兴蒙造山带北缘构造应力场从挤压向拉张转变的具体时限.Abstract: The Dalaimiao pluton crops out in the northern of Suzuoqi, near the border areas between China and Mongolia, which is referred as an important component of the Erenhot-East Ujimqin Late Paleozoic arc magmatic belt and its petrogenesis can provide insights into the tectonic evolution of the northern margins of Xing'an-Mongolian orogenic belt. Based on field investigation, geochronology and geochemistry, it is found that the pluton lithologically consists of medium-fine grained biotite granites in the center and medium-grained granites on the margin. Zircon U-Pb dating yields a weighted mean age of 301.2±2.1 Ma (MSWD=1.2, 2σ), indicating these granites were generated during a Late Carboniferous magmatic event. All of these granites are highly siliceous, Fe-poor, slightly peraluminous, and show enrichments in Rb, Th, U, Pb and depletions in Ba, Sr, P, Nb and Ta. The medium-fine grained biotite granites are Na-rich, and have high concentrations of heavy rare earth elements (REE), whereas the medium-grained granites show higher K2O contents, more significant elemental differentiation and negative europium anomalies. Dalaimiao pluton shows depleted isotopic compositions with (87Sr/86Sr)i=0.703 6-0.707 5, εNd(t)=0.08-2.77, and positive εHf(t) values of 4.70-11.50. Integrated geochronology and geochemical data suggest the Dalaimiao pluton is genetically classified as I-type granites, with some geochemical features of A-type granites. The Dalaimiao granites derived from partial melting of juvenile crust which were generated by the underplating of mantle material, and were formed in a tectonic transitional stage from compression uplift to intracontinental extension. Emplacement of Dalaimiao pluton provides more detailed constraints on the specific timing of tectonic variation in the northern margins of Xing'an-Mongolian orogenic belt during the Late Carboniferous.
-
Key words:
- granites /
- Late Paleozoic /
- Xing-Meng orogenic belt /
- petrogenesis /
- transformation of tectonic setting /
- geochemistry
-
图 1 达来庙岩体构造位置(a)及地质简图(b)
图a据Xiao et al.(2003);图b据内蒙古自治区地质调查院, 2008, 1:25万巴音乌拉幅、吉尔嘎郎图幅、阿巴嘎旗幅区域地质调查报告;1.中粒黑云二长花岗岩;2.中细粒黑云二长花岗岩;3.流纹斑岩;4.巴彦呼舒组;5.宝力高庙组;6.白音高老组
Fig. 1. Diagrams showing tectonic location (a) and geological sketch (b) of the Dalaimiao pluton
图 4 达来庙岩体主量元素关系
a.SiO2-K2O关系,底图据Le Maitre et al.(1989);b.A/CNK-A/NK关系,底图据Maniar and Piccoli(1989);浅色符号为二连-东乌旗晚古生代岩浆岩带收集资料,数据来源:云飞等(2011)、Zhang et al.(2011, 2015)、许立权等(2012)、程银行等(2012, 2014)、何付兵等(2013)、李可等(2014)、Tong et al.(2015)、刘锐等(2016)、王树庆等(2017)、以及作者未发表数据
Fig. 4. Major element variation diagrams for the Dalaimiao pluton
图 5 达来庙岩体微量元素原始地幔标准化蛛网图(a)及稀土元素球粒陨石标准化配分曲线(b)
原始地幔标准化值据McDonough and Sun(1995),球粒陨石标准化值据Boynton(1984)
Fig. 5. Primitive mantle-normalized trace element spidergrams (a) and chondrite-normalized REE distribution patterns (b) for the Dalaimiao pluton
图 6 达来庙岩体(87Sr/86Sr)i-εNd(t)关系(a)和T-εHf(t)关系(b)
二连-东乌旗岩浆岩带数据及图例同图 4,贺根山蛇绿岩数据引自Miao et al.(2008);内蒙北部弧岩浆岩及二连-东乌旗早二叠世碱性花岗岩数据引自Zhang et al.(2015);兴蒙造山带东段及燕山褶冲带数据引自Yang et al.(2006)、Xiao et al.(2004)、Chen et al.(2009);DM.亏损地幔;LC.下地壳;UC.上地壳;EMI.I型富集地幔;EMII.II型富集地幔;数据来源Wu et al.(2000)
Fig. 6. (87Sr/86Sr)i-εNd(t) diagram (a) and T-εHf(t) plot (b) of the Dalaimiao pluton
图 7 达来庙岩体岩石类型判别图
图据Whalen et al.(1987);OGT.未分异的I、S、M型花岗岩区;FG.分异的I型花岗岩区;A.A型花岗岩区,图例同图 4
Fig. 7. Granite type discrimination diagrams of the Dalaimiao pluton
图 8 达来庙岩体构造判别图解
图据Pearce et al.(1984);图例同图 4;syn-/post-COLG.同/后碰撞花岗岩;WPG.板内花岗岩;VAG.火山弧花岗岩;ORG.洋脊花岗岩
Fig. 8. Tectonic discrimination diagrams of the Dalaimiao pluton
表 1 达来庙岩体LA-ICP-MS锆石U-Pb定年结果
Table 1. LA-ICP-MS zircon U-Pb dating results of the Dalaimiao pluton
点号 Pb(10-6) U(10-6) Th/U 同位素比值 年龄(Ma) 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 样品:14NM14;采样位置:E112°42′22″,N44°30′10″ 14NM14-01 98 1 746 0.75 0.495 78 0.006 58 0.047 76 0.000 49 0.075 28 0.000 92 301 3 409 5 14NM14-02 24 450 0.48 0.486 71 0.014 44 0.047 84 0.000 49 0.073 79 0.001 98 301 3 403 12 14NM14-03 36 733 0.51 0.348 05 0.005 94 0.047 60 0.000 47 0.053 03 0.000 84 300 3 303 5 14NM14-04 83 1 592 0.85 0.532 02 0.009 37 0.044 38 0.000 44 0.086 94 0.001 48 280 3 433 8 14NM14-05 55 1 116 0.49 0.352 15 0.005 47 0.047 81 0.000 47 0.053 42 0.000 75 301 3 306 5 14NM14-06 42 887 0.38 0.345 21 0.005 95 0.047 74 0.000 47 0.052 44 0.000 85 301 3 301 5 14NM14-07 42 883 0.42 0.345 52 0.006 60 0.047 46 0.000 47 0.052 81 0.000 93 299 3 301 6 14NM14-08 34 721 0.32 0.344 15 0.006 50 0.047 59 0.000 47 0.052 45 0.000 93 300 3 300 6 14NM14-09 24 551 0.06 0.349 76 0.007 65 0.047 74 0.000 48 0.053 14 0.001 10 301 3 305 7 14NM14-10 44 883 0.50 0.353 02 0.006 02 0.047 99 0.000 48 0.053 35 0.000 84 302 3 307 5 14NM14-11 54 1 045 0.64 0.344 96 0.005 34 0.048 01 0.000 47 0.052 11 0.000 74 302 3 301 5 14NM14-12 50 918 0.86 0.650 98 0.013 71 0.044 00 0.000 45 0.107 29 0.002 22 278 3 509 11 14NM14-13 14 278 0.42 0.348 32 0.011 82 0.048 36 0.000 49 0.052 24 0.001 75 304 3 303 10 14NM14-14 17 346 0.39 0.347 17 0.009 73 0.048 27 0.000 49 0.052 17 0.001 38 304 3 303 8 14NM14-15 61 1 259 0.47 0.341 36 0.006 98 0.046 04 0.000 46 0.053 78 0.001 12 295 3 298 6 14NM14-16 28 574 0.32 0.350 94 0.007 91 0.048 87 0.000 49 0.052 09 0.001 12 308 3 305 7 表 2 达来庙岩体主量(%)、微量和稀土元素(10-6)组成及相关地球化学参数
Table 2. Major (%), trace and rare earth (10-6) element contents and related geochemical parameters of the Dalaimiao pluton
岩性 中细粒二长花岗岩 中粒二长花岗岩 样品号 14SZ14 14SZ15 14SZ16 14SZ17 14SZ18 SiO2 71.00 71.08 72.97 71.70 71.55 TiO2 0.37 0.36 0.29 0.35 0.33 Al2O3 14.46 14.52 14.44 14.18 14.36 Fe2O3T 2.65 2.41 1.73 2.36 2.53 MnO 0.05 0.05 0.04 0.04 0.05 MgO 0.90 0.88 0.54 0.54 0.57 CaO 1.79 1.88 0.81 1.30 1.38 Na2O 3.99 4.14 4.36 3.30 3.72 K2O 3.62 3.48 3.66 5.50 4.67 P2O5 0.17 0.12 0.20 0.15 0.10 LOI 1.01 1.08 0.95 0.59 0.74 ALK 7.61 7.62 8.02 8.8 8.39 K2O/Na2O 0.91 0.84 0.84 1.67 1.26 AR 2.76 2.74 3.22 2.49 2.79 A/CNK 1.05 1.04 1.14 1.03 1.05 A/NK 1.38 1.37 1.30 1.24 1.28 Sc 7.37 7.98 4.95 7.65 6.87 V 35 33.4 20.1 27.8 25.9 Cr 10.8 9.64 5.77 7.37 4.66 Co 4.77 4.34 2.38 2.57 2.78 Ni 5.42 4.71 3.44 4.24 3.28 Cu 6.72 7.84 4.2 5.75 7.13 Ga 14.4 14.5 14.1 18.2 18.9 Zn 42.5 37.8 23 31.2 35.2 Cs 0.98 1.48 2.87 3.26 5.43 Rb 91 110 145 188 200 Sr 255 237 129 159 130 Ba 674 493 423 443 260 Th 8.19 6.59 14.5 18.2 15 U 1.66 1.18 3.11 2.78 2.31 Nb 6.58 6.34 9.61 19 16.8 Ta 0.56 0.55 1.13 2.26 1.53 Pb 12.1 11.7 14 21 16.1 Zr 148 130 134 210 220 Hf 4.43 3.9 4.35 7.22 7.61 Y 16.8 16.8 19.5 68 43 Zr+Nb+Ce+Y 215.98 175.54 210.91 374.40 331.10 104 Ga/Al 1.88 1.89 1.84 2.42 2.49 La 18.3 8.78 18.2 29.2 10.8 Ce 44.6 22.4 47.8 77.4 51.3 Pr 5.88 3.36 5.76 11.4 5.65 Nd 23 14.2 21.6 45.8 24.7 Sm 4.6 3.44 4.23 10.9 6.81 Eu 0.97 0.75 0.63 0.87 0.66 Gd 4.11 3.31 4.15 11 7.04 Tb 0.63 0.54 0.65 2.00 1.32 Dy 3.29 3.11 3.6 12.4 7.7 Ho 0.61 0.6 0.74 2.46 1.65 Er 1.71 1.73 2.1 7.28 4.65 Tm 0.26 0.26 0.32 1.13 0.7 Yb 1.72 1.63 2.14 7.19 4.63 Lu 0.26 0.24 0.33 1.05 0.71 ∑REE 109.94 64.35 112.25 220.08 128.32 LR/HR 7.73 4.63 7.00 3.94 3.52 (La/Yb)N 7.17 3.63 5.73 2.74 1.57 (La/Sm)N 2.50 1.61 2.71 1.69 1.00 (Gd/Yb)N 1.93 1.64 1.56 1.23 1.23 δEu 0.67 0.67 0.45 0.24 0.29 表 3 达来庙岩体Sr-Nd同位素组成
Table 3. Sr-Nd isotopic compositions of the Dalaimiao pluton
样品 年龄(Ma) 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)i εNd T2DM(Ga) 14SZ14 301 1.032 6 0.708 030 0.703 60 0.126 5 0.512 641 0.512 391 2.77 0.84 14SZ15 301 1.343 2 0.710 180 0.704 43 0.153 2 0.512 612 0.512 310 1.17 0.97 14SZ17 301 3.425 9 0.722 180 0.707 51 0.150 5 0.512 681 0.512 384 2.62 0.85 14SZ18 301 4.459 0 0.725 448 0.706 35 0.174 4 0.512 598 0.512 254 0.08 1.05 表 4 达来庙岩体锆石Hf同位素分析结果
Table 4. Zircon Hf isotopic compositions of the Dalaimiao pluton
点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(t) 2σ TDM(Ga) T2DM(Ga) fLu/Hf 14SZ14.3 300 0.054 8 0.001 414 0.282 860 0.000 016 0.282 852 9.0 0.6 0.56 0.89 -0.96 14SZ14.5 301 0.122 7 0.003 037 0.282 833 0.000 021 0.282 816 7.8 0.7 0.63 1.00 -0.91 14SZ14.6 301 0.069 4 0.001 800 0.282 810 0.000 017 0.282 800 7.2 0.6 0.64 1.05 -0.95 14SZ14.7 299 0.063 9 0.001 606 0.282 932 0.000 017 0.282 923 11.5 0.6 0.46 0.66 -0.95 14SZ14.8 300 0.084 7 0.002 183 0.282 788 0.000 019 0.282 776 6.3 0.7 0.68 1.13 -0.93 14SZ14.9 301 0.067 2 0.001 733 0.282 818 0.000 022 0.282 808 7.5 0.8 0.63 1.03 -0.95 14SZ14.10 302 0.090 3 0.002 224 0.282 861 0.000 018 0.282 848 9.0 0.6 0.57 0.90 -0.93 14SZ14.11 302 0.051 0 0.001 422 0.282 863 0.000 029 0.282 855 9.2 1.0 0.56 0.87 -0.96 14SZ14.13 304 0.048 5 0.001 289 0.282 735 0.000 024 0.282 728 4.7 0.8 0.74 1.28 -0.96 14SZ14.14 304 0.057 7 0.001 497 0.282 749 0.000 024 0.282 740 5.2 0.8 0.72 1.24 -0.95 14SZ14.15 295 0.086 9 0.002 067 0.282 840 0.000 019 0.282 829 8.1 0.7 0.60 0.97 -0.94 14SZ14.16 308 0.065 1 0.001 520 0.282 785 0.000 024 0.282 776 6.5 0.8 0.67 1.12 -0.95 -
[1] Barbarin, B., 1999.A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments.Lithos, 46(3):605-626.https://doi.org/10.1016/s0024-4937(98)00085-1 doi: 10.1016/S0024-4937(98)00085-1 [2] Boynton, W.V., 1984.Geochemistry of the Rare Earth Elements: Meteorite Studies.In: Henderson, P., ed., Rare Earth Elements Geochemistry.Elsevier, Amsterdam, 63-144. [3] Chappell, B.W., White, A.J.R., 2001.Two Contrasting Granite Types:25 Years Later.Australian Journal of Earth Sciences, 48(4):489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x [4] Chen, B., Arakawa, Y., 2005.Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth.Geochimica et Cosmochimica Acta, 69(5):1307-1320. https://doi.org/10.1016/j.gca.2004.09.019 [5] Chen, B., Jahn, B.M., Tian, W., 2009.Evolution of the Solonker Suture Zone:Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction-and Collision-Related Magmas and Forearc Sediments.Journal of Asian Earth Sciences, 34(3):245-257. https://doi.org/10.1016/j.jseaes.2008.05.007 [6] Chen, X.J., Xu, Z.Q., Meng.Y.K., et al., 2014.Petrogenesis of Miocene Adakitic Diorite-Porphyrite in Middle Gangdese Batholith, Southern Tibet:Constraints from Geochemistry, Geochronology and Sr-Nd-Hf Isotopes.Acta Petrologica Sinica, 30(8):2253-2268 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408010 [7] Cheng, Y.H., Li, Y.F., Li, M., et al., 2014.Geochronology and Petrogenesis of the Alkaline Pluton in Dong Ujimqi, Inner Mongolia and Its Tectonic Implications.Acta Geologica Sinica, 88(11):2086-2096 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201411006 [8] Cheng, Y.H., Teng, X.J., Xin, H.T., et al., 2012.SHRIMP Zircon U-Pb Dating of Granites in Mahonondor Area, East Ujimqin Banner, Inner Mongolia.Acta Petrologica et Mineralogica, 31(3):323-334 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201203003 [9] Frost, C.D., Frost, B.R., 2010.On Ferroan (A-Type) Granitoids:Their Compositional Variability and Modes of Origin.Journal of Petrology, 52(1):39-53.https://doi.org/10.1093/petrology/egq070 http://petrology.oxfordjournals.org/content/52/1/39 [10] Fu, D., Huang, B., Peng, S.B., et al., 2016.Geochronology and Geochemistry of Late Carboniferous Volcanic Rocks from Northern Inner Mongolia, North China:Petrogenesis and Tectonic Implications.Gondwana Research, 36:545-560. https://doi.org/10.1016/j.gr.2015.08.007 [11] Geng, J.Z., Li, H.K., Zhang, J., et al., 2011.Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS.Geological Bulletin of China, 30(10):1508-1513 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201110004 [12] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.https://doi.org/10.1016/s0024-4937(02)00082-8 doi: 10.1016/S0024-4937(02)00082-8 [13] Han, B.F., 2007, Diverse Post-Collisional Granitoids and Their Tectonic Setting Discrimination.Earth Science Frontiers, 14(3):64-72 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy200703006 [14] He, F.B., Xu, J.X., Gu, X.D., et al., 2013.Ages, Origin and Geological Implications of the Amuguleng Composite Granite in East Ujimqin Banner, Inner Mongolia.Geological Review, 59(6):1150-1164 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201306016 [15] Hong, D.W., Zhang, J.S., Wang, T., et al., 2004.Continental Crustal Growth and the Supercontinental Cycle:Evidence from the Central Asian Orogenic Belt.Journal of Asian Earth Sciences, 23(5):799-813.https://doi.org/10.1016/s1367-9120(03)00134-2 doi: 10.1016/S1367-9120(03)00134-2 [16] Huang, B., Fu, D., Li, S.C., et al., 2016.The Age and Tectonic Implications of the Hegenshan Ophiolite in Inner Mongolia.Acta Petrologica Sinica, 32(1):158-176 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201601020 [17] Irber, W., 1999.The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites.Geochimica et Cosmochimica Acta, 63(3-4):489-508.https://doi.org/10.1016/s0016-7037(99)00027-7 doi: 10.1016/S0016-7037(99)00027-7 [18] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1-2):47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017 [19] Jahn, B.M., Capdevila, R., Liu, D.Y., et al., 2004.Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia:Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth.Journal of Asian Earth Sciences, 23(5):629-653.https://doi.org/10.1016/s1367-9120(03)00125-1 doi: 10.1016/S1367-9120(03)00125-1 [20] Jahn, B.M., Litvinovsky, B.A., Zanvilevich, A.N., et al., 2009.Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt:Evolution, Petrogenesis and Tectonic Significance.Lithos, 113(3-4):521-539. https://doi.org/10.1016/j.lithos.2009.06.015 [21] Jian, P., Kröner, A., Windley, B.F., et al., 2012.Carboniferous and Cretaceous Mafic-Ultramafic Massifs in Inner Mongolia (China):A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral "Hegenshan Ophiolite".Lithos, 142-143:48-66.https://doi.org/10.1016/j.lithos.2012.03.007 http://www.sciencedirect.com/science/article/pii/S0024493712000990 [22] Jian, P., Liu, D.Y., Kröner, A., et al., 2008.Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for Continental Growth.Lithos, 101(3-4):233-259. https://doi.org/10.1016/j.lithos.2007.07.005 [23] Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., et al., 2007.Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon.Science, 315(5814):980-983. https://doi.org/10.1126/science.1136154 [24] Khain, E.V., Bibikova, E.V., Salnikova, E.B., et al., 2003.The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic:New Geochronologic Data and Palaeotectonic Reconstructions.Precambrian Research, 122(1-4):329-358.https://doi.org/10.1016/s0301-9268(02)00218-8 doi: 10.1016/S0301-9268(02)00218-8 [25] Kröner, A., Kovach, V., Belousova, E., et al., 2014.Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt.Gondwana Research, 25(1):103-125. https://doi.org/10.1016/j.gr.2012.12.023 [26] Le Maitre, R.W., Bateman, P., Dudek, A., et al., 1989.A Classification of Igneous Rocks and Glossary of Terms.Blackwell, Oxford. [27] Li, H.Y., Zhou, Z.G., Li, P.J., et al., 2016.Geochemical Features and Significance of Late Ordovician Gabbros in East Ujimqin Banner, Inner Mongolia.Geological Review, 62(2):300-316 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201602005 [28] Li, K., Zhang, Z.C., Feng, Z.S., et al., 2014.Zircon SHRIMP U-Pb Dating and Its Geological Significance of the Late-Carboniferous to Early-Permian Volcanic Rocks in Bayanwula Area, the Central of Inner Mongolia.Acta Petrologica Sinica, 30(7):2041-2054 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407017 [29] Li, K., Zhang, Z.C., Feng, Z.S., et al., 2015.Two-Phase Magmatic Events during Late Paleozoic in the North of the Central Inner Mongolia-Da Hinggan Orogenic Belt and Its Tectonic Significance.Acta Geologica Sinica, 89(2):272-288 (in Chinese with English abstract). http://www.cqvip.com/qk/95080x/201502/664015627.html [30] Li, X.H., Li, Z.X., Li, W.X., et al., 2007.U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?Lithos, 96(1-2):186-204. https://doi.org/10.1016/j.lithos.2006.09.018 [31] Linnen, R.L., Cuney, M.2005.Granite-Related Rare-Element Deposits and Experimental Constraints on Ta-Nb-W-Sn-Zr-Hf Mineralization.In: Linnen, R.L., Samson, I.M., eds., Rare-Element Geochemistry and Mineral Deposits.Geological Association of Canada, GAC Short Course Notes, Vancouver. [32] Liu, M., Zhao, H., T., Zhang, D., et al., 2017.Chronology, Geochemistry and Tectonic Implications of Late Palaeozoic Intrusions from South of Xiwuqi, Inner Mongolia.Earth Science, 42(4):527-548 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.042 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201704004 [33] Liu, R., Yang, Z., Xu, Q.D., et al., 2016.Zircon U-Pb Ages, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Hercynian Granitoids from the Southern Segment of the Da-Hinggan Mts:Petrogenesis and Tectonic Implications.Acta Petrologica Sinica, 32(5):1505-1528 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605017 [34] Liu, Y.F., Nie, F.J., Jiang, S.H., et al., 2012.Geochronology of Zhunsujihua Molybdenum Deposit in Sonid Left Banner, Inner Mongolia, and Its Geological Significance.Mineral Deposits, 31(1):119-128 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201201010 [35] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [36] Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley. [37] Ma, H.W., 1992.Discrimination of Genetic Types of Granitoid Rocks.Acta Petrologica Sinica, 8(4):341-350 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004882590 [38] Ma, S.W., Liu, C.F., Xu, Z.Q., et al., 2017.Geochronology, Geochemistry and Tectonic Significance of the Early Carboniferous Gabbro and Diorite Plutons in West Ujimqin, Inner Mongolia.Journal of Earth Science, 28(2):249-264. https://doi.org/10.1007/s12583-016-0912-2 [39] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [40] McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4 [41] Miao, L.C., Fan, W.M., Liu, D.Y., et al., 2008.Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex:Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China.Journal of Asian Earth Sciences, 32(5-6):348-370. https://doi.org/10.1016/j.jseaes.2007.11.005 [42] Pearce, J.A.1996.Sources and Settings of Granitic Rocks.Episodes, 19:120-125. [43] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [44] Sisson, T.W., Ratajeski, K., Hankins, W.B., et al., 2005.Voluminous Granitic Magmas from Common Basaltic Sources.Contributions to Mineralogy and Petrology, 148(6):635-661. https://doi.org/10.1007/s00410-004-0632-9 [45] Tan, D.B., Li, D.Y., Xiao, Y.L., 2018.Geochemical Characteristics of Niobium and Tantalum:A Review of Twin Element.Earth Science, 43(1):317-332 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2018.019 http://d.old.wanfangdata.com.cn/Periodical/dqkx201801019 [46] Tong, Y., Jahn, B.M., Wang, T., et al., 2015.Permian Alkaline Granites in the Erenhot-Hegenshan Belt, Northern Inner Mongolia, China:Model of Generation, Time of Emplacement and Regional Tectonic Significance.Journal of Asian Earth Sciences, 97:320-336. https://doi.org/10.1016/j.jseaes.2014.10.011 [47] Wang, S.Q., Hu, X.J., Zhao, H.L., et al., 2017.Geochronology and Geochemistry of Late Carboniferous Jinggesitai Alkaline Granites, Inner Mongolia:Petrogenesis and Implications for Tectonic Evolution.Acta Geologica Sinica, 91(7):1467-1482 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201707006.htm [48] Wang, T., Jahn, B.M., Kovach, V.P., et al., 2009.Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt.Lithos, 110(1-4):359-372. https://doi.org/10.1016/j.lithos.2009.02.001 [49] Wang, Z.G., 1989.Geochemical of Rare Earth Elements.Science Press, Beijing (in Chinese). [50] Wei, R.H., Gao, Y.F., Xu, S.C., et al., 2017.The Volcanic Succession of Baoligaomiao, Central Inner Mongolia:Evidence for Carboniferous Continental Arc in the Central Asian Orogenic Belt.Gondwana Research, 51:234-254. https://doi.org/10.1016/j.gr.2017.08.005 [51] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419.https://doi.org/10.1007/bf00402202 doi: 10.1007/BF00402202 [52] Windley, B.F., Alexeiev, D., Xiao, W., et al., 2007.Tectonic Models for Accretion of the Central Asian Orogenic Belt.Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022 [53] Wu, F.Y., Jahn, B.M., Wilde, S., et al., 2000.Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China.Tectonophysics, 328(1-2):89-113.https://doi.org/10.1016/s0040-1951(00)00179-7 doi: 10.1016/S0040-1951(00)00179-7 [54] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):1069-1090.https://doi.org/10.1029/2002tc001484 doi: 10.1029/2002TC001484/abstract [55] Xiao, W.J., Zhang, L.C., Qin, K.Z., et al., 2004.Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China):Implications for the Continental Growth of Central Asia.American Journal of Science, 304(4):370-395. https://doi.org/10.2475/ajs.304.4.370 [56] Xiao, Z.J., Wang, Z.Q., Zhao, C.Y., et al., 2015.The Discovery of Monzogranite and Its Geologic Implication in Adenxile, Sonid Zuoqi, Innner Mongolia.Geological Review, 61(4):777-786 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201504007 [57] Xu, B., Zhao, P., Wang, Y.Y., et al., 2015.The Pre-Devonian Tectonic Framework of Xing'an-Mongolia Orogenic Belt (XMOB) in North China.Journal of Asian Earth Sciences, 97:183-196. https://doi.org/10.1016/j.jseaes.2014.07.020 [58] Xu, L.Q., Ju, W.X., Liu, C., et al., 2012.Sr-Yb Classification and Genesis of Late Carboniferous Granites in Arenshaobu Area of Erenhot, Inner Mongolia.Geological Bulletin of China, 31(9):1410-1419 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201209006 [59] Xu, X.S., 2008.Several Problems Worthy to be Noticed in the Research of Granites and Volcanic Rocks in SE China.Geological Journal of China Universities, 14(3):283-294 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200803001 [60] Yang, J.H., Wu, F.Y., Shao, J.A., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3-4):336-352. https://doi.org/10.1016/j.epsl.2006.04.029 [61] Yang, J.F., Zhang, Z.C., Chen, Y., et al., 2017.Ages and Origin of Felsic Rocks from the Eastern Erenhot Ophiolitic Complex, Southeastern Central Asian Orogenic Belt, Inner Mongolia China.Journal of Asian Earth Sciences, 144:126-140. https://doi.org/10.1016/j.jseaes.2016.12.049 [62] Yang, Z.L., Qiu, J.S., Xing, G.F., et al., 2014.Petrogenesis and Magmatic Evolution of the Yashan Granite Pluton in Yichun, Jiangxi Province, and Their Constraints on Mineralization.Acta Geologica Sinica, 88(5):850-868 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201405004 [63] Yun, F., Nie, F.J., Jiang, S.H., et al., 2011.Zircon SHRIMP U-Pb Age of Monuogechin Monzodiorite of Inner Mongolia and Its Geological Significance.Mineral Deposits, 30(3):504-510 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201103012 [64] Zhang, Q., Xu, J.F., Wang, Y., et al., 2004.Diversity of Adakite.Geological Bulletin of China, 23(Z2):959-965 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgqydz200409020 [65] Zhang, X.H., Wilde, S.A., Zhang, H.F., et al., 2011.Early Permian High-K Calc-Alkaline Volcanic Rocks from NW Inner Mongolia, North China:Geochemistry, Origin and Tectonic Implications.Journal of the Geological Society, London, 168(2):525-543. https://doi.org/10.1144/0016-76492010-094 [66] Zhang, X.H., Yuan, L.L., Xue, F.H., et al., 2015.Early Permian A-Type Granites from Central Inner Mongolia, North China:Magmatic Tracer of Post-Collisional Tectonics and Oceanic Crustal Recycling.Gondwana Research, 28(1):311-327. https://doi.org/10.1016/j.gr.2014.02.011 [67] Zhang, Z.C., Li, K., Li, J.F., et al., 2015.Geochronology and Geochemistry of the Eastern Erenhot Ophiolitic Complex:Implications for the Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt.Journal of Asian Earth Sciences, 97:279-293. https://doi.org/10.1016/j.jseaes.2014.06.008 [68] Zhou, W.X., Zhao, X.C., Fu, D., et al., 2017.Geochronology and Geochemistry of the Carboniferous Ulann Tolgoi Granite Complex from Northern Inner Mongolia, China:Petrogenesis and Tectonic Implications for the Uliastai Continental Margin.Geological Journal, 192(1-2):1-20.https://doi.org/10.1002/gj.3104 doi: 10.1002/gj.3104/full [69] 陈希节, 许志琴, 孟元库, 等, 2014.冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约.岩石学报, 30(8):2253-2268. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408010 [70] 程银行, 李艳锋, 李敏, 等, 2014.内蒙古东乌旗碱性侵入岩的时代、成因及地质意义.地质学报, 88(11):2086-2096. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201411006 [71] 程银行, 滕学建, 辛后田, 等, 2012.内蒙古东乌旗狠麦温都尔花岗岩SHRIMP锆石U-Pb年龄及其地质意义.岩石矿物学杂志, 31(3):323-334. doi: 10.3969/j.issn.1000-6524.2012.03.003 [72] 耿建珍, 李怀坤, 张健, 等, 2011.锆石Hf同位素组成的LA-MC-ICP-MS测定.地质通报, 30(10):1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 [73] 韩宝福, 2007.后碰撞花岗岩类的多样性及其构造环境判别的复杂性.地学前缘, 14(3):64-72. doi: 10.3321/j.issn:1005-2321.2007.03.006 [74] 何付兵, 徐吉祥, 谷晓丹, 等, 2013.内蒙古东乌珠穆沁旗阿木古楞复式花岗岩体时代、成因及地质意义.地质论评, 59(6):1150-1164. http://d.old.wanfangdata.com.cn/Periodical/dzlp201306016 [75] 黄波, 付冬, 李树才, 等, 2016.内蒙古贺根山蛇绿岩形成时代及构造启示.岩石学报, 32(1):158-176 http://d.old.wanfangdata.com.cn/Periodical/ysxb98201601020 [76] 李红英, 周志广, 李鹏举, 等, 2016.内蒙古东乌珠穆沁旗晚奥陶世辉长岩地球化学特征及其地质意义.地质论评, 62(2):300-316. http://d.old.wanfangdata.com.cn/Periodical/dzlp201602005 [77] 李可, 张志诚, 冯志硕, 等, 2014.内蒙古中部巴彦乌拉地区晚石炭世-早二叠世火山岩锆石SHRIMPU-Pb定年及其地质意义.岩石学报, 30(7):2041-2054. http://d.wanfangdata.com.cn/Periodical/ysxb98201407017 [78] 李可, 张志诚, 冯志硕, 等, 2015.兴蒙造山带中段北部晚古生代两期岩浆活动及其构造意义.地质学报, 89(2):272-288. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201502006 [79] 刘敏, 赵洪涛, 张达, 等, 2017.内蒙古西乌旗南部晚古生代侵入岩年代学、地球化学特征及地质意义.地球科学, 42(4):527-548. http://earth-science.net/WebPage/Article.aspx?id=3560 [80] 刘锐, 杨振, 徐启东, 等, 2016.大兴安岭南段海西期花岗岩类锆石U-Pb年龄、元素和Sr-Nd-Pb同位素地球化学:岩石成因及构造意义.岩石学报, 32(5):1505-1528. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605017 [81] 刘翼飞, 聂凤军, 江思宏, 等, 2012.内蒙古苏尼特左旗准苏吉花钼矿床成岩成矿年代学及其地质意义.矿床地质, 31(1):119-128. doi: 10.3969/j.issn.0258-7106.2012.01.010 [82] 马鸿文, 1992.花岗岩成因类型的判别分析.岩石学报, 8(4):341-350. doi: 10.3321/j.issn:1000-0569.1992.04.005 [83] 谭东波, 李东永, 肖益林, 2018."孪生元素"铌-钽的地球化学特性和研究进展.地球科学, 43(1):317-332. http://earth-science.net/WebPage/Article.aspx?id=3711 [84] 王树庆, 胡晓佳, 赵华雷, 等, 2017.内蒙古京格斯台晚石炭世碱性花岗岩年代学及地球化学特征-岩石成因及对构造演化的约束.地质学报, 91(7):1467-1482. doi: 10.3969/j.issn.0001-5717.2017.07.005 [85] 王中刚, 1989.稀土元素地球化学.北京:科学出版社. [86] 肖中军, 王振强, 赵春勇, 等, 2015.内蒙古苏尼特左旗北部阿登锡勒大队一带早石炭世高分异Ⅰ型花岗岩的发现及地质意义.地质论评, 61(4):777-786. http://d.old.wanfangdata.com.cn/Periodical/dzlp201504007 [87] 许立权, 鞠文信, 刘翠, 等, 2012.内蒙古二连浩特北部阿仁绍布地区晚石炭世花岗岩Sr-Yb分类及其成因.地质通报, 31(9):1410-1419. doi: 10.3969/j.issn.1671-2552.2012.09.006 [88] 徐夕生, 2008.华南花岗岩-火山岩成因研究的几个问题.高校地质学报, 14(3):283-294. doi: 10.3969/j.issn.1006-7493.2008.03.001 [89] 杨泽黎, 邱检生, 邢光福, 等, 2014.江西宜春雅山花岗岩体的成因与演化及其对成矿的制约.地质学报, 88(5):850-868. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201405004 [90] 云飞, 聂凤军, 江思宏, 等, 2011.内蒙古莫若格钦地区二长闪长岩锆石SHRIMP U-Pb年龄及其地质意义.矿床地质, 30(3):504-510. doi: 10.3969/j.issn.0258-7106.2011.03.012 [91] 张旗, 许继峰, 王焰, 等, 2004.埃达克岩的多样性.地质通报, 23(Z2):959-965. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200409020