SHRIMP U-Pb Zircon Dating for the Early-Middle Ordovician K-Bentonites in Jiangshan-Changshan-Yushan, Zhejiang-Jiangxi Border Area
-
摘要: 目前浙赣三山地区“金钉子”尚无精确的同位素年龄数据.基于钾质斑脱岩SHRIMP锆石U-Pb测试,三山地区早-中奥陶世宁国组Azygograptus suecicus带中部、Exigraptus clavus带底部、Acrograptus ellesae带中部的同位素年龄分别为482.9±6.1 Ma、477.6±8.3 Ma和467.0±4.4 Ma,为华南地区中奥陶世大坪阶和达瑞威尔阶底界的全球界线层型(GSSP)开展地层对比提供了精确的同位素年代学依据.结合生物带对比,大致将浙西地区早-中奥陶世普遍存在的地层缺失事件的发生时限界定于482.9~477.6 Ma之间,即杭州-嘉兴台地缺失牙形刺Oepikodus evae带-Lenodus anticariabilis带(或笔石Azygograptus suecicus带-Acrograptus ellesae带)地层,其代表了郁南运动在浙西地区的具体表现,拉开了华南地区早古生代构造运动的序幕,也可能是欧洲加里东造山过程中亨伯运动和塔康运动的远程响应.Abstract: There are no exact isotopic age data for "Golden Spike" in Jiangshan-Changshan-Yushan, Zhejiang-Jiangxi border area. The analysis of SHRIMP U-Pb zircons from the Ningkuo Formation K-bentonites in Jiangshan-Changshan-Yushan, yielded the age of middle Azygograptus suecicus Zone as 482.9±6.1 Ma, bottom Exigraptus clavus Zone as 477.6±8.3 Ma, and the middle Acrograptus ellesae Zone as 467.0±4.4 Ma, which provides the basis for exact correlation from the GSSP of Dapingian and Darriwilian strata in South China to other areas. Combined with contrast of biozones, the general strata-lost events occurred from 482.9 Ma to 477.6 Ma in West Zhejiang, which equated to the lacuna of the Oepikodus evae Zone to the Lenodus anticariabilis Zone, or Azygograptus suecicus Zone to Acrograptus ellesae Zone in Hangzhou-Jiaxing platform. We consider that it embodied the Yunan Movement in West Zhejiang, and heralded the start of the Early Paleozoic tectonic movement in South China, while responding to the Humberian Movement and Tactonic Movement in the European Caledonian Orogeny.
-
Key words:
- chronology /
- geochemistry /
- K-bentonites /
- Ordovician /
- regional tectonic movement /
- Jiangshan-Changshan-Yushan area
-
图 3 宁国组斑脱岩Zr/TiO2-Nb/Y图解(a)和Nb-Zr图解(b)
图a据Winchester and Floyd(1977),图b据Leat et al.(1986)
Fig. 3. Zr/TiO2 vs. Nb/Y diagram (a) and Nb vs. Zr diagram (b) for the K-bentonites in Ningkuo Formation
图 4 宁国组斑脱岩稀土元素球粒陨石标准化曲线(a)和微量元素蛛网图(b)
Fig. 4. Chondrite-normalized REE pattern (a) and trace element spider diagram(b) for the K-bentonites in Ningkuo Formation
图 5 宁国组Azygograptus suecicus带和Exigraptus clavus带斑脱岩锆石的阴极发光图像及分析点位和206Pb-238U视年龄
图a、b分别为常山黄泥塘金钉子剖面宁国组斑脱岩HntA、江山横塘剖面宁国组斑脱岩Hnt1
Fig. 5. CL photomicrographs, meansured points and age data (206Pb/238U) of zircons for the K-bentonites of Azygograptus suecicus Zone and Exigraptus clavus Zone in Ningkuo Formation
表 1 宁国组斑脱岩主量元素(%)和微量元素(10-6)组成
Table 1. Major elements (%) and trace elements (10-6) of the K-bentonites in Ningkuo Formation
样号 Ht1-1 Ht1-2 Hnt1-1 Hnt1-2 SiO2 56.83 60.82 51.69 51.48 TiO2 0.50 0.46 0.46 0.45 Al2O3 23.67 21.61 25.57 25.68 TFe2O3 2.50 2.46 3.05 3.07 MnO 0.01 0.01 0.02 0.03 MgO 1.99 1.74 2.53 2.55 CaO 0.013 0.091 0.630 0.640 Na2O 0.04 0.04 0.08 0.08 K2O 5.53 4.44 7.17 7.21 P2O5 0.03 0.03 0.12 0.10 LOI 8.68 7.92 8.68 8.78 Total 99.80 99.62 100.00 100.06 K2O/Na2O 125.7 120.0 94.3 96.1 Al2O3/ TiO2 47.34 46.98 55.59 57.07 AR 1.62 1.52 1.76 1.77 Rb 241 276 343 330 Sr 15 16 19 18 Ba 216 253 483 481 Th 30 32 42 43 Zr 144 148 265 264 Hf 5.57 6.11 9.00 9.09 Nb 7.59 8.22 15.10 14.90 Ta 1.47 1.60 2.57 2.54 V 66.4 76.1 53.2 52.2 Cr 32.6 37.6 22.1 22.4 Co 11.00 7.47 8.87 9.27 Ni 30.2 28.2 21.2 21.4 Y 51.3 55.3 51.8 50.6 Zr /Hf 25.9 24.2 29.4 29.0 Ti/Th 99.9 86.2 65.3 62.4 La 52.1 56.6 36.0 39.5 Ce 94.7 97.4 101.4 113.2 Pr 14.4 15.6 9.3 10.2 Nd 59.03 63.20 37.82 41.61 Sm 11.85 12.66 8.07 8.62 Eu 2.14 2.32 1.14 1.21 Gd 9.77 10.98 6.88 7.25 Tb 1.42 1.52 1.22 1.22 Dy 7.47 8.45 8.49 8.35 Ho 1.46 1.64 1.82 1.83 Er 3.96 4.47 5.92 5.88 Tm 0.57 0.64 0.89 0.92 Yb 3.48 3.93 5.70 5.63 Lu 0.51 0.59 0.84 0.82 ΣREE 262.86 279.98 225.52 246.26 LREE/HREE 8.18 7.69 6.10 6.72 LaN/YbN 10.74 10.33 4.54 5.04 δEu 0.61 0.60 0.47 0.47 表 2 宁国组Azygograptus suecicus带和Exigraptus clavus带斑脱岩锆石SHRIMP U-Pb年龄测定结果
Table 2. SHRIMP U-Pb data of zircons for the K-bentonites of Azygograptus suecicus and Exigraptus clavus zones in Ningkuo Formation
点号 206Pbc (%) U (10-6) Th (10-6) 232Th/ 238U 206Pb* (10-6) 206Pb/238U (Ma) ±1σ (%) 207Pb*/ 206Pb* ±1σ (%) 207Pb*/ 235U ±1σ (%) 206Pb*/ 238U ±1σ (%) HntA-1.1 6.51 133 74 0.57 9.36 475 10 0.046 1 8.9 0.486 1 8.8 0.076 5 2.3 HntA-2.1 3.91 112 54 0.50 6.72 419 9.1 0.050 7 6.6 0.469 3 6.6 0.067 2 2.2 HntA-3.1 9.70 134 93 0.72 9.11 444 10 0.047 0 21 0.470 7 20 0.071 4 2.4 HntA-4.1 3.63 689 417 0.63 42.5 431 9.2 0.056 8 2.6 0.541 2 3.3 0.069 1 2.1 HntA-5.1 1.31 739 638 0.89 49.2 475 9.6 0.057 6 1.3 0.607 0 2.5 0.076 5 2.1 HntA-6.1 8.92 141 97 0.71 10.4 484 11 0.060 0 8.6 0.650 6 8.7 0.078 0 2.3 HntA-7.1 23.08 296 262 0.92 23.9 450 10 0.056 0 14 0.560 4 14 0.072 3 2.3 HntA-8.1 12.17 202 151 0.78 19.1 596 13 0.096 0 5.6 1.290 3 6.2 0.096 8 2.2 HntA-9.1 4.82 375 441 1.22 24.8 456 9.4 0.059 8 4.8 0.605 1 4.8 0.073 4 2.1 HntA-10.1 14.88 598 1020 1.76 43.9 453 9.5 0.054 0 9.9 0.540 3 9.8 0.072 8 2.2 HntA-11.1 5.55 501 298 0.61 36.1 492 10 0.062 8 3.2 0.687 4 3.9 0.079 3 2.2 HntA-12.1 14.46 727 425 0.60 52.8 450 9.3 0.070 0 8.2 0.700 6 8.1 0.072 3 2.3 HntA-13.1 13.24 235 162 0.71 18.2 485 11 0.078 5 6.1 0.850 2 6.3 0.078 1 2.3 HntA-14.1 19.43 216 167 0.80 18.2 490 11 0.090 0 11 0.980 7 11.2 0.079 1 2.4 HntA-15.1 2.01 318 179 0.58 20.5 459 9.6 0.061 0 3.6 0.620 1 4.2 0.073 8 2.2 Ht1-1.1 -- 185 87 0.48 12 471 9.9 0.055 7 3.6 0.581 4 4.2 0.075 8 2.2 Ht1- 2.1 -- 360 173 0.50 24.6 494 10 0.059 2 1.7 0.650 0 2.7 0.079 7 2.1 Ht1- 3.1 -- 183 59 0.33 12.6 498 10 0.056 1 2.3 0.620 9 3.1 0.080 3 2.2 Ht1- 4.1 0.02 202 62 0.32 13.6 489 14 0.057 9 2.4 0.628 5 3.7 0.078 7 2.9 Ht1- 5.1 0.09 211 57 0.28 13.9 477 10 0.053 7 3.4 0.568 5 4.1 0.076 8 2.2 Ht1- 6.1 0.60 210 219 1.08 13.5 462 9.9 0.053 6 4.2 0.548 9 4.8 0.074 3 2.2 Ht1- 7.1 0.10 217 175 0.84 14.6 487 10 0.054 7 4.0 0.591 1 4.6 0.078 4 2.2 Ht1- 8.1 0.12 231 154 0.69 15.6 488 10 0.053 7 2.8 0.581 7 3.6 0.078 6 2.2 Ht1- 9.1 -- 298 351 1.22 19.9 484 9.9 0.059 6 2.0 0.640 9 2.9 0.077 9 2.1 Ht1- 10.1 0.01 51 21 0.42 3.32 468 12 0.056 2 5.1 0.584 4 5.7 0.075 4 2.6 Ht1- 11.1 -- 302 226 0.77 20.2 484 9.8 0.057 2 2.3 0.614 6 3.1 0.078 0 2.1 Ht1- 12.1 0.42 194 55 0.29 13 481 10 0.052 2 2.9 0.557 8 3.6 0.077 5 2.2 Ht1- 13.1 0.26 258 96 0.39 17 476 9.8 0.054 9 2.6 0.580 6 3.3 0.076 7 2.1 Ht1- 14.1 0.29 157 70 0.46 10.4 478 10 0.052 9 5.9 0.561 4 6.3 0.077 0 2.2 Ht1- 15.1 0.35 215 177 0.85 14.5 484 10 0.052 2 2.1 0.560 8 3.0 0.077 9 2.1 Ht1- 16.1 0.43 264 166 0.65 17.8 486 9.9 0.054 2 2.1 0.584 8 3.0 0.078 3 2.1 Ht1- 17.1 0.25 184 50 0.28 12.4 484 10 0.054 4 2.4 0.584 3 3.2 0.077 9 2.2 Ht1- 18.1 0.18 316 145 0.48 21.3 488 9.9 0.053 4 2.3 0.578 1 3.1 0.078 6 2.1 Ht1- 19.1 0.15 247 233 0.97 16.6 483 9.9 0.054 7 2.3 0.587 1 3.1 0.077 9 2.1 Ht1- 20.1 -- 179 106 0.61 11.8 477 10 0.054 5 2.2 0.577 9 3.1 0.076 9 2.2 注:Pbc和Pb*分别代表普通铅和放射性成因铅,标准校正值的误差为0.40%.应用实测204Pb校正普通铅. 表 3 宁国组Acrograptus ellesae带斑脱岩锆石的SHRIMP U-Pb年龄测定结果
Table 3. SHRIMP U-Pb data of zircons for the K-bentonites of Acrograptus ellesae Zone in Ningkuo Formation
点号 206Pbc (%) U (10-6) Th (10-6) 232Th/ 238U 206Pb* (10-6) 206Pb/238U (Ma) ±1σ (%) 207Pb*/ 206Pb* ±1σ (%) 207Pb*/ 235U ±1σ (%) 206Pb*/ 238U ±1σ (%) HntB-1.1 1.95 347 258 0.77 23.5 479 10 0.053 9 2.4 0.573 2 3.8 0.077 2 2.2 HntB-2.1 3.88 249 144 0.60 16.6 462 9.6 0.058 9 6.1 0.604 1 6.4 0.074 3 2.1 HntB-3.1 16.78 138 72 0.54 9.81 430 11 0.059 0 18 0.560 6 17 0.069 0 2.5 HntB-4.1 2.24 224 157 0.72 14.4 456 9.5 0.058 2 3.1 0.588 3 3.7 0.073 3 2.2 HntB-5.1 2.41 432 298 0.71 29.5 482 9.9 0.052 0 2.9 0.557 0 3.6 0.077 7 2.1 HntB-6.1 1.99 386 265 0.71 25.0 461 9.7 0.052 6 2.8 0.537 4 3.6 0.074 1 2.2 HntB-7.1 20.59 253 167 0.68 25.3 570 13 0.061 0 13 0.770 5 13 0.092 4 2.4 HntB-8.1 2.22 413 319 0.80 26.9 461 9.4 0.057 5 2.4 0.588 2 3.2 0.074 1 2.1 HntB-9.1 9.52 175 190 1.12 11.7 436 9.7 0.036 4 13 0.351 6 13 0.070 1 2.2 HntB-10.1 5.81 372 270 0.75 26.0 476 10 0.056 4 7.4 0.595 2 8.2 0.076 6 2.2 HntB-11.1 8.16 297 401 1.40 21.2 474 10 0.048 2 9.7 0.507 0 9.6 0.076 2 2.2 HntB-12.1 6.08 149 66 0.46 10.1 459 9.9 0.050 1 8.4 0.510 8 8.6 0.073 8 2.2 HntB-13.1 13.90 54 33 0.62 3.88 446 11 0.040 0 23 0.390 5 23 0.071 6 2.6 Hnt1-1.1 0.09 423 499 1.22 29.3 500 19 0.055 7 2.0 0.620 1 4.3 0.080 7 3.9 Hnt1-2.1 0.82 150 121 0.83 10.2 487 11 0.051 8 5.4 0.559 9 5.9 0.078 5 2.3 Hnt1-3.1 1.86 213 110 0.53 13.9 462 11 0.041 0 2.6 0.419 7 2.6 0.074 3 2.6 Hnt1-4.1 -- 410 163 0.41 27.5 485 10 0.057 5 1.6 0.619 9 2.7 0.078 2 2.2 Hnt1-5.1 0.05 423 232 0.57 28.9 493 10 0.057 0 1.6 0.624 1 2.7 0.079 4 2.2 Hnt1-6.1 0.02 361 249 0.71 23.6 474 10 0.055 8 1.7 0.586 5 2.7 0.076 2 2.2 Hnt1-7.1 0.31 218 134 0.63 15.0 497 11 0.055 4 2.9 0.612 7 3.7 0.080 1 2.2 Hnt1-8.1 1.55 169 153 0.94 11.7 491 11 0.052 1 9.9 0.568 7 10 0.079 2 2.3 Hnt1-9.1 0.22 223 112 0.52 16.0 515 11 0.056 5 3.2 0.647 7 3.9 0.083 1 2.2 Hnt1-10.1 0.21 188 118 0.64 12.6 482 11 0.053 5 3.9 0.572 9 4.5 0.077 6 2.3 Hnt1-11.1 0.31 167 70 0.44 11.0 475 10 0.055 0 2.6 0.579 1 3.5 0.076 4 2.3 Hnt1-12.1 -- 426 176 0.43 28.7 487 10 0.058 1 1.7 0.629 3 2.8 0.078 5 2.2 Hnt1-13.1 0.09 299 183 0.63 19.5 472 10 0.056 5 3.6 0.591 8 4.3 0.076 0 2.2 Hnt1-14.1 0.02 320 99 0.32 21.5 485 10 0.057 1 1.8 0.615 6 2.9 0.078 1 2.2 Hnt1-15.1 0.14 169 43 0.26 11.2 479 10 0.058 9 2.7 0.625 9 3.5 0.077 1 2.3 Hnt1-16.1 -- 124 86 0.72 8.09 474 12 0.059 9 2.7 0.629 6 3.8 0.076 2 2.6 Hnt1-17.1 0.32 467 263 0.58 31.4 485 10 0.053 8 2.8 0.578 8 3.5 0.078 1 2.2 Hnt1-18.1 0.26 267 175 0.68 17.5 473 10 0.054 3 2.4 0.570 8 3.3 0.076 2 2.2 Hnt1-19.1 0.00 146 49 0.34 9.96 492 11 0.058 5 2.5 0.639 1 3.4 0.079 3 2.3 Hnt1-20.1 0.15 459 417 0.94 29.9 471 9.9 0.055 2 2.1 0.576 9 3.1 0.075 8 2.2 Hnt1-21.1 -- 132 84 0.66 8.21 450 12 0.056 2 2.7 0.560 7 3.9 0.072 4 2.8 Hnt1-22.1 -- 172 151 0.91 10.5 445 9.9 0.058 9 3.6 0.579 8 4.2 0.071 4 2.3 Hnt1-23.1 3.71 581 316 0.56 40.3 483 10 0.058 0 6.3 0.621 3 6.6 0.077 7 2.2 Hnt1-24.1 0.69 180 98 0.56 10.9 438 10 0.052 8 5.4 0.511 4 5.9 0.070 2 2.5 Hnt1-25.1 0.15 303 194 0.66 19.4 463 10 0.055 5 2.7 0.570 0 3.5 0.074 5 2.2 Hnt1-26.1 0.40 290 157 0.56 18.9 469 10 0.053 9 3.2 0.561 5 3.9 0.075 5 2.2 Hnt1-27.1 0.02 294 161 0.56 18.2 447 12 0.056 3 2.2 0.557 5 3.6 0.071 9 2.9 Hnt1-28.1 -- 182 127 0.72 11.9 473 10 0.059 9 2.4 0.628 3 3.3 0.076 1 2.3 Hnt1-29.1 0.03 823 233 0.29 26.8 240 5.1 0.050 7 1.9 0.265 5 2.9 0.037 9 2.2 Hnt1-30.1 0.56 186 207 1.15 11.7 452 10 0.054 1 4.1 0.542 3 4.8 0.072 7 2.4 注:Pbc和Pb*分别代表普通铅和放射性成因铅,标准校正值的误差为0.40%.应用实测204Pb校正普通铅. -
[1] Bauert, H., Isozaki, Y., Holmer, L. E., et al., 2014. New U-Pb Zircon Ages of the Sandbian (Upper Ordovician) "Big K-Bentonite" in Baltoscandia (Estonia and Sweden) by LA-ICPMS. GFF, 136(1): 30-33. https://doi.org/10.1080/11035897.2013.862854 [2] Bird, J. M., Dewey, J. F., 1970. Lithosphere Plate-Continental Margin Tectonics and the Evolution of the Appalachian Orogen. Geological Society of America Bulletin, 81(4): 1031-1060. https://doi.org/10.1130/0016-7606(1970)81[1031:lpmtat]2.0.co; 2 doi: 10.1130/0016-7606(1970)81[1031:LPMTAT]2.0.CO;2 [3] Chen, C., Shi, X.Y., Pei, Y.P., et al., 2012.K-Bentonites from the Jinsushan Formation of Late Ordovician, Southern Ordos Basin: SHRIMP Dating and Tectonic Environment.Geoscience, 26(2):205-219 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201202001.htm [4] Chen, X., Bergström, S. M., 1995. The Base of the Austrodentatus Zone as a Level for Global Subdivision of the Ordovician. Palaeoworld, (5):1-117. [5] Chen, X., Mitchell, C. E., Zhang, Y. D., et al., 1997.GSSP of Darriwilian (Middle Ordovician) in China. Acta Palaeontologica Sinica, 36(4): 423-431 (in Chinese with English abstract). [6] Chen, X., Wang, Z.H., Zhang, Y.D., et al., 1998. The First GSSP (Golden Spike) in China. Journal of Stratigraphy, 22(1):1-9 (in Chinese with English abstracts). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d46045ea4cb6ff2c389542f9e74b6195 [7] Chen, X., Zhang, Y. D., Fan, J. X., et al., 2010. Ordovician Graptolite-Bearing Strata in Southern Jiangxi with a Special Reference to the Kwangsian Orogeny. Science China Earth Sciences, 53(11): 1602-1610. https://doi.org/10.1007/s11430-010-4117-6 [8] Chew, D. M., Graham, J. R., Whitehouse, M. J., 2007. U–Pb Zircon Geochronology of Plagiogranites from the Lough Nafooey (=Midland Valley) Arc in Western Ireland: Constraints on the Onset of the Grampian Orogeny. Journal of the Geological Society, 164(4): 747-750. https://doi.org/10.1144/0016-76492007-025 [9] Cooper, M. R., Crowley, Q. G., Rushton, A. W. A., 2008. New Age Constraints for the Ordovician Tyrone Volcanic Group, Northern Ireland. Journal of the Geological Society, 165(1): 333-339. https://doi.org/10.1144/0016-76492007-057 [10] Cooper, R.A., Sadler, P.M., 2004.The Ordovician Period. In: Gradstein, F., Ogg, J., Smith, A., eds., A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 165-187. [11] Feng, B.H., 1989. Carboniferous-Permian Tonsteins Formed by Hydrolytic Reformation of Volcanic Ash Sediments in Northern China. Acta Sedimentologica Sinica, 7(1):101-108 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-cjxb198901011.htm [12] Feng, B.H., Dong, R.L., 1993. Trace Element Geochemistry of Volcanic Sedimentary Claystone and Its Source Magma Type and Chemical Differentiation Mechanism. Regional Geology of China, 12(4):348-355 (in Chinese with English abstract). [13] Govindaraju, K., 1994.Compilation of Working Values and Sample Description for 383 Geostandards.Geostandards and Geoanalytical Research, 18(1): 1-158. https://doi.org/10.1111/j.1751-908x.1994.tb00502.x doi: 10.1111/j.1751-908X.1994.tb00502.x [14] Harper, D. A. T., Parkes, M. A., McConnell, B. J., 2010.Late Ordovician (Sandbian) Brachiopods from the Mweelrea Formation, South Mayo, Western Ireland: Stratigraphic and Tectonic Implications. Geological Journal, 45(4): 445-450.https://doi.org/10.1002/gj.1210 doi: 10.1002/gj.1210/pdf [15] Huang, K.N., Opdyke, N.D., Zhu, R.X., 2000. Further Paleomagnetic Results from the Silurian of the Yangtze Block and Their Implications. Earth and Planetary Science Letters, 175(3-4):191-202.https://doi.org/10.1016/s0012-821x(99)00302-7 doi: 10.1016/S0012-821X(99)00302-7 [16] Huang, T. K., 1945. On Major Tectonic Forms of China. Geol. Mem. Ser. A, 20: 1-165. http://d.old.wanfangdata.com.cn/Periodical/OA000005391 [17] Huff, W.D., Bergström, S.M., 1995.Castlemainian K-Bentonite Beds in the Ningkuo Formation of the Jiangshan County—The First Lower Ordovician K-Bentonites Found in China. Palaeoworld, 5: 101-105. [18] Huff, W.D., Davis, D.W., Bergström, S.M., et al., 1997. A Biostratigraphically Well-Constrained K-Bentonite U-Pb Zircon Age of the Lowermost Darriwilian Stage (Middle Ordovician) from the Argentine Precordillera. Episodes, 20: 29-33. doi: 10.18814/epiiugs/1997/v20i1/006 [19] Jian, P., Liu, D.Y., Sun, X.M., et al., 2003. SHRIMP Dating of Carbpniferous Jinshajiang Ophiolite in Western Yunnan and Sichuan: Geochronological Constraints on the Evolution of the Paleo-Tethys Oceanic Crust. Acta Geologica Sinica, 77(2):217-228 (in Chinese with English abstract). [20] Leat, P. T., Jackson, S. E., Thorpe, R. S., et al., 1986. Geochemistry of Bimodal Basalt-Subalkaline/peralkaline Rhyolite Provinces within the Southern British Caledonides. Journal of the Geological Society, 143(2): 259-273. https://doi.org/10.1144/gsjgs.143.2.0259 [21] Li, Z.H., Wang, Z.H., Wang, X.F., et al., 2004. Conodonts Across the Lower-Middle Ordovician Boundary in the Huanghuachang Section of Yichang, Hubei. Acta Palaeontologica Sinica, 43(1):14-31 (in Chinese with English abstracts). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gswxb200401002 [22] Liu, B. J., Xu, X.S., 1994. Atlas of Lithofacies Paleogeographic Map of South China (Sinian-Triassic). Science Press, Beijing (in Chinese). [23] Liu, Y. S., Zong, K.Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2):133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016 [24] McKerrow, W. S., mac Niocaill, C., Dewey, J. F., 2000. The Caledonian Orogeny Redefined. Journal of the Geological Society, 157(6): 1149-1154. https://doi.org/10.1144/jgs.157.6.1149 [25] Mitchell, C.E., Chen, X., Zhang, Y.D., et al., 1997.Definition of a Global Boundary Stratotype for the Darnwillian Stage of the Ordovician System. Episodes, 20(3):158-166. doi: 10.18814/epiiugs/1997/v20i3/003 [26] Mu, E. Z., 1974. Evolution, Classification and Distribution of Graptoloidea and Graptodendroids. Scientia Sinica, 17: 227-238. http://www.cnki.com.cn/Article/CJFDTotal-JAXG197402008.htm [27] Mu, E. Z., 1980. Researches on the Graptolithina of China. Acta Palaeont Sinica, 19: 143-151(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-gswx198002007.htm [28] Opdyke, N. D., Huang, K., Xu, G., et al., 1987. Paleomagnetic Results from the Silurian of the Yangtze Paraplatform. Tectonophysics, 139(1-2): 123-132. https://doi.org/10.1016/0040-1951(87)90201-0 [29] Peng, S.C., 2011.Jiangshanian Stage (Cambrian, Furongian) and the Gssp for the Base of the Stage Established Formally. Journal of Stratigraphy, 35(4):393-396 (in Chinese with English abstracts). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201104009 [30] Peng, S. C., Babcock, L. E., Zuo, J. X., et al., 2009. Proposed GSSP for the Base of Cambrian Stage 9, Coinciding with the First Appearance of Agnostotes Orientalis, at Duibian, Zhejiang, China. Science China: Earth Sciences, 52(4): 434-451. https://doi.org/10.1007/s11430-009-0045-8 [31] Sadler, P. M., Cooper, R. A., Melchin, M., 2009. High-Resolution, Early Paleozoic (Ordovician-Silurian) Time Scales. Geological Society of America Bulletin, 121(5-6): 887-906. https://doi.org/10.1130/b26357.1 doi: 10.1130/B26357.1 [32] Sell, B.K., Leslie, S.A., Maletz, J., 2011.New U-Pb Zircon data for the GSSP for the base of the Katian in Atoka, Oklahoma, USA and the Darriwilian in Newfoundland, Canada. In: Gutiérrez-Marco, J. C., Rábano, I., García-Bellido, D., eds., Ordovician of the World. Cuadernos del Museo Geominero, 14. Instituto Geológico y Minero de Espa a, Madrid, 537-546. [33] Skevington, D., 1974.Controls Influencing the Composition and Distribution of Ordovician Graptolite Faunal Provinces. In: Rickards, R.B., Jackson, D.E., Hughes, C.P., eds., Graptolite Studies in Honour of O.M.B. Bulman. Spec Papers Palaeontol, 13: 59-73. [34] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002. Mount Making and Procedure of the SHRIMP Dating. Geological Review, 48(S1):26-30 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005931 [35] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [36] Tang, Z.C., Zhang, Y.D., Zhen, Y.Y., et al., 2014. New Material of Early Ordovician Conodonts from the Banqiao Section, Lin'an, Zhejiang and Their Biostratigraphic Significance. Journal of Stratigraphy, 38(4):381-389(in Chinese with English abstracts). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201404001 [37] Ting, V. K., 1929.The Orogenic Movements in China (Presidential Address at the Sixth Annual Meeting). Acta Geologica Sinica, 8(2): 151-170. https://doi.org/10.1111/j.1755-6724.1929.mp8002007.x http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1755-6724.1929.mp8002007.x [38] Tucker, R. D., McKerrow, W. S., 1995. Early Paleozoic Chronology: A Review in Light of New U-Pb Zircon Ages from Newfoundland and Britain. Canadian Journal of Earth Sciences, 32(4): 368-379. https://doi.org/10.1139/e95-032 [39] van Staal, C. R., Dewey, J. F., mac Niocaill, C., et al., 1998. The Cambrian-Silurian Tectonic Evolution of the Northern Appalachians and British Caledonides: History of a Complex, West and Southwest Pacific-Type Segment of Iapetus. Geological Society, London, Special Publications, 143(1): 197-242. https://doi.org/10.1144/gsl.sp.1998.143.01.17 doi: 10.1144/GSL.SP.1998.143.01.17 [40] Wang, C.S., Wang, X.F., Chen, X.H., et al., 2009.Graphic Correlation of Graptolite Fauna near the Lower/Middle Ordovician Boundary in South China. Geology in China, 36(4):783-789 (in Chinese with English abstracts). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200904004 [41] Wang, X.F., Stouge, S., Chen, X.H., et al., 2005.Advances on the Potential GSSP for the Base of Middle Ordovician Series—Huanghuachang Section. Journal of Stratigraphy, 29(S1):467-489 (in Chinese with English abstracts). http://www.cqvip.com/Main/Detail.aspx?id=16073261 [42] Williams, S.H., Harper, D., 1994.Late Tremadoc Graptolites from the Lough Nafooey Group, South Mayo, Western Ireland. Irish Journal of Earth Science, 13:107-111.https://doi.org/stable/30002213 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000004107142 [43] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [44] Wu, L., Jia, D., Li, H. B., et al., 2010. Provenance of Detrital Zircons from the Late Neoproterozoic to Ordovician Sandstones of South China: Implications for Its Continental Affinity. Geological Magazine, 147(6): 974-980. https://doi.org/10.1017/s0016756810000725 doi: 10.1017/S0016756810000725 [45] Zhang, C., Ma, C.Q., She, Z.B., et al., 2005.Volcanic Ash in the Clay Rocks from Upper Shaximiao Formation of Middle Jurassic, Northeast of Sichuan Basin: Evidence from Petrology, Mineralogy and Geochemistry. Geological Journal of China Universities, 11(3):415-424 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200503012.htm [46] Zhang, Y. D., Chen, X., Yu, G. H., et al., 2007.Ordovician and Silurian Rocks of Northwest Zhejiang and Northeast Jiangxi Provinces, SE China. Hefei: University of Science and Technology of China Press. [47] Zhang, Y.D., Xu, H.G., Guo, W.M., et al., 2009. Biostratigraphy of the Huangnitang Reservoir Section in Changshan, Zhejiang Province. Journal of Stratigraphy, 33(4):337-350 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz200904001 [48] Zhang, Y.D., Yu, G.H., Luo, Z., et al., 2010. New Material of Graptolite from the Ordovician Hulo Formation in Banqiao Section, Lin'an, Zhejiang and Its Significance. Journal of Stratigraphy, 34(1):1-7 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201001001 [49] Zhou, M.Z., Luo, T.Y., Huang, Z.L., et al., 2007. Advances in Research on K-Bentonite. Acta Mineralogica Sinica, 27(3):351-359 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200703017 [50] 陈诚, 史晓颖, 裴云鹏, 等, 2012.鄂尔多斯盆地南缘晚奥陶世钾质斑脱岩——SHRIMP测年及其成因环境.现代地质, 26(2):205-219. doi: 10.3969/j.issn.1000-8527.2012.02.001 [51] 陈旭, Mitchell, C. E., 张元动, 等, 1997.中奥陶统达瑞威尔阶及其全球界线层型剖面点(GSSP)在中国的确立.古生物学报, 36(4): 423-431. http://www.cnki.com.cn/Article/CJFDTotal-GSWX704.003.htm [52] 陈旭, 王志浩, 张元动, 等, 1998.中国第一个"金钉子"剖面的建立.地层学杂志, 22(1):1-9. http://www.cnki.com.cn/Article/CJFDTotal-DCXZ801.000.htm [53] 冯宝华, 1989.我国北方石炭-二叠纪火山灰沉积水解改造而成的高岭岩.沉积学报, 7(1):101-108. http://www.cnki.com.cn/Article/CJFDTotal-CJXB198901011.htm [54] 冯宝华, 董茹丽, 1993.火-沉粘土岩微量元素地球化学和物源岩浆类型及化学分异机制探讨.中国区域地质, 12(4):348-355. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005065766 [55] 简平, 刘敦一, 孙晓猛, 2003.滇川西部金沙江石炭纪蛇绿岩SHRIMP测年:古特提斯洋壳演化的同位素年代学制约.地质学报, 77(2):217-228. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200302010 [56] 李志宏, 王志浩, 汪啸风, 等, 2004.湖北宜昌黄花场剖面中/下奥陶统界线附近的牙形剌.古生物学报, 43(1):14-31. doi: 10.3969/j.issn.0001-6616.2004.01.002 [57] 刘宝珺, 许效松, 1994.中国南方岩相古地理图集(震旦纪-三叠纪).北京:科学出版社. [58] 穆恩之, 1980.中国笔石的研究.古生物学报, 19(2): 143-151. http://www.cnki.com.cn/Article/CJFDTotal-GSWX198002007.htm [59] 彭善池, 2011.全球寒武系江山阶及其"金钉子"在我国正式确立.地层学杂志, 35(4):393-396. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201104009 [60] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1):26-30. http://d.old.wanfangdata.com.cn/Periodical/OA000005931 [61] 唐增才, 张元动, 甄勇毅, 等, 2014.浙江临安板桥早奥陶世牙形刺新材料及其意义.地层学杂志, 38(4):381-389. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201404001 [62] 王传尚, 汪啸风, 陈孝红, 等, 2009.华南下/中奥陶统界线附近笔石动物群的图形对比研究.中国地质, 36(4):783-789. doi: 10.3969/j.issn.1000-3657.2009.04.004 [63] 汪啸风, Stouge, S., 陈孝红, 等, 2005.全球下奥陶统-中奥陶统界线层型候选剖面——宜昌黄花场剖面研究新进展.地层学杂志, 29(S1):467-489. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7065165 [64] 张超, 马昌前, 佘振兵, 等, 2005.四川万州中侏罗统上沙溪庙组粘土岩中火山灰的岩矿和地球化学证据.高校地质学报, 11(3):415-424. doi: 10.3969/j.issn.1006-7493.2005.03.012 [65] 张元动, 许红根, 郭维民, 等, 2009.浙江常山黄泥塘水库剖面的生物地层学.地层学杂志, 33(4):337-350. doi: 10.3969/j.issn.0253-4959.2009.04.001 [66] 张元动, 俞国华, 罗璋, 等, 2010.浙江临安板桥奥陶系胡乐组笔石新材料及其意义.地层学杂志, 34(1):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201001001 [67] 周明忠, 罗泰义, 黄智龙, 等, 2007.钾质斑脱岩的研究进展.矿物学报, 27(3):351-359. doi: 10.3321/j.issn:1000-4734.2007.03.017