The Coupling Relationship between Diagenetic Fluid Evolution and Hydrocarbon Accumulation in the Ordovician of Yubei Area, Tarim Basin
-
摘要: 尽管流体包裹体均一温度-埋藏史投影法已被广泛地应用于油气成藏时期确定,但对于多旋回叠合盆地仍存在不确定性,即同一个均一温度可对应两个或者两个以上埋藏深度.为减少这种多解性,对研究区63件样品进行了岩石学观察、碳氧同位素测试和流体包裹体系统分析测试,运用成岩序列约束及流体包裹体均一温度和捕获压力双参数来约束确定油气成藏年龄.在确定油包裹体及其同期盐水包裹体的均一温度、油包裹体的气泡填充度和包裹体油组分基础之上,利用PVTsim热动力学模拟软件恢复油包裹体最小捕获压力.将油包裹体捕获压力和其同期盐水包裹体均一温度投影到埋藏史图上来求取油气充注年龄,再把充注年龄标注在同一时间轴上进行油气成藏期次划分和成藏时期确定.结果表明,塔里木盆地玉北地区奥陶系存在3期油充注:第一期发生在加里东晚期447.1~444.0 Ma;第二期发生在海西晚期295.0~274.7 Ma;第三期发生在喜山期14.7~8.8 Ma.第一期和第二期充注的油气在构造"跷跷板"运动过程中发生了破坏或调整,第三期充注油气才可能是勘探的现实目标.Abstract: Although the method of homogenization temperature (Th) of fluid inclusion projecting on burial history diagram with thermal curve to obtain hydrocarbon charging times has been widely and effectively used,some uncertainty arises on the multi-cycle superimposed basins,in which one Th can appear at two or more than two depths. For the purpose of reducing the multiple solutions,63 samples of the Ordovician in Yubei area have been employed to make diagenetic observation,carbon and oxygen isotope analyses,and fluid inclusions analyses. Diagenetic sequence and two parameters of Th and trapping pressure (Pt) have been utilized to doubly constrain the times of hydrocarbon charging. When the Th of oil inclusion and its coeval aqueous inclusion,gas to liquid ratio of oil inclusion and chemical components of oil inclusion are obtained,the trapping pressure of the oil inclusion can be thermodynamically modeled by the software PVTsim. After the Pt of oil inclusion and the Th of its coeval aqueous inclusion were projected doubly on burial history diagram for each well,the hydrocarbon charging time would be determined. Then,we put all the charging times on the same geological age axis,three events of hydrocarbon charging occurred in the Ordovician of Yubei area,Tarim basin:the first event took place from 447.1 Ma to 444.0 Ma (during the Late Caledonian); the secondary event from 295.0 Ma to 274.7 Ma (during the Late Hercynian); the tertiary event from 14.7 Ma to 8.8 Ma (during the Late Himalaya). The oil pools charged by the first and the secondary event were destroyed or adjusted in the process of tectonic movement,and the oil pools charged by the tertiary event maybe the favorable exploration target.
-
图 2 玉北地区奥陶系岩心及薄片裂缝、溶孔、溶洞充填方解石和白云石胶结物成岩作用显微照片
a.YB3井,5 444.90 m,O1-2y,泥晶灰岩中发育两组裂缝,早期方解石细脉含有沥青,晚期裂缝充填方解石较粗,岩心照片;b.YB9井,6 561.70 m,O1-2y,泥晶灰岩中溶孔充填方解石,被充填的溶孔具有明显的组构选择性(b为单偏光照片);c,c’.YB9井,6 883.25 m,O1-2y,颗粒灰岩中沿扩溶缝合线发育的白云石呈红色阴极光,溶孔充填方解石呈橘色阴极光.缝合线内充填有沥青(c为单偏光照片,c’为同视域阴极光照片);d,d’,YB4井,5 843.13 m,O1-2y,亮晶胶结鲕粒灰岩中裂缝充填方解石呈暗色阴极光,并分布有白云石呈红色阴极光和沥青(d为单偏光照片,d’为同视域阴极光照片);e,YB9井,6 883.25 m,O1-2y,颗粒灰岩中溶孔充填白云石和方解石,其中白云石呈红色阴极光被溶蚀,方解石至少存在两个世代,早期方解石胶结物呈暗色阴极光,晚期方解石胶结物呈橘黄色阴极光(e为阴极光照片);f,f’,YB1-1井,5 984.50 m,O1-2y,泥晶灰岩中发育两组裂缝,早期裂缝充填方解石呈暗色阴极光,晚期裂缝充填方解石呈橘黄色阴极光,且含有沥青(f为单偏光照片,f’为同视域阴极光照片).
Fig. 2. Micrographs of the Ordovician cores and thin sections showing the sequences of calcite and dolomite cement filling in fractures, pores and vugs in Yubei area
图 4 玉北地区奥陶系油包裹体显微荧光照片
a,a’.YB9井,6 846.90 m,O1-2y,泥晶灰岩溶孔充填方解石中检测到单一液相盐水包裹体(a,a’均为单偏光照片);b,b’. YB9井,6 561.70 m,O1-2y,泥晶灰岩溶孔充填方解石中检测到次生蓝绿色荧光油包裹体(b为单偏光照片,b’为荧光照片);c. YB9井,6 561.70 m,O1-2y,泥晶灰岩溶孔边缘白云石中检测到原生黄绿色荧光油包裹体(c为荧光照片);d,d’. YB3井,5 444.90 m,O1-2y,早期裂缝中检测到原生黄绿色荧光油包裹体(d为单偏光照片,d’为荧光照片);e,e’. YB9井,6 847.20 m,O1-2y,泥晶灰岩溶孔充填方解石中检测到次生黄绿色荧光油包裹体(e为单偏光照片,e’为荧光照片);f,f’. YB1-1井,5 984.50 m,O1-2y,泥晶灰岩晚期裂缝中检测到原生黄色荧光油包裹体,并含有沥青(f为单偏光照片,f’为荧光照片)
Fig. 4. Fluorescent micrographs of oil inclusions in the Ordovician of Yubei area
图 7 玉北地区奥陶系油包裹体及其同期盐水包裹体产状、荧光颜色和均一温度与单个油包裹体3D模型重建
a,a’. YB9-6,6 561.70 m,O1-2y,灰岩.灰岩颗粒间方解石胶结物中检测到气液两相蓝绿色荧光的油包裹体及其同期气液两相盐水包裹体(a为透射光照片,a’为荧光照片),A1~A6为该油包裹体在激光扫描共聚焦显微镜下沿Z轴方向的6张切片,切片间步长为0.4 μm,A7为该油包裹体3D模型重建;b,b’. YB9-11,6 847.20 m,O1-2y,灰岩.溶孔充填方解石中检测到气液两相黄绿色荧光的油包裹体及其同期气液两相盐水包裹体(c为透射光照片,B’为荧光照片),B1~B6为该油包裹体在激光扫描共聚焦显微镜下沿Z轴方向的6张切片,切片间步长为0.5 μm,B7为该油包裹体3D模型重建;c,c’. YB3-3,5 444.90 m,O1-2y,灰岩.裂缝充填方解石中检测到气液两相黄绿色荧光的油包裹体及其同期气液两相盐水包裹体(c为透射光照片,c’为荧光照片)C1~C6为该油包裹体在激光扫描共聚焦显微镜下沿Z轴方向的6张切片,切片间步长为0.4 μm,C7为该油包裹体3D模型重建.红色箭头所指为油包裹体均一温度,蓝色箭头所指为同期盐水包裹体温度
Fig. 7. Occurences, fluorescence colors and homogenization temperature of oil inclusions and its coeval aqueous inclusions and 3D model of individual oil inclusion taken with Confocal Laser Scanning Microscope in the Ordovician of Yubei area
表 1 玉北地区奥陶系方解石胶结物δ13C - δ18O数据表
Table 1. Data of the δ13C - δ18O of calcite cement in the Ordovician of Yubei area
井号 采样类型 δ13CVPDB(‰) δ13CVPDB(‰)均值 δ18OVPDB(‰) δ18OVPDB(‰)均值 YB3 裂缝充填方解石 -1.26~-2.70 -2.16 -7.71~-8.99 -8.22 YB9 泥晶灰岩 0.60 -5.05 YB9 溶孔充填方解石 -0.89~-1.60 -1.18 -8.31~-9.80 -8.97 YB9 溶洞充填方解石 0.03~-1.54 -0.76 -7.77~-8.36 -8.06 YB10 溶孔充填方解石 -0.93~-1.49 -1.21 -4.70~-5.60 -5.15 表 2 玉北地区奥陶系流体包裹体平均均一温度数据表
Table 2. Data of averaged homogenization temperature of fluid inclusions in the Ordovician of Yubei area
层位 产状 油包裹体荧光颜色 油包裹体平均均一温度(℃) 同期盐水包裹体平均均一温度(℃) 充注幕次 O1-2y 粒间方解石胶结物 黄绿色 55.1~61.5 — 第一幕 蓝绿色 50.6~64.0 69.5~71.3 溶孔充填方解石 黄色 50.2~60.2 65.4~71.2 黄绿色 49.1~64.5 63.9~78.5 溶孔充填方解石 — — 78.7~99.2 第二幕 粒间方解石胶结物 黄绿色 63.8~88.4 95.8~118.2 第三幕 溶孔充填方解石 黄色 59.6~85.9 92.2~112.7 黄绿色 68.2~85.3 101.7~117.6 裂缝充填方解石 黄绿色 55.2~58.5 105.8~113.2 粒间方解石胶结物 黄绿色 106.6~107.4 120.3~126.7 第四幕 溶孔充填方解石 黄绿色 88.4~90.5 118.2~132.1 裂缝充填方解石 黄绿色 72.8~85.1 118.4~125.7 溶孔充填方解石 黄绿色 102.7~104.6 135.8~146.4 第五幕 表 3 玉北地区奥陶系油包裹体组分预测
Table 3. Component prediction of oil inclusion in the Ordovician of Yubei area
井号 深度(m) 荧光颜色 λmax (nm) QF535 油包裹体均一温度(℃) 同期盐水包裹体均一温度(℃) 气泡填充度(%) C1 (%) C7+ (%) YB1-1 5 984.50 黄绿色 541 1.81 79.5 96.8 4.96 29.70 44.54 YB1-1 5 984.50 黄绿色 546 1.95 80.5 128.5 10.02 44.56 27.34 YB1-1 5 985.50 黄绿色 546 1.68 80.1 98.5 5.01 29.41 44.87 YB3 5 444.90 黄绿色 545 1.74 72.8 118.4 7.97 42.61 29.61 YB3 5 450.00 黄绿色 522 1.21 86.4 95.8 8.03 38.82 34.16 YB9 6 561.70 蓝绿色 500 1.19 60.2 69.5 2.01 12.54 63.36 YB9 6 846.00 黄绿色 541 1.56 77.6 111.5 2.97 13.10 62.64 YB9 6 846.90 黄色 540 1.55 80.6 112.7 3.98 21.67 53.02 YB9 6 847.20 黄色 539 1.40 54.6 65.4 1.80 14.44 61.00 YB9 6 847.20 黄绿色 537 1.51 71.4 117.6 1.55 2.35 92.82 YB9 6 847.20 黄色 542 1.59 59.6 92.2 1.53 5.44 75.59 YB9 6 883.10 黄色 542 1.62 60.2 71.2 2.03 12.54 63.36 YB9 6 883.10 黄绿色 543 1.52 74.5 101.7 2.98 19.81 54.99 YB9 6 883.25 黄色 542 1.72 77.6 109.1 3.94 23.56 51.04 YB10 6 634.00 黄绿色 538 1.43 63.8 96.0 2.07 9.64 67.38 YB10 6 634.20 黄绿色 538 1.36 83.9 118.0 5.02 27.45 46.95 YB10 6 634.00 蓝绿色 509 1.44 64.0 71.3 2.51 16.82 58.26 表 4 玉北地区奥陶系流体包裹体均一温度和最小捕获压力约束充注年龄数据表
Table 4. Data of homogenization temperature and trapping pressure of fluid inclusions constraint on chronology of hydrocarbon charging in the Ordovician of Yubei area
井号 深度(m) 宿主矿物 Thoil (℃) Thaq (℃) 均一温度确定年龄(Ma) Pt (MPa) 捕获深度(m) 捕获压力确定年龄(Ma) △t (Ma) 期次 t1 t2 YB9 6 561.70 粒间方解石胶结物 60.2 69.5 445.0 341.9 11.05 1 127.83 447.1 2.1 第一期 YB10 6 634.00 粒间方解石胶结物 64.0 71.3 444.0 336.8 11.27 1 149.54 446.3 2.3 YB9 6 883.10 溶孔充填方解石 60.2 71.2 444.1 336.9 12.18 1 242.53 445.4 1.3 YB9 6 847.20 溶孔充填方解石 54.6 65.4 445.2 349.6 12.67 1 292.60 444.2 1.0 YB9 6 847.20 溶孔充填方解石 59.6 92.2 295.0 - 25.02 2 553.46 290.3 4.7 第二期 YB10 6 634.00 粒间方解石胶结物 63.8 96.0 292.5 - 25.25 2 576.78 289.5 3.0 YB9 6 846.00 溶孔充填方解石 77.6 111.5 284.5 20.1 26.17 2 670.39 287.6 3.1 YB9 6 846.90 溶孔充填方解石 80.6 112.7 287.4 19.6 27.65 2 821.38 284.4 3.0 YB9 6 883.25 溶孔充填方解石 77.6 109.1 287.0 21.3 28.13 2 870.76 282.9 4.1 YB9 6 883.10 溶孔充填方解石 74.5 101.7 289.9 24.5 28.44 2 902.01 282.6 7.3 YB1-1 5 984.50 溶孔充填方解石 79.5 96.8 281.2 - 22.78 2 324.32 282.0 0.8 YB1-1 5 985.50 粒间方解石胶结物 80.1 98.5 282.5 - 23.24 2 371.69 281.8 0.7 YB10 6 634.20 粒间方解石胶结物 83.9 118.0 281.4 18.2 30.84 3 146.68 284.6 3.2 YB9 6 847.20 溶孔充填方解石 71.4 117.6 281.8 18.6 32.43 3 308.97 277.0 4.8 YB3 5 450.00 粒间方解石胶结物 86.4 95.8 276.2 - 23.70 2 418.59 274.7 1.5 YB1-1 5 984.50 裂缝充填方解石 80.5 128.5 11.0 276.3 46.02 4 695.49 14.8 3.8 第三期 YB3 5 444.90 裂缝充填方解石 72.8 118.4 8.8 281.1 44.12 4 502.20 9.7 0.9 注:Thoil为油包裹体均一温度;Thaq为同期盐水包裹体均一温度;t1, t2为流体包裹体均一温度厘定的油气充注年龄;Pt为流体包裹体捕获压力;△t为流体包裹均一温度和捕获压力厘定充注年龄的差值 -
[1] Aplin, A. C., Macleod, G., Larter, S. R., et al., 1999. Combined Use of Confocal Laser Scanning Microscopyand PVT Simulation for Estimating the Composition Andphysical Properties of Petroleum in Fluid Inclusions. Marine and Petroleum Geology, 16(2): 97-110. https://doi.org/10.1016/s0264-8172(98)00079-8 [2] Bourdet, J., Pironon, J., Levresse, G., et al., 2010. Petroleum Accumulation and Leakage in a Deeply Buried Carbonate Reservoir, Níspero Field (Mexico). Marine and Petroleum Geology, 27(1): 126-142. https://doi.org/10.1016/j.marpetgeo.2009.07.003 [3] Chen, H. H., Dong, W. L., Zhang, S. L., et al., 2002. Application of Fluid Inclusion in Palaeopressure Modeling Research. Oil & Gas Geology, 23(3): 207-211 (in Chinese with English abstract). [4] Chen, H. H., 2014. Microspectrofluorimetric Characterization and Thermal Maturity Assessment of Individual Oil Inclusion. Acta Petrolei Sinica, 35(3): 584-590 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201403023 [5] Dickson, J., 1990. Carbonate Mineralogy and Chemistry. Blackwell Scientific Publications, Oxford. [6] Ding, W. L., Qi, L. X., Yun, L., et al., 2012. The Tectonic Evolution and Its Controlling Effects on the Development of Ordovician Reservoir in Bachu-Markit Tarim Basin. Acta Petrologica Sinica, 28(8): 2542-2556 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201208020 [7] Du, Y. M., Yu, T. X., Hao, J. L., et al., 2013. Fracture characteristics and control action on Hydrocarbon Accumulation in Yubei Area of Tarim Basin. Fault-Block Oil & Gas Field, 20:170-174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkyqt201302009 [8] Ferket, H., Guilhaumou, N., Roure, F., et al., 2011. Insights from Fluid Inclusions, Thermal and PVT Modeling for Paleo-Burial and Thermal Reconstruction of the Córdoba Petroleum System (NE Mexico). Marine and Petroleum Geology, 28(4): 936-958. https://doi.org/10.1016/j.marpetgeo.2010.01.020 [9] Goldstein, R. H., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. SEM Short Course 31. Society of Sedimentary Geology (SEPM), Tulsa, 1-199. [10] Guo, C. T., Gao, J., Li, Z., et al., 2017. Deposition and Provenance Records of Upper Devonian to Low Carboniferous Sandstones from Bachu Area, Northwest Tarim Basin: Implications for Tectonic Evolution. Earth Science, 42(3):421-434 (in Chinese with English abstract). [11] Li, P. J., Chen, H. H., Tang, D. Q., et al., 2017. Coupling Relationship between NE Strike-Slip Faults and Hypogenic Karstification in Middle-Low Ordovician of Shunnan Area, Tarim Basin, Northwest China. Earth Science, 42(1):93-104 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201701007 [12] Liu, B., Shen, K., 1999. Thermodynamic of Fluid Inclusions. Geological Press, Beijing (in Chinese). [13] Liu, Z. B., Wu, S. Q., Liu, S. L., et al., 2013. Types and Main Controlling Factors of Ordovician Reservoirs in Yubei Area, Tarim Basin. Acta Petrolei Sinica, 34(4): 638-646 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201304003 [14] Liu, D. H., Lu, H. Z., Xiao, X. M., 2007. Petroleum Inclusion and Its Application in Petroleum Exploration and Development. Guangdong Science and Technology Press, Guangdong(in Chinese). [15] Lu, Z. Y., Chen, H. H., Yun, L., et al., 2016. The Coupling Relationship between Hydrothermal Fluid and the Hydrocarbon Gas Accumulation in Ordovician of Shunnan Gentle Slope, Northern Slope of Tazhong Uplift. Earth Science, 41(3):487-498 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201603016 [16] Lv, X. X., Yang, H. J., Bai, Z. K., 2010. Hydrocarbon Exploration Prospects in the East Section of the Maigaiti Slope in the Tarim Basin. Petroleum Geology & Experiment, 32(6): 521-526 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201006001 [17] Lv, H. T., Zhang, Z. P., Shao, Z. B., et al., 2010. Structural Evolution and Exploration Significance of the Early Paleozoic Palaeouplifts in Bachu-Maigaiti Area, the Tarim Basin. Oil & Gas Geology, 31(1): 76- 83 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201001013 [18] Ma, H. Q., Wang, S. Y., Lin, J., 2006. Hydrocarbon Migration and Accumulation Characteristics in the Bachu-Maigaiti Area of the Tarim Basin. Petroleum Geology & Experiment, 28(3): 243-248 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz200603009 [19] Moore, C. H., Wade, W. J., 2013. Carbonate Reservoirs: Porosity and Diagenesis in a Sequence Stratigraphic Framework. Elsevier. [20] Munz, I. A., Wangen, M., Girard, J. P., et al., 2004. Pressure-Temperature-Time-Composition (P-T-t-X) Constraints of Multiple Petroleum Charges in the Hild Field, Norwegian North Sea. Marine and Petroleum Geology, 21(8): 1043-1060. https://doi.org/10.1016/j.marpetgeo.2004.05.006 [21] Ni, B., Tang, L. J., Guo, Y., et al., 2017. Analysis of Burial History and Thermal History in Yubei Area, Tarim Basin. Geoscience, 31(2): 357-366 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201702014 [22] Ping, H. W., Chen, H. H., Song, G. Q., et al., 2013. Individual Oil Inclusion Composition Prediction and Its Application in Oil and Gas Accumulation Studies. Earth Science, 37(4): 815-824 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201204019 [23] Ping, H. W., Chen, H. H., Thiéry, R., 2013. Improvement on Paleopressure Prediction Using Petroleum Inclusions Thermodynamic Modeling: Saturation Pressure Prediction and Volume Calibration. Earth Science, 38(1): 143-155(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201301014 [24] Ping, H. W., Chen, H. H., 2014. Prediction Model of Petroleum Inclusion Trapping Pressure Constrained by Methane Mole Content. Earth Science, 39(1): 79-90 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201401008 [25] Pironon, J., 2004. Fluid Inclusions in Petroleum Environments: Analytical Procedure for PTX Reconstruction. Acta Petrologica Sinica, 20(6): 1333-1342. [26] Qian, Y. X., Yu, T. X., Zhou, L. F., et al., 2014. Lithofacies, Diagenesis Zone and Reservoir Origin of the Ordovician in Eastern Tectonic Belt of the Maigaiti Slope. Oil & Gas Geology, 35(6): 870-882 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201406014 [27] Qiu, H. B., Tan, G. H., Cao, Z. C., et al., 2013. Tectonic Evolution and Its Relation to Hydrocarbon Accumulation in Yubei Area, Tarim Basin. Xinjiang Geology, 31(S1): 28-33 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz2013z2007 [28] Salim, A., Sausse, J., Pironon, J., et al., 2008. 3D Confocal Scanning Laser Microscopy to Quantify Contact Angles in Natural Oil-Water Mixtures. Oil & Gas Science and Technology-Revue de l'IFP, 63(5): 645-655. https://doi.org/10.2516/ogst:2008011 [29] Si, S. H., Chen, H. H., Tan, X. F., et al., 2013. Hydrocarbon Accumulation Period and Its Carrier Systems in Ordovician Reservoir of Yubei Area, Markit Slope Tarim Basin. Earth Science, 38 (6): 1271-1280 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201306010 [30] Thiéry, R., Pironon, J., Walgenwitz, F., et al., 2002. Individual Characterization of Petroleum Fluid Inclusions (Composition and P-T Trapping Conditions) by Microthermometry and Confocal Laser Scanning Microscopy: Inferences from Applied Thermodynamics of Oils. Marine and Petroleum Geology, 19(7): 847-859. https://doi.org/10.1016/s0264-8172(02)00110-1 [31] Wang, C. W., Zhou, H. Y., Jiang, L. N., et al., 2008. The Method Study on the Determination of Gas and Liquid Ratio of Fluid Inclusion Using Laser Confocal Scanning Microscope. Modern Scientific Instruments, 1: 20-22 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdkxyq200801006 [32] Yin, G., Ni, S. J., 2009. Isotope Geochemistry. Geological Publishing House, Beijing (in Chinese). [33] You, S. G., 2013. Controlling Effect of Paleotectonic Evolution on Ordovician Karst Reservoir in Yubei Area of Tarim Basin (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [34] Zhang, Z. P., Liu, S. L., Yang, Z. Y., et al., 2011. Tectonic Evolution and Its Petroleum Geological Significances of the Maigaiti Slop, Tarim Basin. Oil & Gas Geology, 32(6): 909-918 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201106014 [35] 陈红汉, 董伟良, 张树林, 等, 2002.流体包裹体在古压力模拟研究中的应用.石油与天然气地质, 23(3): 207-211. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz200203002 [36] 陈红汉, 2014.单个油包裹体显微荧光特征与热成熟度评价.石油学报, 35(3): 584-590. [37] 丁文龙, 漆立新, 云露, 等, 2012.塔里木盆地巴楚-麦盖提地区古构造演化及其对奥陶系储层发育的控制作用.岩石学报, 28(8): 2542-2556. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201208020 [38] 杜永明, 余腾孝, 郝建龙, 邱华标, 2013.塔里木盆地玉北地区断裂特征及控制作用.断块油气田, 20(0):170-174. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201302009 [39] 郭春涛, 高剑, 李忠, 等, 2017.塔里木盆地巴楚地区上泥盆统-下石炭统沉积-物源记录及其构造演化.地球科学, 42(3):421-434. doi: 10.3799/dqkx.2017.032 [40] 李培军, 陈红汉, 唐大卿, 等, 2017.塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系.地球科学, 42(1):93-104. http://d.old.wanfangdata.com.cn/Periodical/dqkx201701007 [41] 刘斌, 沈昆, 1999.流体包裹体热力学.北京:地质出版社. [42] 刘德汉, 卢焕章, 肖贤明, 2007.油气包裹体及其在石油勘探和开发中的应用.广州:广东科技出版社. [43] 刘忠宝, 吴仕强, 刘士林, 等, 2013.塔里木盆地玉北地区奥陶系储层类型及主控因素.石油学报, 34(4): 638-646. http://d.old.wanfangdata.com.cn/Periodical/syxb201304003 [44] 鲁子野, 陈红汉, 云露, 等, 2016.塔中顺南缓坡奥陶系热流体活动与天然气成藏的耦合关系.地球科学, 41(3):487-498. doi: 10.3799/dqkx.2016.040 [45] 吕海涛, 张仲培, 邵志兵, 等, 2010.塔里木盆地巴楚一麦盖提地区早古生代古隆起的演化及其勘探意义, 石油与天然气地质, 31(1) : 76-83. [46] 吕修祥, 杨海军, 白忠凯, 等, 2010.塔里木盆地麦盖提斜坡东段油气勘探前景.石油实验地质, 32(6): 521-526. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201006001 [47] 马红强, 王恕一, 蔺军, 2006.塔里木盆地巴楚-麦盖提地区油气运聚与成藏.石油实验地质, 28(3): 243-248. http://d.old.wanfangdata.com.cn/Periodical/sysydz200603009 [48] 倪斌, 汤良杰, 郭颖, 等, 2017.塔里木盆地玉北地区埋藏史及热史分析.现代地质, 31(2): 357-366. http://d.old.wanfangdata.com.cn/Periodical/xddz201702014 [49] 平宏伟, 陈红汉, Thiéry, R, 2013a.石油包裹体热动力学模拟古压力改进:饱和压力预测和体积校正.地球科学, 38(1): 143-155. doi: 10.3799/dqkx.2013.014 [50] 平宏伟, 陈红汉, 宋国奇, 等, 2013b.单个油包裹体组分预测及其在油气成藏研究中的应用.地球科学, 37(4): 815-824. http://www.earth-science.net/article/id/2287 [51] 平宏伟, 陈红汉, 2014.甲烷摩尔含量约束的石油包裹体捕获压力预测模型.地球科学, 39(1): 79-90. doi: 10.3799/dqkx.2014.008 [52] 钱一雄, 余腾孝, 周凌方, 等, 2014.麦盖提斜坡东部构造带奥陶系岩相、成岩作用带与储层成因.石油与天然气地质, 35(6): 870-882. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201406014 [53] 邱华标, 谭广辉, 曹自成, 等, 2013.塔里木盆地玉北地区构造演化与油气聚集关系.新疆地质, 31(S1): 28-33. http://d.old.wanfangdata.com.cn/Periodical/xjdz2013z2007 [54] 斯尚华, 陈红汉, 谭先锋, 等, 2013.塔里木盆地麦盖提斜坡玉北地区奥陶系油气输导体系与成藏期.地球科学, 38 (6): 1271-1280. doi: 10.3799/dqkx.2013.124 [55] 王存武, 邹华耀, 姜丽娜, 等, 2008.激光扫描共聚焦显微镜精确测量有机包裹体气液比方法研究.现代科学仪器, 1: 20-22. http://d.old.wanfangdata.com.cn/Periodical/xdkxyq200801006 [56] 尹观, 倪师军, 2009.同位素地球化学.北京:地质出版社. [57] 游声刚, 2013.塔里木盆地玉北地区古构造演化对奥陶系岩溶储层的控制作用(硕士学位论文).北京: 中国地质大学(北京). [58] 张仲培, 刘士林, 杨子玉, 等, 2011.塔里木盆地麦盖提斜坡构造演化及油气地质意义.石油与天然气地质, 32(6):909-918. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201106014