Comprehensive Prediction of Shale Oil Sweet Spots Based on Geophysical and Geochemical Data: A Case Study of the Paleogene Hetaoyuan Formation, Biyang Depression, China
-
摘要: 我国页岩油气勘探开发不断取得实质性进展,有望成为未来油气资源的重要接替能源.而提高页岩油储层钻遇率和油气产量的关键是甜点区的预测和评价.以泌阳凹陷核桃园组三段5号富有机质页岩层为研究对象,综合利用多种地球物理方法和地球化学指标,通过岩相、含油性、储集条件和地层压力等关键评价参数分析,探讨了综合信息叠合的页岩油甜点区预测方法.研究表明:(1)脆性矿物含量普遍大于50%,以灰质页岩和粘土质页岩夹粉砂质页岩为主的岩相是页岩油赋存的优势岩相;(2)低自由烃差值和高含油饱和指数均指示高含量游离态页岩油,指示了页岩含油性最好区域;(3)夹层主要发育在深凹区周缘,断裂控制的相互重叠区域或派生断裂控制区微裂缝更为发育;(4)异常高压对页岩油微距离运移和富集的影响较大;(5)基于不同参数门槛值对页岩储层进行综合评价划分,采用综合信息叠合法预测出3类甜点区.本文为多参数综合评价和识别陆相页岩油甜点区提供了有效范例,对指导陆相页岩油勘探具有重要的实践意义.Abstract: Shale oil and gas exploration and development in China makes substantive progress, and is likely to be an important successor for oil and gas resources in the future. And the key to improve the drilling encounter rate and oil and gas yield of shale oil is prediction and evaluation of sweet spot.In this paper, taking the 5th organic-matter-rich interval (ORI 5) in the third Member of the Paleogene Hetaoyuan Formation in the Biyang Depression, the key performance indicators are applied to map out sweet spots across the deep depression by comprehensive analysis of various geophysical and geochemical methods. The key indicators are based on a limited number of shale properties, such as lithofacies, oil content, reservoir conditions, and formation pressure. The results show that:(1) The content of brittle minerals is generally larger than 50%, and the calcareous shales and argillaceous shales with silty shales interlayers are advantageous lithofacies for shale oil storage; (2) The indexes of OSI values >200 mg/g TOC and △S1 values < -2 mg/g Rock indicate the higher content of free shale oil; (3) The interlayer is mainly developed in the periphery of the deep depression, and microfracture is more developed in the derived fracture controlled zones and overlapping areas controlled by faults; (4) Overpressure may have greater impact on the small scale migration and enrichment of shale oil; (5) Shale reservoirs are evaluated based on threshold values of various indicators, and three types of sweet spots are predicted. This paper provides a valid example for comprehensive evaluation and identification of continental shale oil sweet spots using multi-parameters, and has important practical significance for guiding the shale oil exploration.
-
Key words:
- sweet spot /
- continental shale oil /
- organic-rich shale /
- Hetaoyuan Formation /
- Biyang Depression /
- petroleum geology
-
图 6 泌阳凹陷核三段5号页岩层页岩岩心、薄片和扫描电镜观察结果
a.粉砂质页岩,粉砂和粘土纹层互层,C2井,2 821.57 m;b.纹层接触面近平行裂缝发育,BYHF 1井,2 446.5 m;c, d.粒间孔内烃类充填,BYHF 1井,2 427.55 m;e, f.方解石溶蚀孔内烃类充填,C2井,2 800.32 m.图c~f据张文昭(2014)
Fig. 6. Core, slice, and SEM observation results of ORI 5 in Biyang Depression
图 7 BYHF1井(a)和B364井(b)声波时差与深度关系;BYHF1井5号页岩层地层压力与含油饱和指数和孔隙度对应关系(c)和5号页岩层厚度等值线图(d)
Fig. 7. The relationship between depth and acoustic time data from Well BYHF 1 (a) and Well B364 (b), well correlation between overpressure, OSI and porosity values in ORI 5(c) and thickness isoline of ORI 5 in Biyang Depression(d)
表 1 泌阳凹陷深凹区5号页岩层甜点区综合评价
Table 1. Sweet spot evaluation of ORI 5 in Biyang Depression
指标 Ⅰ类甜点区 Ⅱ类甜点区 Ⅲ类甜点区 含油饱和指数(mg/g TOC) > 300 > 300 > 200 自由烃差值(mg/g Rock) < -4.0 < -4.0 < -2.0 地层压力系数 1.28~1.32 > 1.28 > 1.20 夹层厚度(m) > 2 > 2 < 2 微裂缝 发育 不发育 不发育 脆性矿物(%) 63~67 63~67 > 60 岩相 灰质页岩 灰质页岩 灰质页岩 -
[1] Aybar, U., Eshkalak, M.O., Wood, D.A., 2015.Advances in Practical Shale Assessment Techniques.Journal of Natural Gas Science and Engineering, 27(2):399-401.https://doi.org/10.1016/j.jngse.2015.09.024 https://www.researchgate.net/publication/283037173_Advances_in_Practical_Shale_Assessment_Techniques [2] Berry, F.A.F., 1973.High Fluid Potneitals in California Coast Ranges and Their Tectonic Significance.AAPG Bulletin, 57(7):1219-1249.https://doi.org/10.1306/83d90e8a-16c7-11d7-8645000102c1865d [3] Bessereau, G., Carpentier, B., Huc, A.Y., 1991.Wireline Logging and Source Rocks Estimation of Organic Carbon Content by the CARBOLOG Method.The Log Analyst, 32(3):279-297. https://www.researchgate.net/publication/269873585_Wirelogging_and_source_rocks-_Estimation_of_organic_carbon_content_by_the_CARBOLOG_Method [4] Bradley, J.S., 1975.Abnormal Formation Pressure.AAPG Bulletin, 59(6):957-973. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb200505019 [5] Bredehoeft, J.D., Wesley, J.B., Fouch, T.D., 1994.Simulations of the Origin of Fluid Pressure, Fracture Generation, and Movement of Fluids in the Uinta Basin, Utah.AAPG Bulletin, 78(11):1729-1747.https://doi.org/10.1306/a25ff279-171b-11d7-8645000102c1865d [6] Chen, J.H., Philp, R.P., 1991.Porphyrin Distributions in Crude Oils from the Jianghan and Biyang Basins, China.Chemical Geology, 91(2):139-151.https://doi.org/10.1016/0009-2541(91)90087-8 http://www.sciencedirect.com/science/article/pii/0009254191900878 [7] Chen, S., Zhao, W.Z., Ouyang, Y.L., et al., 2017.Comprehensive Prediction of Shale Gas Sweet Spots Based on Geophysical Properties:A Case Study of the Lower Silurian Longmaxi Formation in Changning Block, Sichuan Basin.Natural Gas Industry, 37(5):20-30 (in Chinese with English abstract). http://www.cngascn.com:81/ngi_wk/EN/abstract/abstract18286.shtml [8] Cooles, G.P., Mackenzie, A.S., Quigley, T.M., 1986.Calculation of Petroleum Masses Generated and Expelled from Source Rocks.Organic Geochemistry, 10(1-3):235-245.https://doi.org/10.1016/0146-6380(86)90026-4" target="_blank"> https://doi.org/10.1016/0146-6380(86)90026-4 [9] Forti, W.H., Chlllngar, G.V., 1988.Total Organic Carbon Content Determined from Well Logs.Society of Petroleum Engineers Formation Evaluation, 3(2):407-419.https://doi.org/10.2118/15612-pa http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027684812/ [10] Gale, J.F.W., Laubach, S.E., Olson, J.E., et al., 2014.Natural Fractures in Shale:A Review and New Observations.AAPG Bulletin, 98(11):2165-2216.https://doi.org/10.1306/08121413151" target="_blank"> https://doi.org/10.1306/08121413151 [11] Guo, T.L., Zhang, H.R., 2014.Formation and Enrichment Mode of Jiaoshiba Shale Gasfield, Sichuan Basin.Petroleum Exploration and Development, 41(1):31-40.https://doi.org/10.1016/S1876-3804(14)60003-3" target="_blank"> https://doi.org/10.1016/S1876-3804(14)60003-3 [12] Heege, J.T., Zijp, M., Nelskamp, S., et al., 2015.Sweet Spot Identification in Underexplored Shales Using Multidisciplinary Reservoir Characterization and Key Performance Indicators:Example of the Posidonia Shale Formation in the Netherlands.Journal of Natural Gas Science and Engineering, 27:558-577.https://doi.org/10.1016/j.jngse.2015.08.032" target="_blank"> https://doi.org/10.1016/j.jngse.2015.08.032 [13] Hill, D.G., Nelson, C.R., 2000.Gas Productive Fractured Shales:An Overview and Update.Gas Tips, 6(2):4-13. [14] Hu, H.T., Lu, S.F., Liu, C., et al., 2011.Models for Calculating Organic Carbon Content from Logging Information:Comparison and Analysis.Acta Sedimentologica Sinica, 29(6):1199-1205 (in Chinese with English abstract). [15] Hu, S.Q., 1998 Influence of Paleoclimatic Changes on Development of Terrigenous Sequence in Biyang Fault-Depressed Lacustrine Basin.Journal of Jianghan Petroleum institute, 20(1):1-6(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JHSX801.000.htm [16] Huang, X., Hu, S.Z., Li, S.F., et al., 2016.Forecast and Distribution of Brittle Minerals in Shales from the Upper Section of the Third Member of Hetaoyuan Formation in the Deep Sag Area of the Biyang Depression.Petroleum Geology and Experiment, 38(1):48-55 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201601007 [17] Jarvie, D.M., 2012.Shale Resource Systems for Oil and Gas:Part 1—Shale-Gas Resource Systems.AAPG Memoir, 97:89-119.https://doi.org/10.1306/13321447M973489 https://www.researchgate.net/publication/266413593_Shale_Resource_Systems_for_Oil_and_Gas_Part_1-Shale-gas_Resource_Systems [18] Lei, Y.H., Luo, X.R., Wang, X.Z., et al., 2015.Characteristics of Silty Laminae in Zhangjiatan Shale of Southeastern Ordos Basin, China:Implications for Shale Gas Formation.AAPG Bulletin, 99(4):661-687.https://doi.org/10.1306/09301414059" target="_blank"> https://doi.org/10.1306/09301414059 [19] Li, J.J., Shi, Y.L., Zhang, X.W., et al., 2014.Control Factors of Enrichment and Producibility of Shale Oil:A Case Study of Biyang Depression.Earth Science, 39(7):848-857 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2014.079 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201407007.htm [20] Li, S.F., Hu, S.Z., Xie, X.N., et al., 2016.Assessment of Shale Oil Potential Using a New Free Hydrocarbon Index.International Journal of Coal Geology, 156:74-85. doi: 10.1016/j.coal.2016.02.005 [21] Li, S.F., Wang, S.L., Bi, J.X., et al., 2016.Characteristics of Xujiahe Formation Source Rock and Process of Hydrocarbon-Generation Evolution in Puguang Area.Earth Science, 41(5):843-852 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.071 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201605010 [22] Liu, B., Lü, Y.F., Zhao, R., et al., 2012.Formation Overpressure and Shale Oil Enrichment in the Shale System of Lucaogou Formation, Malang Sag, Santanghu Basin, NW China.Petroleum Exploration and Development, 39(6): 699-705 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380412600998 [23] Liu, J.M., Peng, P.A., Huang, K.Q., et al., 2008.An Improvement in CARBOLOG Technique and Its Preliminary Application to Evaluating Organic Carbon Content of Source Rocks.Geochimica, 37(6):581-586 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200806008 [24] Ning, F.X., 2015.The Main Control Factors of Shale Oil Enrichment in Jiyang Depression.Acta Petrolei Sinica, 36(8):905-914 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201508002 [25] Raji, M., Gröcke, D.R., Greenwell, H.C., et al., 2015.The Effect of Interbedding on Shale Reservoir Properties.Marine and Petroleum Geology, 67:154-169.https://doi.org/10.1016/j.marpetgeo.2015.04.015" target="_blank"> https://doi.org/10.1016/j.marpetgeo.2015.04.015 [26] Shang, F., Liu, Z.J., Xie, X.N., 2016.Application of Well Logs Prediction Method for Organic Carbon Content in Biyang Sag, Nanxiang Basin.Xinjiang Petroleum Geology, 37(1):102-106 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjsydz201601020 [27] Shang, F., Liu, Z.J., Xie, X.N., et al., 2015.Organic Matter Accumulation Mechanisms of Shale Series in He-Third Member of Eocene Hetaoyuan Formation, Biyang Depression, Eastern China.Petroleum Science and Technology, 33(13-14):1434-1442.https://doi.org/10.1080/10916466.2015.1075037" target="_blank"> https://doi.org/10.1080/10916466.2015.1075037 [28] Sharp, J.M., 1983.Permeability Controls on Aquathermal Pressuring.AAPG Bulletin, 67:2057-2061.https://doi.org/10.1306/ad4608cd-16f7-11d7-8645000102c1865d http://aapgbull.geoscienceworld.org/content/67/11.toc [29] Song, G.Q., Xu, X.Y., Li, Z., et al., 2015.Factors Controlling Oil Production from Paleogene Shale in Jiyang Depression.Oil and Gas Geology, 36(3):463-471 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201503015 [30] Weng, X.W., Kresse, O., Cohen, C.E., et al., 2011.Modeling of Hydraulic Fracture Network Propagation in a Naturally Fractured Formation.SPE Production & Operations, 26(4):368-380.https://doi.org/10.2118/140253-pa https://www.researchgate.net/publication/254533633_Modeling_of_Hydraulic_Fracture_Network_Propagation_in_a_Naturally_Fractured_Formation [31] Yang, D.Q., Lu, J.L., 2005.Cenozoic Structural Evolution and Mechanism in the Biyang Depression.Journal of oil and Gas Technology, 27(4):416-419 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1367912018303729 [32] Yang, R.Z., Zhao, Z.G., Pang, H.L., et al., 2012.Shale Gas Sweet Spots:Geological Controlling Factors and Seismic Prediction Methods.Earth Science Frontiers, 19(5):339-347 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201205033 [33] Yang, Z., Hou, L.H., Tao, S.Z., et al., 2015.Formation Conditions and "Sweet Spot" Evaluation of Tight Oil and Shale Oil.Petroleum Exploration and Development, 42(5):555-565 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201505002 [34] Zhang, W.Z., 2014.Characteristics and Evaluation Factors of Shale Oil Reservoir of the Third Member of Hetaoyuan Formation, Palaeogene in Biyang Depression(Dissertation).China University of Geosciences, Beijing, 65-69 (in Chinese with English abstract). [35] Zhang, X.W., Wang, Y.X., Wang, G.L., et al., 2015.Reservoir Characteristics of Lacustrine Shale Oil of the Paleogene Hetaoyuan Formation in Biyang Sag of Nanxiang Basin, Henan Province.Journal of Palaeogeography, 17(1):107-118 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201501012 [36] Zhu, G.Y., Jin, Q., Zhang, L.Y.2003.Using Log Information to Analyse the Geochemical Characteristics of Source Rocks in Jiyang Depression.Well Logging Technology, 27(2):104-109 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjjs200302004 [37] Zou, C.N., Zhu, R.K., Bai, B., et al., 2015.Significance, Geologic Characteristics, Resource Potential and Future Challenges of Tight Oil and Shale Oil.Bulletin of Mineralogy Petrology and Geochemistry, 34 (1):3-17 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201501002 [38] 陈胜, 赵文智, 欧阳永林, 等, 2017.利用地球物理综合预测方法识别页岩气储层甜点——以四川盆地长宁区块下志留统龙马溪组为例.天然气工业, 37(5):20-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201705003 [39] 胡慧婷, 卢双舫, 刘超, 等, 2011.测井资料计算源岩有机碳含量模型对比及分析.沉积学报, 29(6):1199-1205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201103856829 [40] 胡受权, 1998.古气候变迁对泌阳断陷湖盆陆相层序发育的影响.江汉石油学院学报, 20(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800291549 [41] 黄新, 胡守志, 李水福, 等, 2016.泌阳凹陷深凹区核三上段页岩层脆性矿物预测及分布.石油实验地质, 38(1):48-55. http://d.old.wanfangdata.com.cn/Periodical/sysydz201601007 [42] 李吉君, 史颖琳, 章新文, 等, 2014.页岩油富集可采主控因素分析:以泌阳凹陷为例.地球科学, 39(7):848-857.https://doi.org/10.3799/dqkx.2014.079 http://earth-science.net/WebPage/Article.aspx?id=2888 [43] 李松峰, 王生朗, 毕建霞, 等, 2016.普光地区须家河组烃源岩特征及成烃演化过程.地球科学, 41(5):843-852.https://doi.org/10.3799/dqkx.2016.071 http://earth-science.net/WebPage/Article.aspx?id=3306 [44] 柳波, 吕延防, 赵荣, 等, 2012.三塘湖盆地马朗凹陷芦草沟组泥页岩系统地层超压与页岩油富集机理.石油勘探与开发, 39(6):699-705. http://d.old.wanfangdata.com.cn/Periodical/syktykf201206007 [45] 刘俊民, 彭平安, 黄开权, 等, 2008.改进评价生油岩有机质含量的CARBOLOG法及其初步应用.地球化学, 37(6):581-586. doi: 10.3321/j.issn:0379-1726.2008.06.008 [46] 宁方兴, 2015.济阳坳陷页岩油富集主控因素.石油学报, 36(8):905-914. http://d.old.wanfangdata.com.cn/Periodical/syxb201508002 [47] 尚飞, 刘峥君, 解习农, 2016.有机碳含量测井预测方法在泌阳凹陷的应用.新疆石油地质, 37(1):102-106. http://d.old.wanfangdata.com.cn/Periodical/xjsydz201601020 [48] 宋国奇, 徐兴友, 李政, 等, 2015.济阳坳陷古近系陆相页岩油产量的影响因素.石油与天然气地质, 36(3):463-471. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201503015 [49] 杨道庆, 陆建林, 2005.泌阳凹陷新生代构造演化及其形成机制.石油天然气学报, 27(4):416-419. doi: 10.3969/j.issn.1000-9752.2005.04.003 [50] 杨瑞召, 赵争光, 庞海玲, 等, 2012.页岩气富集带地质控制因素及地震预测方法.地学前缘, 19(5):339-347. http://d.old.wanfangdata.com.cn/Periodical/dxqy201205033 [51] 杨智, 侯连华, 陶士振, 等, 2015.致密油与页岩油形成条件与"甜点区"评价.石油勘探与开发, 42(5):555-565. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201505002 [52] 张文昭, 2014.泌阳凹陷古近系核桃园组三段页岩油储层特征及评价要素(硕士学位论文).北京: 中国地质大学, 65-69. http://cdmd.cnki.com.cn/Article/CDMD-11415-1014233805.htm [53] 章新文, 王优先, 王根林, 等, 2015.河南省南襄盆地泌阳凹陷古近系核桃园组湖相页岩油储集层特征.古地理学报, 17(1):107-118. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201501012 [54] 朱光有, 金强, 张林晔, 2003.用测井信息获取烃源岩的地球化学参数研究.测井技术, 27(2):104-109. doi: 10.3969/j.issn.1004-1338.2003.02.004 [55] 邹才能, 朱如凯, 白斌, 等, 2015.致密油与页岩油内涵、特征、潜力及挑战.矿物岩石地球化学通报, 34(1):3-17. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201501002