Neoproterozoic (~800 Ma) Subduction of Ocean-Continent Transition: Constraint from Arc Magmatic Sequence in Kaihua, Western Zhejiang
-
摘要: 浙西开化地区处于江南造山带东段,沿下庄-树范断裂北西侧发育一套浅变质的玄武岩-安山岩-英安岩-流纹岩组合.地球化学分析结果显示,玄武岩、安山岩和英安岩、流纹岩表现为连续演化的岩浆序列,岩石多富集Ba、K、Rb,亏损Sr等大离子亲石元素,富集Pb,亏损P、Ti、Ta、Nb等高场强元素.玄武岩Nb含量介于11.8×10-6~15.2×10-6,Nb/Ta=15.36~18.10,Nb/U=8.90~19.32,具有富Nb特点;安山岩MgO含量为5.31%~8.56%,Mg#值为56.89~68.83,FeOT/MgO介于0.82~1.36,显示高Mg特征;英安岩和流纹岩Ga/Al比值高,且FeOT/MgO多介于5.66~18.50,锆石饱和温度为837~920℃,表现出A型酸性火山岩特征.锆石U-Pb定年结果表明,玄武岩、安山岩和流纹岩的成岩年龄分别为800.5±9.2 Ma、799.3±7.1 Ma和798.3±6.2 Ma,均系新元古代(~800 Ma)构造岩浆活动的产物.富Nb玄武岩和高Mg安山岩组合为活动陆缘弧的典型代表,而英安岩和流纹岩则可能形成于俯冲机制下的拉张环境,进一步表明新元古代(~800 Ma)左右,古华南洋北西向扬子陆块的俯冲仍在继续.Abstract: As a record of the process for ocean-continent transition related oceanic subduction, the magmatic rocks consisting of the basalts, andesites, dacites and rhyolites, were identified near the northwastern Xiazhuang-Shufan fault in Kaihua County, western Zhejiang, which is the eastern segment of Jiangnan orogeny. Geochemical analyses indicate that the basalts and andesites are mostly enriched in Ba, K, Rb, Th, U, Pb, but depleted in Sr, P, Nb, Ta, Ti. The basalts show high Nb contents of 11.8×10-6 to 15.2×10-6, Nb/Ta=15.36-18.10, and Nb/U=8.90-19.32. The andesites have higher Mg values with MgO contents ranging from 5.31% to 8.56%, Mg# ranging from 56.89 to 68.83, and FeOT/MgO=0.82-1.36. The dacites and rhyolites have higher Ga/Al ratios, FeOT/MgO ranging from 5.66 to 18.50 mostly, and high magma temperatures (837-920℃), reflecting the characteristics of A-type rhyolites. The U-Pb dating of zircon yields age of 800.5±9.2 Ma for the Nb-enriched basalt, 799.3±7.1 Ma for the high-Mg andesite, and 798.3±6.2 Ma for the A-type rhyolite, confirming that the magmatic activity of continental marginal arc occurred when the paleo-South-China Plate subducted northwestwardly in Neoproterozoic, and suggesting that the subducting movement continued to 800 Ma or later.
-
Key words:
- Nb-enriched basalt /
- high-Mg andesite /
- geochronology /
- geochemistry /
- Neoproterozoic /
- western Zhejiang
-
图 5 开化地区新元古代火山岩岩石分类图解
Fig. 5. Classification diagrams for the Neoproterozoic volcanic rocks in Kaihua area
图 6 新元古代火山岩稀土元素球粒陨石标准化曲线和微量元素蛛网图
标准值据Sun and McDonough(1989);大陆弧安山岩蛛网曲线据Zheng et al.(2012)
Fig. 6. Chondrite-normalized REE patterns and trace element spider diagram for the Neoproterozoic volcanic rocks in Kaihua area
图 7 开化地区新元古代火山岩岩石类型图解
图a据Defant et al.(1992);图b据赵振华等(2004);图c、d据Deng et al.(2009);图e、f据Whalen(1987).HMA.高镁安山岩/闪长岩类;MA.镁安山岩/闪长岩类;LF.低铁钙碱性系列;CA.钙碱性系列;FG.分异的长英质花岗岩;OGT.未分异的I、S和M型花岗岩;I & S.I和S型花岗岩;A.A型花岗岩
Fig. 7. Diagrams of rock types for the Neoproterozoic volcanic rocks in Kaihua area
图 8 开化地区新元古代火山岩成因判别图解
图a据Pearce(2008);图b据Condie(2005);图c据马芳和薛怀民(2017);图d据孙赛军等(2015).LC.下地壳;MC.中地壳;UC.上地壳;OIB.洋岛玄武岩;E-MORB.富集型洋中脊玄武岩;N-MORB.正常型洋中脊玄武岩;PM.原始地幔;DM.亏损地幔;HIMU.高μ(U/Pb)源区;EM1.Ⅰ型富集地幔源区;EM2.Ⅱ型富集地幔源区;DEP.深部亏损地幔;EN.富集端元;REC.循环端元;BCC.平均大陆地壳;LCC.大陆下地壳;DMM.亏损地幔
Fig. 8. Discrimination diagrams for the Neoproterozoic volcanic rocks in Kaihua area
图 9 开化地区新元古代火山岩构造环境判别图解
图a、b、c据Pearce(2008, 2014);图d据Batchelor and Bowden(1985);图e据Pearce(1996);图f据Eby(1992).SHO.钾玄岩系列;CA.钙碱性系列;TH.拉斑系列;ICA.岛弧钙碱系列;IAT.岛弧拉斑系列;TR.过渡玄武岩系列;ALK.碱性玄武岩系列;IAB.岛弧玄武岩;MORB.洋中脊玄武岩;WPB.板内玄武岩;BABB.弧后盆地玄武岩;FAB.弧前玄武岩
Fig. 9. Tectonic discrimination diagrams for the Neoproterozoic volcanic rocks in Kaihua area
-
[1] Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [2] Condie, K. C., 2001. Mantle Plume and Their Record in Earth History. Cambridge University Press, London. [3] Condie, K. C., 2005. High Field Strength Element Ratios in Archean Basalts: A Window to Evolving Sources of Mantle Plumes?. Lithos, 79(3-4): 491-504. https://doi.org/10.1016/j.lithos.2004.09.014 [4] Defant, M. J., Jackson, T. E., Drummond, M. S., et al., 1992. The Geochemistry of Young Volcanism Throughout Western Panama and Southeastern Costa Rica: An Overview. Journal of the Geological Society, 149(4): 569-579. https://doi.org/10.1144/gsjgs.149.4.0569 [5] Deng, J. F., Feng, Y. F., Di, Y. J., et al., 2015. Magmatic Arc and Ocean-Continent Transition: Discussion. Geological Review, 61(3):473-484 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201503001 [6] Deng, J. F., Flower, M. F. J., Liu, C., et al., 2009. Nomenclature, Diagnosis and Origin of High-Magnesian Andesits (HMA) and Magnesian Andesits (MA): A Review from Petrographic and Experimental Data. Geochimica et Cosmochimica Acta, 73(13): A279. http://cn.bing.com/academic/profile?id=f66b40703444b68a91f11b711c00f26e&encoded=0&v=paper_preview&mkt=zh-cn [7] Deng, J.F., Liu, C., Feng, Y.F., et al., 2010. High Magnesian Andesitic/Dioritic Rocks (HMA)and Magnesian Andesitic/Dioritic Rocks (MA): Two Igneous Rock Types Related to Oceanic Subduction. Geology in China, 37(4):1112-1118 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=9cd4bb0eb757170f16b82ba4483fdb7f&encoded=0&v=paper_preview&mkt=zh-cn [8] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 [9] Gao, L. Z., Yang, M. G., Ding, X. Z., et al., 2008. SHRIMP U-Pb Zircon Dating of Tuff in the Shuang qiaoshan and Heshangzhen Groups in South China: Constraints on the Evolution of the Jiangnan Neoproterozoic Orogenic Belt. Geological Bulletin of China, 27(10): 1744-1751 (in Chinese with English abstract). [10] Govindaraju, K., 1994. 1994 Compilation of Working Values and Sample Description for 383 Geostandards. Geostandards and Geoanalytical Research, 18: 1-158. https://doi.org/10.1111/j.1751-908x.1994.tb00526.x [11] Guo, L. Z., Lu, H. F., Shi, Y. S., et al., 1996. On the Meso-Neoproterozoic Jiangnan Island Arc: Its Kinematics and Dynamics. Geological Journal of China Universities, 2(1): 1-13 (in Chinese with English abstract). [12] Han, Y., Zhang, C. H., Jiang, X. Q., et al., 2016. LA-ICP-MS Zircon U-Pb Dating of the Rhyolite from the Zhonglü Group, Northwestern Zhejiang Province, and Its Chronostratigraphic Significance. Science & Technology Review, 34(2): 104-109 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201602021 [13] Han, Y., Zhang, C. H., Liu, Z. H., et al., 2015. Study on Sedimentary Characteristics, Detrital Zircon Ages and Tectono-Paleogeographic Setting of Neopro-Terozoic Pingshui Group in Pujiang Area, Zhejiang Province. Geological Review, 61(6): 1270-1280 (in Chinese with English abstract). [14] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007 [15] Jia, J. S., Cao, S. Q., Li, H. M., et al., 2016. Zircon U-Pb Age and Geochemistry of the Rhyolites in Kaihua, Western Zhejiang Province and Their Geological Implications. Geotectonica et Metallogenia, 40(4):787-797 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604011 [16] Jian, P., Liu, D. Y., Sun, X. M., et al., 2003. SHRIMP Dating of Carbpniferous Jinshajiang Ophiolite in Western Yunnan and Sichuan: Geochronological Constraints on the Evolution of the Paleo-Tethys Oceanic Crust. Acta Geologica Sinica, 77(2):217-228 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=cf904a96b0786f0450d918144caa4fad&encoded=0&v=paper_preview&mkt=zh-cn [17] Jiang, Y., Zhao, X. L., Lin, S. F., et al., 2014. Identification and Tectonic Implication of Neoproterozoic Continental Margin-Arc TTG Assemblage in Southeastern Margin of the Yangtze Carton. Acta Geologica Sinica, 88(8):1461-1474 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201408008 [18] Jiang, Y., Zhao, X. L., Xing, G. F., et al., 2015. Arc Magmatic Activity of Qingbaikou Period along the Southeastern Margin of Yangtze Block: Implications from the Zircon U-Pb Age and Geochemical Characteristics of Nb-Enriched Gabbro and High-Mg Diorite in the Jinhua Plutonic Complex. Geological Bulletin of China, 34(8):1550-1561 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b1fbea0532e0652bd66e8b1ea1e5dcb3&encoded=0&v=paper_preview&mkt=zh-cn [19] King, P. L., Chappell, B. W., Allen, C. M., et al., 2001. Are A-Type Granites the High‐temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x [20] Li, W. X., Li, X. H., Li, Z. X., 2010a. Ca. 850 Ma Bimodal Volcanic Rocks in Northeastern Jiangxi Province, South China: Initial Extension during the Breakup of Rodinia?. American Journal of Science, 310(9): 951-980. https://doi.org/10.2475/09.2010.08 [21] Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relecance to Assembly and Breakup of Rodinia Supercontinent: Observations, Inter- Prettations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract). [22] Li, X. H., Li, W. X., Li, Q. L., et al., 2010b. Petrogenesis and Tectonic Significance of the ∼850 Ma Gangbian Alkaline Complex in South China: Evidence from in Situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry. Lithos, 114(1-2): 1-15. https://doi.org/10.1016/j.lithos.2009.07.011 [23] Li, X. H., Li, W. X., Li, Z. X., et al., 2008. 850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China: A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1-2): 341-357. https://doi.org/10.1016/j.lithos.2007.04.007 [24] Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1-2): 117-128. https://doi.org/10.1016/j.precamres.2009.07.004 [25] Li, X. H, Wang, X. C., Li, W. X., et al., 2008. Petrogenesis and Tectonic Significance of Neoproterozoic Basaltic Rocks in South China: From Orogenesis to Intracontinental Rifting. Geochimica, 37(4):382-398 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=02c7c89066668b374044ba3690a31840&encoded=0&v=paper_preview&mkt=zh-cn [26] Li, X. W., Mo, X. X., Zhao, Z. D., et al., 2010. A Discussion on How to Discriminate A-Type Granite. Geological Bulletin of China, 29(2-3):278-285 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201002012 [27] Li, Y. Q., Zhang, Q., Wang, J. R., et al., 2017. Global Active Continental Margin Arc Basalt (CAB) Characteristics: Compared with Island Arc Basalt (IAB) and Back-Arc Basin Basalt (BAB). Chinese Journal of Geology, 52(3): 693-713 (in Chinese with English abstract). [28] Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5 [29] Liao, S. B., Zhang, Y. J., Zhou, X. H., et al., 2014. Sedimentary Sequence and Sedimentary Environment of Xikou Group in the Adjoining Areas of Anhui and Jiangxi. Mineral Resources and Geology, 28(6):660-667 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcydz201406002 [30] Liao, S. B., Zhang, Y. J., Zhou, X. H., et al., 2016. Sedimentary Sequence and Environment of Shuangqiaoshan Group from the Adjacent Area between Anhui and Jiangxi. Geoscience, 30(1):130-143 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201601014 [31] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 [32] Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016 [33] Lu, H. J., Hua, R. M., Mao, G. Z., et al., 2007. Isotope Geochronological Study of Igneous Rocks in Northeastern Jiangxi Province and Its Implication to Geologic Evolution. Geological Review, 53(2):207-216 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200702008 [34] Ma, F., Xue, H. M., 2017. Huzhou-Anji Volcanic Basin of Northern Zhejiang Province: Zircon U-Pb Dating, Geochemistry and Magma Genesis. Acta Geologica Sinica, 91(2): 334-361 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201702004.htm [35] McCarthy, T. S., Hasty, R. A., 1976. Trace Element Distribution Patterns and Their Relationship to the Crystallization of Granitic Melts. Geochimica et Cosmochimica Acta, 40(11): 1351-1358. https://doi.org/10.1016/0016-7037(76)90125-3 [36] Pearce, J. A., 1983. Role of the Sub-Continental Lithosphere in Magema Genesis at Active Continental Margine. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenolites. Shiva Publishing Limited, Nantwich. [37] Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005 [38] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [39] Pearce, J. A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101-108. https://doi.org/10.2113/gselements.10.2.101 [40] Song, B., Zhang, Y. H., Wan, Y. S., et al., 2002. Mount Making and Procedure of the SHRIMP Dating. Geological Review, 48(S1): 26-30 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005931 [41] Sun, S. J., Zhang, L. P., Ding, X., et al., 2015. Zircon U-Pb Ages, Hf Isotopes and Geochemical Characteristics of Volcanic Rocks in Nagqu Area, Tibet and Their Petrogenesis. Acta Petrologica Sinica, 31(7):2063-2077 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507020 [42] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [43] Tang, Z. C., Chen, Z. D., Hu, K. M., et al., 2018. Neoproterozoic (~828 Ma) Expansion of Back-Arc Basin: Implications from Geochronology and Geochemistry of the Diabase and Flyschoids in Kaihua Area, Western Zhejiang. Earth Science, 43(S2):1-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2001.htm [44] Wang, C. Z., Yu, M. G., Huang, Z. Z., et al., 2016. Recognition and Significance of Neoproterozoic (ca. 800 Ma) High Mg Andesites in the NE Jiangxi Ophiolite Belt. Geological Review, 62(5): 1185-1200 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201605007 [45] Wang, J., Liu, B. J., Pan, G. T., 2001. Neoproterozoic Rifting History of South China Significance to Rodinia Breakup. Journal of Mineralogy and Petrology, 21(3):135-145 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=bb3454e29ba7d9df074c99b19600c4c4&encoded=0&v=paper_preview&mkt=zh-cn [46] Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2004. Geochemistry of the Meso- to Neoproterozoic Basic-Acid Rocks from Hunan Province, South China: Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Research, 135(1-2): 79-103. https://doi.org/10.1016/j.precamres.2004.07.006 [47] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 [48] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [49] Wu, R. X., Zheng, Y. F., Wu, Y. B., 2005. Zircon U-Pb Age, Element and Oxygen Isotope Geochemisty of Neoproterozoic Granites at Shiershan in South Anhui Province. Geological Journal of China Universities, 11(3):364-382 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503008 [50] Wu, R. X., Zheng, Y. F., Wu, Y. B., 2007. Zircon U-Pb Age and Isotope Geochemistry of Neoproterozoic Jingtan Volcanics in South Anhui. Geological Journal of China Universities, 13(2):282-296 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200702012 [51] Xue, H. M., Ma, F., Song, Y. Q., et al., 2010. Geochronology and Geochemisty of the Neoproterozoic Granitoid Association from Eastern Segment of the Jiangnan Orogen, China: Constraints on the Timing and Process of Amalgamation between the Yangtze and Cathaysia Blocks. Acta Petrologica Sinica, 26(11):3215-3244 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=eec42af0c5520693687b8dd6b6c6ec01&encoded=0&v=paper_preview&mkt=zh-cn [52] Zhang, F. F., Wang, X. L., Wang, D., et al., 2017. Neoproterozoic Backarc Basin on the Southeastern Margin of the Yangtze Block during Rodinia Assembly: New Evidence from Provenance of Detrital Zircons and Geochemistry of Mafic Rocks. Geological Society of America Bulletin, 129(7-8): 904-919. https://doi.org/10.1130/b31528.1 [53] Zhang, H., Gao, L. Z., Li, T. D., et al., 2015. SHRIMP Zircon U-Pb Dating of the Luojiamen Formation in Western Zhejiang Province and Its Geological Implications. Geological Bulletin of China, 34(2-3):447-455 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=40da5f70994ce5d0c101b6947972311b&encoded=0&v=paper_preview&mkt=zh-cn [54] Zhang, S. B., Wu, R. X., Zheng, Y. F., 2012. Neoproterozoic Continental Accretion in South China: Geochemical Evidence from the Fuchuan Ophiolite in the Jiangnan Orogen. Precambrian Research, 220-221: 45-64. https://doi.org/10.1016/j.precamres.2012.07.010 [55] Zhang, Y. J., Zhou, X. H., Liao, S. B., et al., 2010. Neoproterozoic Crustal Composition and Orogenic Process of the Zhanggongshan Area, Anhui-Jiangxi. Acta Geologica Sinica, 84(10):1401-1427 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201010003 [56] Zhang, Y. J., Zhou, X. H., Liao, S. B., et al., 2011. Geological and Geochemical Characteristics and Petrogenesis of the Mafic Rocks from Zhangyuan, Northern Jiangnan Orogen. Geological Journal of China Universities, 17(3):393-405 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201103004 [57] Zhao, Z. H., Wang, Q., Xiong, X. L., 2004. Complex Mantle-Crust Interaction in Subduction Zone. Bulletin of Mineralogy, Petrology and Geochemistry, 23(4):277-284 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=770c4df868d05715e61c4895fef6275d&encoded=0&v=paper_preview&mkt=zh-cn [58] Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 [59] Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004 [60] Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Some Neoproterozoic Geological Events Involved in the Development of the Jiangnan Orogen. Geological Journal of China Universities, 15(4):453-459 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200904003 [61] Zhou, X. H., Gao, T. S., Ma, X., et al., 2014. Study on Geochronology and Structural Properties of Pillow Basalts in Zhangyuan Region, Eastern Section of the Jiangnan Orogen. Resources Survey & Environment, 35(4):235-244 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hsdzykc201404001 [62] Zhou, X. H., Zhang, Y. J., Liao, S. B., et al., 2012. LA- ICP-MS Zircon U-Pb Geochronology of Volcanic Rocks in the Shuangqiaoshan Group at Anhui-Jiangxi Boundary Region and Its Geological Implication. Geological Journal of China Universities, 18(4): 609-622 (in Chinese with English abstract). [63] 邓晋福, 冯艳芳, 狄永军, 等, 2015.岩浆弧火成岩构造组合与洋陆转换.地质论评, 61(3): 473-484. http://d.old.wanfangdata.com.cn/Periodical/dzlp201503001 [64] 邓晋福, 刘翠, 冯艳芳, 等, 2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类.中国地质, 37(4): 1112-1118. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201004027.htm [65] 高林志, 杨明桂, 丁孝忠, 等, 2008.华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄——对江南新元古代造山带演化的制约.地质通报, 27(10): 1744-1751. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200810017 [66] 郭令智, 卢华复, 施央申, 等, 1996.江南中、新元古代岛弧的运动学和动力学.高校地质学报, 2(1): 1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600146084 [67] 韩瑶, 张传恒, 蒋先强, 等, 2016.浙西北钟吕群流纹岩锆石U-Pb年龄及其年代地层学意义.科技导报, 34(2): 104-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201602021 [68] 韩瑶, 张传恒, 刘子荟, 等, 2015.浙江浦江新元古界平水群沉积特征、碎屑锆石年龄及构造古地理格局探讨.地质论评, 61(6): 1270-1280. http://d.old.wanfangdata.com.cn/Periodical/dzlp201506007 [69] 贾锦生, 曹素巧, 李汉明, 等, 2016.浙西开化地区流纹岩锆石U-Pb年代学、地球化学特征及其地质意义.大地构造与成矿学, 40(4): 787-797. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201604011 [70] 简平, 刘敦一, 孙晓猛, 2003.滇川西部金沙江石炭纪蛇绿岩SHRIMP测年:古特提斯洋壳演化的同位素年代学制约.地质学报, 77(2):217-228. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200302010 [71] 姜杨, 赵希林, 林寿发, 等, 2014.扬子克拉通东南缘新元古代陆缘弧型TTG的厘定及其构造意义.地质学报, 88(8): 1461-1474 http://d.old.wanfangdata.com.cn/Periodical/dizhixb201408008 [72] 姜杨, 赵希林, 邢光福, 等, 2015.扬子陆块东南缘浙江金华地区青白口纪晚期岛弧岩浆活动——来自富铌辉长岩和高镁闪长岩锆石U-Pb年龄和地球化学证据.地质通报, 34(8): 1550- 1561 http://d.old.wanfangdata.com.cn/Periodical/zgqydz201508014 [73] 李献华, 李武显, 何斌, 2012.华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验.矿物岩石地球化学通报, 31(6): 543-559. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201206002 [74] 李献华, 王选策, 李武显, 等, 2008.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷.地球化学, 37(4): 382-398. http://d.old.wanfangdata.com.cn/Periodical/dqhx200804012 [75] 李小伟, 莫宣学, 赵志丹, 等, 2010.关于A型花岗岩判别过程中若干问题的讨论.地质通报, 29(2-3): 278-285. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201002012 [76] 李玉琼, 张旗, 王金荣, 等, 2017.全球大陆弧玄武岩(CAB)的特征——与岛弧玄武岩(IAB)和弧后玄武岩(BAB)的对比.地质科学, 52(3): 693-713. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201703004 [77] 廖圣兵, 张彦杰, 周效华, 等, 2014.皖赣相邻地区溪口岩群沉积序列及沉积环境分析.矿产与地质, 28(6): 660-667. http://d.old.wanfangdata.com.cn/Periodical/kcydz201406002 [78] 廖圣兵, 张彦杰, 周效华, 等, 2016.皖赣相邻地区双桥山群沉积序列及沉积环境分析.现代地质, 30(1): 130-143. http://d.old.wanfangdata.com.cn/Periodical/xddz201601014 [79] 陆慧娟, 华仁民, 毛光周, 等, 2007.赣东北地区岩浆岩同位素年代学研究及地质演化.地质论评, 53(2): 207-216. http://d.old.wanfangdata.com.cn/Periodical/dzlp200702008 [80] 马芳, 薛怀民, 2017.浙北湖(州)-安(吉)火山岩盆地:锆石U-Pb年代学、地球化学与岩浆成因.地质学报, 91(2): 334-361. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201702004.htm [81] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1):26-30. http://d.old.wanfangdata.com.cn/Periodical/OA000005931 [82] 孙赛军, 张丽鹏, 丁兴, 等, 2015.西藏那曲中酸性火山岩的锆石U-Pb年龄、Hf同位素和地球化学特征及岩石成因.岩石学报, 31(7): 2063-2077. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507020 [83] 唐增才, 陈忠大, 胡开明, 等, 2018.浙西开化地区新元古代(~828 Ma)弧后盆地扩张——来自类复理石和辉绿岩墙的年代学和地球化学证据.地球科学, 43(S2):1-15. http://www.cnki.com.cn/Article/CJFDTotal-DQKX2018022700A.htm [84] 王存智, 余明刚, 黄志忠, 等, 2016.赣东北蛇绿岩带新元古代(~800 Ma)高镁安山岩的发现及其意义.地质论评, 62(5): 1185-1200. http://d.old.wanfangdata.com.cn/Periodical/dzlp201605007 [85] 王剑, 刘宝珺, 潘桂棠, 2001.华南新元古代裂谷盆地演化——Rodinia超大陆解体的前奏.矿物岩石, 21(3): 135-145. http://d.old.wanfangdata.com.cn/Periodical/kwys200103021 [86] 吴荣新, 郑永飞, 吴元保, 2005.皖南石耳山新元古代花岗岩锆石U-Pb定年以及元素和氧同位素地球化学研究.高校地质学报, 11(3):364-382. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200503008 [87] 吴荣新, 郑永飞, 吴元保, 2007.皖南新元古代井潭组火山岩锆石U-Pb定年和同位素地球化学研究.高校地质学报, 13(2): 282-296. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200702012 [88] 薛怀民, 马芳, 宋永勤, 等, 2010.江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束.岩石学报, 26(11): 3215-3244. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201011006 [89] 张恒, 高林志, 李廷栋, 等, 2015.浙西地区新元古代骆家门组SHRIMP锆石U-Pb年龄及其地质意义.地质通报, 34(2-3):447-455. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201502021 [90] 张彦杰, 周效华, 廖圣兵, 等, 2010.皖赣鄣公山地区新元古代地壳组成及造山过程.地质学报, 84(10): 1401-1427. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201010003 [91] 张彦杰, 周效华, 廖圣兵, 等, 2011.江南造山带北缘鄣源基性岩地质-地球化学特征及成因机制.高校地质学报, 17(3): 393-405. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201103004 [92] 赵振华, 王强, 熊小林, 2004.俯冲带复杂的壳幔相互作用.矿物岩石地球化学通报, 23(4): 277-284 http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb200404001 [93] 周金城, 王孝磊, 邱检生, 2009.江南造山带形成过程中若干新元古代地质事件.高校地质学报, 15(4): 453-459. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200904003 [94] 周效华, 高天山, 马雪, 等, 2014.江南造山带东段鄣源枕状玄武岩的年代学与构造属性研究.资源调查与环境, 35(4): 235-244. http://d.old.wanfangdata.com.cn/Periodical/hsdzykc201404001 [95] 周效华, 张彦杰, 廖圣兵, 等, 2012.皖赣相邻地区双桥山群火山岩的LA-ICP-MS锆石U-Pb年龄及其地质意义.高校地质学报, 18(4): 609-622. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201204003 -
dqkx-45-1-180-Table1-4.pdf