Petrogenesis and Magmatic Evolution of Highly Fractionated Granite and Their Constraints on Sn-(Li-Rb-Nb-Ta) Mineralization in the Weilasituo Deposit, Inner Mongolia, Southern Great Xing'an Range, China
-
摘要: 近年来,大兴安岭南段维拉斯托矿区深部Sn-Li找矿取得重大突破,但人们目前对与成矿作用密切相关的深部花岗岩体成因与演化及其对稀有金属矿化存在怎样的制约尚不清楚.为此,针对该岩体开展了年代学、地球化学和Sr-Nd-Hf同位素组成研究,获得的锆石LA-ICP-MS U-Pb年龄为130.7±0.5 Ma(MSWD=0.53),属早白垩世岩浆活动产物.化学组成上表现为高硅、富碱(高钠),贫钙、镁、铁和极低P2O5(< 0.01%)含量特征,铝饱和指数(A/CNK)集中于1.02~1.08,全岩Rb/Sr、Nb/Ta比值高,Zr/Hf比值低(< 4).岩体富Cs、Rb、Th、U、Nb、Ta以及Li、F等元素,亏损Ba、Sr、Ti和稀土元素,轻重稀土比值小,并具显著的四分组效应和Eu负异常(δEu=0.02~0.15),锆石饱和温度(691~727℃)和Zr+Nb+Ce+Y含量均低于A型花岗岩,以上综合特征反映其应属准铝-弱过铝质高分异I型花岗岩类.岩体具正的εNd(t)(+1.10~+3.75)值和相对均一的εHf(t)(+4.2~+8.7)以及年轻的二阶段模式年龄(T(Nd)DMC=607~829 Ma;T(Hf)DMC=627~914 Ma),说明成矿岩体的岩浆源区可能来自于含大量幔源组分新生下地壳的部分熔融.Sn-(稀有)成矿受岩浆后期的高度分异演化和晚期流体-熔体相互作用共同影响,并与外围的脉状矿体共同构成岩浆-热液成矿系统.Abstract: In recent years, great breakthroughs have been made in the deep Sn-Li prospecting in the Weilasituo area of the southern of Great Xing'an Range. However, the genesis and evolution of deep hidden rock mass closely related to the mineralization has not been studied in depth. In this paper, this cancealed granite was selected as example for a detailed geochronological, geochemical and Sr-Nd-Hf isotopic composition study in order to elucidate their petrogenesis. LA-ICP-MS U-Pb zircon age for Weilasituo pluton was 130.7±0.5 Ma (MSWD=0.53), indicating that it was generated in Early Cretaceous. Chemically, Weilasituo granite is metaluminous-(weakly) peraluminous (A/CNK concentrated in the range of 1.02-1.08), which shows high contents of silica, alkalis and natrium, low abundances of calcium, magnesium, iron and extremely low P2O5(< 0.01%), with high Rb/Sr, Nb/Ta and low Zr/Hf ratios. They are also enriched in Cs, Rb, Th, U, Nb, Ta, Li, F and depleted in Ba, Sr, Ti, REE elements with low LREE/HREE ratios and obviously negative Eu abnormality (δEu=0.02-0.15). Zircon saturation temperatures (691-727℃) and Zr+Nb+Ce+Y contents of Weilasituo pluton are less than those of the low-limit values of the A-type granite. Integrated geological and geochemical data suggest that the pluton was highly fractionated I-type granite. The granite has positive εNd(t)(+1.10-+3.75) and relatively high εHf(t)(+4.2-+8.7) and young two-stage Nd and Hf model ages (T(Nd)DMC=607-829 Ma; T(Hf)DMC=627-914 Ma), suggesting that the rock was dominantly derived from the partial melting of a juvenile lower crust with a mass of mantle magma mixed into the crust, followed by fractional crystallization during magma ascent. The Sn-(rare-metal) mineralization of the pluton was controlled jointly both by high fractionation of the magma and fluid-melt interaction during the late stage. A complete magmatic-hydrothermal system was revealed by the Sn-(rare-metal) mineralization granite with the surrounding vein ore bodies.
-
图 1 大兴安岭南段大地构造位置图(a)及维拉斯托-拜仁达坝矿田地质简图(b)
图a据Wang et al.(2017)修改;图b底图据Liu et al.(2016)修改;1.第四系;2.上侏罗统满克头鄂博组流纹岩;3.中侏罗统万宝山组泥岩;4.上二叠统林西组粉砂质板岩;5.下二叠统大石寨组砂岩;6.上石炭统阿木山组碳酸盐岩;7.上石炭统本巴图组海相碎屑岩;8.古元古界黑云斜长片麻岩;9.早白垩世花岗斑岩和石英二长花岗岩;10.早白垩世中细粒花岗岩;11.石炭纪石英闪长岩;12.断层;13.复式背斜;14.脉状矿体;15.矿床
Fig. 1. Sketch map showing the location of southern Great Xing'an Range (a), the simplified geological map of the Weilasituo and Bairendaba ore deposits (b)
图 2 维拉斯托北部的Sn-Zn矿区地质简图(a)和15勘探线成矿岩体及成矿元素垂向分带(b、c)
图a据Wang et al.(2017)修改;图b和图c钻孔数据来自内蒙古维拉斯托矿业有限责任公司, 2013, 内蒙古自治区克什克腾旗维拉斯托矿区锡多金属矿勘探报告;1.第四系;2.元古界黑云斜长片麻岩;3.角砾岩筒;4.石英闪长岩;5.似斑状铁叶云母钠长石花岗岩带;6.含天河石铁锂云母钠长石花岗岩带;7.天河石铁锂云母钠长石花岗岩带;8.含黄玉铁锂云母钠长石花岗岩带;9.强云英岩化花岗岩;10.黄玉铁锂云母花岗似伟晶岩壳;11.脉状矿体;12.岩性或蚀变分带界线;13.测年样品
Fig. 2. The simplified geological map of the Sn-Zn deposit in the north of Weilasituo (a), cross section of the No.15 exploration line at Weilasituo showing the vertical zonation of the granite (b and c)
图 3 维拉斯托岩体典型岩性手标本及镜下岩相学显微特征
a.灰白色似斑状铁叶云母钠长石花岗岩;b.淡蓝绿色的含天河石铁锂云母钠长石花岗岩;c.蓝绿色的天河石铁锂云母钠长石花岗岩,可见蓝绿色的天河石斑晶;d、g.叠加云英岩化的天河石铁锂云母钠长石花岗岩,发育小团块状黝锡矿、闪锌矿矿化;e.含萤石细脉体的天河石铁锂云母钠长石花岗岩;f.石英+铁锂云母+黝锡矿±闪锌矿平直脉,脉体两侧强云英岩化蚀变,天河石表现不明显;h.岩体上部沿裂隙充填的石英+铁锂云母±黝锡矿±闪锌矿宽脉体,片状铁锂云母直径可达1~2 cm;i、j.糖粒状的黄玉铁锂云母花岗似伟晶岩及其镜下显微特征(正交偏光);k.似斑状钠长石花岗岩,石英斑晶内部含有自形钠长石和铁锂云母包裹体;l.天河石铁锂云母钠长石花岗岩,天河石包裹钠长石晶体,石英边部被细粒他形钠长石交代形成熔蚀结构;m.强云英岩化蚀变叠加的天河石铁锂云母钠长石花岗岩,石英+铁锂云母微细脉体围绕天河石充填并交代天河石斑晶;n.铁锂云母钠长石花岗岩,钠长石斑晶自形,具聚片双晶,铁锂云母斑晶多被钠长石熔蚀交代;o.天河石铁锂云母钠长石花岗岩中具有“拖尾”构造的石英斑晶;p.含黄玉铁锂云母钠长石花岗岩中显微晶洞构造,晶洞多被石英+铁锂云母±黄玉±黝锡矿充填;Qz.石英;Ab.钠长石;Am.天河石;Zin.铁锂云母;Top.黄玉;Sid.铁叶云母;FI.萤石;所有照片均在正交偏光下拍摄
Fig. 3. Photographs and photomicrographs of representative rock types and minerlization at the Weilasituo pluton
图 7 维拉斯托岩体SiO2-(Na2O+K2O)分类图(a)及A/CNK-A/NK图解(b)
图a据Middlemost(1994)修改,图中碱性与亚碱性分界线据Irvine and Baragar(1971);图b据Maniar and Piccoli(1989)修改
Fig. 7. SiO2-(Na2O+K2O) diagram (a) and A/CNK-A/NK plot (b) of the Weilasituo pluton
图 8 维拉斯托岩体稀土元素球粒陨石标准化配分曲线(a)及微量元素原始地幔标准化蛛网图(b)
图a标准化数值据Boynton(1984);图b标准化数值据McDonough and Sun(1995)
Fig. 8. Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized trace element spidergrams (b) of the Weilasituo pluton
图 9 维拉斯托成矿岩体的锆石εHf(t) vs. U-Pb年龄图解(a)及εNd(t) vs. TDMC值图解(b)
a.兴蒙造山带东段及燕山褶冲带数据引自Yang et al.(2006),Xiao et al.(2004)和Chen et al.(2009);b.兴蒙造山带及兴蒙造山带中的微陆块数据洪大卫等(2000);法国海西花岗岩引自Downes et al.(1997);喜马拉雅花岗岩数据引自Vidal et al.(1984)
Fig. 9. Plot of εHf(t) versus U-Pb ages (a) and εNd(t) versus TDMC (b) diagrams for the Weilasituo pluton
图 11 大兴安岭南段典型锡多金属矿床及铌钽等稀有金属矿床的成岩与成矿年龄分布
图中相关年龄引用情况:黄岗梁Sn-Zn-Fe矿床,据周振华等(2010)、Zhou et al.(2012)、翟德高等(2012);安乐Ag-Sn-W矿床,据Wang et al.(2001)、赵一鸣和张德全(1997);维拉斯托Sn-(稀有)矿床,据本文、刘翼飞等(2014)、祝新友等(2016)、郭贵娟(2016)、Wang et al.(2017)、刘瑞麟等(2018a);巴尔哲Nb-Y-Ta稀有金属矿床,据王一先和赵振华(1997);赵井沟Nb-Ta矿床,据高允等(2017);大井Sn-Cu-Pb-Zn矿床,据Ishiyama et al.(2008)、江思宏等(2012)、廖震等(2014);白音查干Sn多金属矿床,据姚磊等(2017);宝盖沟Sn矿床,据王国政(2002)
Fig. 11. The chronology of regional Sn-(Nb-Ta) rich intrusions and typical Sn-polymetallic deposits in the south segment of the Great Xing'an Range
图 12 维拉斯托矿床高分异I型花岗岩成因类型判别图解
a~c.地球化学散点图;图d、f中I、S、M和A分别代表I型、S型、M型和A型花岗岩;OGT代表未分异的I型、S型和M型花岗岩区;FG代表分异的I型花岗岩区;图d和f底图据Whalen et al.(1987);图d中的绿色和红色虚线区域据吴福元等(2017);图e底图据Sylvester(1989);图中实心符号为本文资料,空心符号为收集资料,据祝新友等(2016)、Wang et al.(2017)、Zhou et al.(2012)、姚磊等(2017)
Fig. 12. Various chemical discrimination diagrams for the highly fractionated I-type granite of the Weilasituo ore deposit
图 13 维拉斯托岩体分离结晶作用过程判别图解
图a中Sr、Ba在斜长石中的分配系数引自Blundy and Shimizu(1991),在其余矿物中的分配系数据Ewart and Griffin(1994);分异趋势线上的数字代表分离结晶程度,PlAn10.斜长石(An=10),PlAn50.斜长石(An=50).Kfs.钾长石;Bi.黑云母;Amp.角闪石;Zr.锆石;Sph.榍石;Ap.磷灰石;Mon.独居石;Allan.褐帘石;图例同图 12h
Fig. 13. Discrimination diagrams showing the fractional crystallization process of the Weilasituo granite pluton
图 14 维拉斯托岩体不同岩性相带标准矿物成分在Qz-Ab-Or体系中的演化趋势
实心圈代表Manning(1981)所做的Qz-Ab-Or-H2O-F体系实验中1 kbar条件下最低温熔体成分:M0.无F体系最低点;M1、M2和M3分别为含F量在1%、2%和4%时的最低点;图例同图 12h
Fig. 14. Variation of the representative rock types of Weilasituo granite pluton in normative Qz-Ab-Or system
图 15 维拉斯托矿床成矿岩体结晶分异演化、热液蚀变及矿化阶段的耦合关系
图中北大山和磨盘山岩体年龄数据刘翼飞(2009)、Wang et al.(2017)、刘瑞麟等(2018a);维拉斯托成矿岩体数据来自本文和祝新友等(2016);锡石U-Pb年龄引自Wang et al.(2017)、刘瑞麟等(2018a);辉钼矿Re-Os年龄翟德高等(2016)
Fig. 15. The relative age relationships of magmatic, alteration, and mineralization events at the Weilasituo deposit
-
[1] Blundy, J.D., Shimizu, N., 1991.Trace Element Evidence for Plagioclase Recycling in Calc-Alkaline Magmas.Earth and Planetary Science Letters, 102(2):178-197.https://doi.org/10.1016/0012-821x(91)90007-5 doi: 10.1016/0012-821X(91)90007-5 [2] Boynton, W.V., 1984.Cosmochemistry of the Rare Earth Elements: Meteorite Studies.In: Henderson, P., ed., Developments in Geochemistry.Elsevier, Amsterdam, 63-144. https://arizona.pure.elsevier.com/en/publications/cosmochemistry-of-the-rare-earth-elements-meteorite-studies [3] Chen, B., Jahn, B.M., Tian, W., 2009.Evolution of the Solonker Suture Zone:Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction-and Collision-Related Magmas and Forearc Sediments.Journal of Asian Earth Sciences, 34(3):245-257. https://doi.org/10.1016/j.jseaes.2008.05.007 [4] Deering, C.D., Keller, B., Schoene, B., et al., 2016.Zircon Record of the Plutonic-Volcanic Connection and Protracted Rhyolite Melt Evolution.Geology, 44(4):267-270.https://doi.org/10.1130/g37539.1 doi: 10.1130/G37539.1 [5] DePaolo, D.J., 1988.Neodymium Isotope Geochemistry.Spring-Verlag, New York. [6] Downes, H., Shaw, A., Williamson, B.J., et al., 1997.Sr, Nd and Pb Isotope Geochemistry of the Hercynian Granodiorites and Monzogranites, Massif Central, France.Chemical Geology, 136(1):99-122.https://doi.org/10.1016/S0009-2541(96)00141-6 http://www.sciencedirect.com/science/article/pii/S0009254197000600 [7] Ewart, A., Griffin, W.L., 1994.Application of Proton-Microprobe Data to Trace-Element Partitioning in Volcanic Rocks.Chemical Geology, 117(1-4):251-284. https://doi.org/10.1016/0009-2541(94)90131-7 [8] Gao, Y., Sun, Y., Zhao, Z., et al., 2017.40Ar-39Ar Dating of Muscovite from the Zhaojinggou Nb-Ta Polymetallic Deposit in Wuchuan County of Inner Mongolia and Its Geological Implications.Rock and Mineral Analysis, 36(5):551-558 (in Chinese with English abstract). [9] Geng, J.Z., Li, H.K., Zhang, J., et al., 2011.Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS.Geological Bulletin of China, 30(10):1508-1513 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201110005.htm [10] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.https://doi.org/10.1016/s0024-4937(02)00082-8 doi: 10.1016/S0024-4937(02)00082-8 [11] Guo, G.J., 2016.Discussion on the Geological Characteristics and Genesis of the Weilasituo Tin Polymetallic Deposit in Inner Mongolia (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract). [12] Guo, L.X., Liu, J.M., Zeng, Q.D., 2018.Fluid Inclusion Characteristics of the Weilasituo Sn Polymetallic Ore Deposit, Inner Mongolia, China.Earth Science Frontiers, 25(1):168-181 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201801012 [13] Harrison, T.M., Watson, E.B., 1984.The Behavior of Apatite during Crustal Anatexis:Equilibrium and Kinetic Considerations.Geochimica et Cosmochimica Acta, 48(7):1467-1477.https://doi.org/10.1016/0016-7037(84)90403-4 doi: 10.1016-0016-7037(84)90403-4/ [14] Hong, D.W., Wang, S.G., Xie, X.L., et al., 2000.Genesis of Positive εNd(t) Granitoids in the Da Hinggan Mts-Mongolia Orogenic Belt and Growth Continental Crust.Earth Science Frontiers, 7(2):441-456 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200002016.htm [15] Irber, W., 1999.The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites.Geochimica et Cosmochimica Acta, 63(3-4):489-508.https://doi.org/10.1016/s0016-7037(99)00027-7 doi: 10.1016/S0016-7037(99)00027-7 [16] Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055 [17] Ishiyama, D., Sato, R., Mizuta, T., et al., 2008.Characteristic Features of Tin-Iron-Copper Mineralization in the Anle-Huanggangliang Mining Area, Inner Mongolia, China.Resource Geology, 51(4):377-392.https://doi.org/10.1111/j.1751-3928.2001.tb00109.x doi: 10.1111/j.1751-3928.2001.tb00109.x/pdf [18] Jiang, S.H., Liang, Q.L., Liu, Y.F., et al., 2012.Zircon U-Pb Ages of the Magmatic Rocks Occurring in and around the Dajing Cu-Ag-Sn Polymetallic Deposit of Inner Mongolia and Constrains to the Ore-Forming Age.Acta Petrologica Sinica, 28(2):495-513 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202012 [19] Keppler, H., 1993.Influence of Fluorine on the Enrichment of High Field Strength Trace Elements in Granitic Rocks.Contributions to Mineralogy and Petrology, 114(4):479-488.https://doi.org/10.1007/bf00321752 doi: 10.1007/BF00321752 [20] Li, J.K., Wang, C.H., Feng, W.J., et al., 2017.A Granite Pegmatite Type Lithium Mica Deposit was Found in the Northwest of Yunnan.Mineral Deposits, 36(6):1453-1455 (in Chinese). [21] Liao, Z., Wang, Y.W., Wang, J.B., et al., 2014.In-Situ LA-MC-ICP-MS Cassiterite U-Pb Dating of Dajing Sn Polymetallic Deposit and Its Significance.Mineral Deposits, 33(S1):421-422 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201403024.htm [22] Liu, C.S., Chen, X.M., Chen, P.R., et al., 2003.Subdivision, Discrimination Criteria and Genesis for A-Type Rock Suites.Geological Journal of China Universities, 9(4):573-591 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200304010.htm [23] Liu, J.J., Xing, Y.L., Wang, J.P., et al., 2010.Discovery of Falkmanite from the Bairendaba Superlarge Ag-Pb-Zn Polymetallic Deposit, Inner Mongolia and Its Origin Significance.Journal of Jilin University (Earth Science Edition), 40(3):565-572 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ccdz201003013.htm [24] Liu, R.L., Wu, G., Li, T.G., et al., 2018a.LA-ICP-MS Cassiterite and Zircon U-Pb Ages of the Weilasituo Tin-Polymetallic Deposit in the Southern Great Xing'an Range and Their Geological Significance.Earth Science Frontiers, 25(5):183-201 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201805012 [25] Liu, R.L., Wu, G., Chen, G.Z., et al., 2018b.Characteristics of Fluid Inclusions and H-O-C-S-Pb Isotopes of Weilasituo Sn-Polymetallic Deposit in Southern Da Hinggan Mountains.Mineral Deposit, 37(2):199-224 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201802001.htm [26] Liu, W.G., Li, G.Z., Liu, H., 2018.Micro-Fluorite Sample Digestion Technology and High Precision Thermionic Mass Spectrometry Determination for Sm-Nd Isotopes.Acta Geoscientica Sinica, 39(1):119-124 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201801014.htm [27] Liu, W.G., Liu, H., Li, G.Z., 2017.The Application of Ion Exchang Resins in Sr-Nd Isotopic Assay of Geological Samples.Acta Geologica Sinica, 91(11):2584-2592 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201711013.htm [28] Liu, Y.F., 2009.Metallogenic Study of Bairendaba Ag Polymetallic Deposit in Hexigten Banner.Inner Mongolia (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [29] Liu, Y.F., Fan, Z.Y, Jiang, H.C., et al., 2014.Genesis of the Weilasituo-Bairendaba Porphyry-Hydrothermal Vein Type System in Inner Mongolia, China.Acta Geologica Sinica, 88(12):2373-2385 (in Chinese with English abstract). [30] Liu, Y.F., Jiang, S.H., Bagas, L., 2016.The Genesis of Metal Zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) Deposits in the Shallow Part of a Porphyry Sn-W-Rb System, Inner Mongolia, China.Ore Geology Reviews, 75:150-173. https://doi.org/10.1016/j.oregeorev.2015.12.006 [31] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [32] Manning, D.A.C., 1981.The Effect of Fluorine on Liquidus Phase Relationships in the System Qz-Ab-Or with Excess Water at 1 kb.Contributions to Mineralogy and Petrology, 76(2):206-215.https://doi.org/10.1007/bf00371960 doi: 10.1007/BF00371960 [33] McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4 [34] Mei, W., Lü, X.B., Tang, R.K., et al., 2015.Ore-Forming Fluids and Its Evolution of Bairendaba-Weilasituo Deposits in West Slope of Southern Great Xing'an Range.Earth Science, 40(1):145-162 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2015.010 http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201501010.htm [35] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [36] Ouyang, H.G., Mao, J.W., Santosh, M., et al., 2013.Anatomy of a Large Ag-Pb-Zn Deposit in the Great Xing'an Range, Northeast China:Metallogeny Associated with Early Cretaceous Magmatism.International Geology Review, 55(4):411-429. https://doi.org/10.1080/00206814.2012.719690 [37] Pan, X.F., Guo, L.J., Wang, S., et al., 2009.Laser Microprobe Ar-Ar Dating of Biotite from the Weilasituo Cu-Zn Polymetallic Deposit in Inner Mongolia.Acta Petrologica et Mineralogica, 28(5):473-479 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200905007.htm [38] Ren, S.K., Walshe, J.L., Paterson, R.G., et al., 1995.Magmatic and Hydrothermal History of the Porphyry-Style Deposits of the Ardlethan Tin Field, New South Wales, Australia.Economic Geology, 90(6):1620-1645. https://doi.org/10.2113/gsecongeo.90.6.1620 [39] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324.https://doi.org/10.1016/s0012-821x(04)00012-3 doi: 10.1016/S0012-821X(04)00012-3 [40] Sylvester, P.J., 1989.Post-Collisional Alkaline Granites.The Journal of Geology, 97(3):261-280. https://doi.org/10.1086/629302 [41] Tang, R.K., Lü, X.B., Cao, X.F., et al., 2014.Mineralogy and Metallogenic Mechanism of Weilasituo and Bairendaba Deposit, Inner Mongolia, China.Earth Science, 39(6):671-686 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2014.063 [42] Vidal, P., Bernard-Griffiths, J., Cocherie, A., et al., 1984.Geochemical Comparison between Himalayan and Hercynian Leucogranites.Physics of the Earth and Planetary Interiors, 35(1-3):179-190. https://doi.org/10.1016/0031-9201(84)90041-4 [43] Wang, F.X., Bagas, L., Jiang, S.H., et al., 2017.Geological, Geochemical, and Geochronological Characteristics of Weilasituo Sn-Polymetal Deposit, Inner Mongolia, China.Ore Geology Reviews, 80:1206-1229. https://doi.org/10.1016/j.oregeorev.2016.09.021 [44] Wang, G.Z., 2002.Bao Gaigou Tin Deposit-A Hight Temperature Hydrothermal Deposit of Albitite and Biotite Quartzite Types.Geology and Prospecting, 38(2):42-45 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=6112687 [45] Wang, J.B., Wang, Y.W., Wang, L.J., et al., 2001.Tin-Polymetallic Mineralization in the Southern Part of the Da Hinggan Mountains, China.Resource Geology, 51(4):283-291.https://doi.org/10.1111/j.1751-3928.2001.tb00102.x doi: 10.1111/rge.2001.51.issue-4 [46] Wang, X.Y., Hou, Q.Y., Wang, J., et al., 2013.SHRIMP Geochronology and Hf Isotope of Zircons from Granitoids of the Weilasituo Deposit in Inner Mongolia.Geoscience, 27(1):67-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ201301007.htm [47] Wang, Y.X., Zhao, Z.H., 1997.Geochemistry and Origin of the Baerzhe REE Nb-Be-Zr Superlarge Deposit.Geochimica, 26(1):25-26 (in Chinese with English abstract). [48] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419.https://doi.org/10.1007/bf00402202 doi: 10.1007/BF00402202 [49] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). [50] Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017.Highly Fractionated Granites:Recognition and Research.Science in China (Series D), 47(7):745-765 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010 [51] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):1069.https://doi.org/10.1029/2002tc001484 doi: 10.1029/2002TC001484/abstract [52] Xiao, W.J., Zhang, L.C., Qin, K.Z., et al., 2004.Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China):Implications for the Continental Growth of Central Asia.American Journal of Science, 304(4):370-395. https://doi.org/10.2475/ajs.304.4.370 [53] Yang, J.H., Wu, F.Y., Shao, J.A., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3-4):336-352. https://doi.org/10.1016/j.epsl.2006.04.029 [54] Yang, W.B., Shan, Q., Zhao, Z.H., et al., 2011.Petrogenic and Metallogenic Action of the Alkaline Granitoids in Baerzhe Area:A Comparison between Mineralized and Barren Plutons.Journal of Jilin University (Earth Science Edition), 41(6):1689-1704 (in Chinese with English abstract). [55] Yao, L., Lü, Z.C., Ye, T.Z., et al., 2017.Zircon U-Pb Age, Geochemical and Nd-Hf Isotopic Characteristics of Quartz Porphyry in the Baiyinchagan Sn Polymetallic Deposit, Inner Mongolia, Southern Great Xing'an Range, China.Acta Petrologica Sinica, 33(10):3183-3199 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201710014.htm [56] Zhai, D.G., Liu, J.J., Li, J.M., et al., 2016.Geochronological Study of Weilasituo Porphyry Type Sn Deposit in Inner Monglia and Its Geological Significance.Mineral Deposits, 35(5):1011-1022 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201605009.htm [57] Zhai, D.G., Liu, J.J., Yang, Y.Q., et al., 2012.Petrogenetic and Metallogentic Ages and Tectonic Setting of the Huanggangliang Fe-Sn Deposit, Inner Mongolia.Acta Petrologica et Mineralogica, 31(4):513-523 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/yskwxzz201204004 [58] Zhang, T.F., Sun, L.X., Zhang, Y., et al., 2016.Geochemical Characteristics of the Jurassic Yan'an and Zhiluo Formations in the Northern Margin of Ordos Basin and Their Paleoenvironmental Implications.Acta Geologica Sinica, 90(12):3454-3472 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201612013.htm [59] Zhao, Y.M., Zhang, D.Q., 1997.Metallogenic Regularity and Prospective Evaluation of Copper-Polymetallic Deposits in Daxing'anling and Its Adjacent Areas.Seismological Press, Beijing (in Chinese). [60] Zhou, Z.H., Lü, L.S., Feng, J.R., et al., 2010.Molybdenite Re-Os Ages of Huanggang Skarn Sn-Fe Deposit and Their Geological Significance, Inner Mongolia.Acta Petrologica Sinica, 26(3):667-679 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201003003.htm [61] Zhou, Z.H., Mao, J.W., Lyckberg, P., 2012.Geochronology and Isotopic Geochemistry of the A-Type Granites from the Huanggang Sn-Fe Deposit, Southern Great Hinggan Range, NE China:Implication for Their Origin and Tectonic Setting.Journal of Asian Earth Sciences, 49:272-286. https://doi.org/10.1016/j.jseaes.2012.01.015 [62] Zhu, X.Y., Zhang, Z.H., Fu, X., et al., 2016.Geological and Geochemical Characteristics of the Weilasito Sn-Zn Deposit, Inner Mongolia.Geology in China, 43(1):188-208 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DIZI201601014.htm [63] Zong, K.Q., Klemd, R., Yuan, Y., et al., 2017.The Assembly of Rodinia:The Correlation of Early Neoproterozoic (ca.900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB).Precambrian Research, 290:32-48.https://doi.org/10.1016/j.precamres.2016.12.010 http://adsabs.harvard.edu/abs/2017PreR..290...32Z [64] 高允, 孙艳, 赵芝, 等, 2017.内蒙古武川县赵井沟铌钽多金属矿床白云母40Ar-39Ar同位素年龄及地质意义.岩矿测试, 36(5):551-558. http://d.old.wanfangdata.com.cn/Periodical/ykcs201705013 [65] 耿建珍, 李怀坤, 张健, 等, 2011.锆石Hf同位素组成的LA-MC-ICPMS测定.地质通报, 30(10):1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 [66] 郭贵娟, 2016.内蒙古维拉斯托锡多金属矿床地质特征及成因探讨(硕士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1016184693.htm [67] 郭理想, 刘建明, 曾庆栋, 等, 2018.内蒙古维拉斯托锡多金属矿流体包裹体特征.地学前缘, 25(1):168-181. http://d.old.wanfangdata.com.cn/Periodical/dxqy201801012 [68] 洪大卫, 王式洸, 谢锡林, 等, 2000.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长.地学前缘, 7(2):441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012 [69] 江思宏, 梁清玲, 刘翼飞, 等, 2012.内蒙古大井矿区及外围岩浆岩锆石U-Pb年龄及其对成矿时间的约束.岩石学报, 28(2):495-513. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202012 [70] 李建康, 王成辉, 冯文杰, 等, 2017.滇西北发现花岗伟晶岩型铁锂云母矿床.矿床地质, 36(6):1453-1455. http://d.old.wanfangdata.com.cn/Periodical/kcdz201706013 [71] 廖震, 王玉往, 王京彬, 等, 2014.内蒙古大井锡多金属矿床锡石LA-MC-ICP-MS U-Pb测年及其意义.矿床地质, 33(S1):421-422. http://d.old.wanfangdata.com.cn/Conference/8450485 [72] 刘昌实, 陈小明, 陈培荣, 等, 2003.A型岩套的分类、判别标志和成因.高校地质学报, 9(4):573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011 [73] 刘家军, 邢永亮, 王建平, 等, 2010.内蒙拜仁达坝超大型Ag-Pb-Zn多金属矿床中针硫锑铅矿的发现与成因意义.吉林大学学报(地球科学版), 40(3):565-572. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201003012 [74] 刘瑞麟, 武广, 李铁刚, 等, 2018a.大兴安岭南段维拉斯托锡多金属矿床LA-ICP-MS锡石和锆石U-Pb年龄及其地质意义.地学前缘, 25(5):183-201. http://d.old.wanfangdata.com.cn/Periodical/dxqy201805012 [75] 刘瑞麟, 武广, 陈公正, 等, 2018b.大兴安岭南段维拉斯托锡多金属矿床流体包裹体和同位素特征.矿床地质, 37(2):199-224. http://d.old.wanfangdata.com.cn/Periodical/kcdz201802001 [76] 刘文刚, 李国占, 刘卉, 等, 2018.微量萤石样品消解技术及其Sm-Nd同位素高精度热离子质谱法测试.地球学报, 39(1):119-124. http://d.old.wanfangdata.com.cn/Periodical/dqxb201801013 [77] 刘文刚, 刘卉, 李国占, 等, 2017.离子交换树脂在地质样品Sr-Nd同位素测定中的应用.地质学报, 91(11):2584-2592. doi: 10.3969/j.issn.0001-5717.2017.11.013 [78] 刘翼飞, 2009.内蒙古克什克腾旗拜仁达坝银多金属矿床成因研究(硕士学位论文).北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-2010024373.htm [79] 刘翼飞, 樊志勇, 蒋胡灿, 等, 2014.内蒙古维拉斯托-拜仁达坝斑岩-热液脉状成矿体系研究.地质学报, 88(12):2373-2385. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412016 [80] 梅微, 吕新彪, 唐然坤, 等, 2015.大兴安岭南段西坡拜仁达坝-维拉斯托矿床成矿流体特征及其演化.地球科学, 40(1):145-162. http://earth-science.net/WebPage/Article.aspx?id=3022 [81] 潘小菲, 郭利军, 王硕, 等, 2009.内蒙古维拉斯托铜锌矿床的白云母Ar/Ar年龄探讨.岩石矿物学杂志, 28(5):473-479. doi: 10.3969/j.issn.1000-6524.2009.05.007 [82] 唐然坤, 吕新彪, 曹晓峰, 等, 2014.内蒙古维拉斯托-拜仁达坝矿床矿石特征及成矿机理.地球科学, 39(6):671-686. http://earth-science.net/WebPage/Article.aspx?id=2874 [83] 王国政, 2002.宝盖沟锡矿:黑英岩钠长岩型高温热液矿床.地质与勘探, 38(2):42-45. http://d.old.wanfangdata.com.cn/Periodical/dzykt200202010 [84] 王新宇, 侯青叶, 王瑾, 等, 2013.内蒙古维拉斯托矿床花岗岩类SHRIMP年代学及Hf同位素研究.现代地质, 27(1):67-78. doi: 10.3969/j.issn.1000-8527.2013.01.007 [85] 王一先, 赵振华, 1997.巴尔哲超大型稀土铌铍锆矿床地球化学和成因.地球化学, 26(1):25-26. http://www.cqvip.com/Main/Detail.aspx?id=2561982 [86] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [87] 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7):745-765. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm [88] 杨武斌, 单强, 赵振华, 等, 2011.巴尔哲地区碱性花岗岩的成岩和成矿作用:矿化和未矿化岩体的比较.吉林大学学报(地球科学版), 41(6):1689-1704. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201106005 [89] 姚磊, 吕志成, 叶天竺, 等, 2017.大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U-Pb年龄、地球化学和Nd-Hf同位素特征及地质意义.岩石学报, 33(10):3183-3199. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201710014 [90] 翟德高, 刘家军, 李俊明, 等, 2016.内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义.矿床地质, 35(5):1011-1022. http://d.old.wanfangdata.com.cn/Periodical/kcdz201605009 [91] 翟德高, 刘家军, 杨永强, 等, 2012.内蒙古黄岗梁铁锡矿床成岩、成矿时代与构造背景.岩石矿物学杂志, 31(4):513-523. doi: 10.3969/j.issn.1000-6524.2012.04.004 [92] 张天福, 孙立新, 张云, 等, 2016.鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量元素、稀土元素地球化学特征及其古沉积环境意义.地质学报, 90(12):3454-3472. doi: 10.3969/j.issn.0001-5717.2016.12.013 [93] 赵一鸣, 张德全, 1997.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价.北京:地震出版社. [94] 周振华, 吕林素, 冯佳睿, 等, 2010.内蒙古黄岗矽卡岩型锡铁矿床辉钼矿Re-Os年龄及其地质意义.岩石学报, 26(3):667-679. http://www.cqvip.com/QK/94579X/201003/1003850648.html [95] 祝新友, 张志辉, 付旭, 等, 2016.内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征.中国地质, 43(1):188-208. doi: 10.3969/j.issn.1000-3657.2016.01.014