Genesis of the Erik Iron Ore Deposit in the Taxkorgan Area of the West Kunlun, Xinjiang: Constraints from Ore Deposit Geology and In Situ LA-ICP-MS Analysis of Magnetite
-
摘要: 新疆塔什库尔干铁矿带是我国西部地区新近发现的重要富铁矿带.叶里克铁矿是该成矿带大型铁矿床之一,对该矿床成因方面的研究尚在起步阶段.通过对叶里克铁矿开展矿床地质研究与磁铁矿LA-ICP-MS原位分析,结果表明矿体产于布伦阔勒变质火山-沉积岩中,矿体与围岩产状基本一致,具有明显的层控特征.稠密浸染状或块状富矿体中磁铁矿主要有两种产出形式:与硬石膏或与方解石共生.这两类磁铁矿中多数微量元素含量较均一,如Mg(119×10-6~313×10-6)、Al(692×10-6~1 034×10-6)、Ti(540×10-6~840×10-6)、V(3 340×10-6~3 971×10-6)、Mn(950×10-6~1 160×10-6)、Co(4×10-6~5×10-6)、Ni(52×10-6~64×10-6)、Zn(84×10-6~143×10-6)、以及Ga(26×10-6~31×10-6),并与高温热液中磁铁矿类似;磁铁矿Al、Ti、V含量高,Ni/Cr比高以及Ti/V比低揭示出其形成于相对还原、富Al、Ti的海底高温热液体系且沉积环境稳定.(Al+Mn)-(Ti+V)特征指示其形成温度在300~500 ℃之间.与硬石膏共生的磁铁矿比与方解石共生的磁铁矿具有相对高的Ti(前者平均690×10-6,后者平均574×10-6)、P(从27×10-6骤降到7×10-6)含量,低的Ca含量(从36×10-6骤升到203×10-6)并亏损Zr、Hf、Sc、Ta等高场强元素,指示前者形成于更剧烈的热液活动中,并且硬石膏磁铁矿在热液作用过程中多数Ca离子进入硬石膏晶格中,造成磁铁矿Ca含量降低.综合区域地质、矿床地质及磁铁矿组成等多种证据,表明叶里克铁矿形成于早寒武世的海底高温热液系统.铁矿形成与原特提斯洋南向俯冲引发的火山弧岩浆作用有关,属于海相火山岩型铁矿.Abstract: The Erik iron deposit is one of the biggest deposits in the Taxkorgan iron deposit belt in Xinjiang, an important high-grade one recently discovered in West China, which has been rarely studied. To identify the genesis of the Erik iron deposit, ore deposit geology survey and in situ LA-ICP-MS analysis of magnetite have been conducted in this study. It is found that mineralization occurs at the Bulunkuole meta-volcano-sedimentary sucession. Ore occurrences are basically coordinated with those of host rocks, and exhibit obviously stratabound characteristics. Two main mineral associations of magnetite+anhydrite and magnetite+calcite in variable proportions commonly occurred in the high-grade iron bodies and formed dense disseminations and massive ores. Both magnetite grains from these two associations show constant contents of many elements including Mg (119×10-6-313×10-6), Al (692×10-6-1 034×10-6), Ti (540×10-6-840×10-6), V (3 340×10-6-3 971×10-6), Mn (950×10-6-1 160×10-6), Co (4×10-6-5×10-6), Ni (52×10-6-64×10-6), Zn (84×10-6-143×10-6), and Ga (26×10-6-31×10-6) and similar to those of in high-temperature hydrothermal environment. It is interpreted that the high Al, Ti, V contents, with high Ni/Cr and low Ti/V ratios in magnetites result from relatively reduced, Al-Ti-rich seafloor hydrothermal activities under a stable sedimentary environment. The (Al+Mn)-(Ti+V) feature of the Erik magnetites implies a high-temperature crystallization (300-500℃). The magnetites coexisting with anhydrite have higher Ti (690×10-6), P (27×10-6) concentrations in average, and lower Ca (36×10-6) than those coexisting with calcites (Ti=574×10-6, P=7×10-6, Ca=203×10-6). Moreover, the former are more depleted in high field strength elements of Zr, Hf, Sc, Ta, suggestting them have suffered more severely hydrothermal activities and Ca contents in magnetites are reduced with Ca2+ entering into crystal lattice of anhydrites. Integrating obtained evidences, including regional geology, ore deposit geology, magnetite composition, and we conclude that the Erik iron deposit was formed from an Early Cambrian seafloor high-temprature hydrothermal system. The development of the Erik iron deposit is related with a volcanic arc caused by southward subduction of Proto-Tethyan Plate. The Erik iron deposit is classified into a marine volcanic-sedimentary hosted Fe oxide deposit formed at or near the seafloor in submarine volcanic settings.
-
Key words:
- West Kunlun /
- Erik iron deposit /
- Bulunkuole Group /
- ore-body feature /
- ore genesis /
- geochemistry
-
图 1 塔什库尔干地区铁矿分布地质简图
图a为亚洲构造略图,显示喜马拉雅-西藏造山带西段的位置,据Çengör et al.(1993);图b为喜马拉雅-西藏造山带西段构造简图,显示塔什库尔干铁矿带的位置,据Robinson et al.(2012);图c为塔什库尔干铁矿带地质简图,据朱杰等(2016)、Zhou et al.(2017, 2018)、Zhang et al.(2018a, 2018b)修改
Fig. 1. Geological sketch of iron deposits in the Taxkorgan area
图 4 叶里克铁矿样品地质特征
a.赋矿围岩黑云母石英片岩手标本,样品YLK1-1;b.硬石膏磁铁石英岩块状矿体手标本,样品YLK1-2;c.含矿黑云母角闪石石英片岩;d.黑云母石英片岩显微镜照片(透射光),黑云母条带与石英条带定向明显;e.硬石膏磁铁石英岩显微镜下照片(正交光);f.黑云母角闪石石英片岩显微镜照片(透射光),稀疏浸染状磁铁矿与中粒角闪石、黑云母、石英共生;g.零星细粒磁铁矿赋存于角闪石黑云母石英片岩中,透射光,样品YLK2-1;h.硬石膏磁铁石英岩中与石膏共生的稠密浸染状磁铁矿,正交光;i.硬石膏磁铁石英岩中与方解石共生纹层状磁铁矿,正交光;j.角闪石黑云母石英片岩含零星半自形细粒磁铁矿,反射光;k.硬石膏磁铁石英岩中与石膏共生的稠密浸染状磁铁矿,反射光;l.硬石膏磁铁石英岩中与方解石共生纹层状磁铁矿,反射光.矿物缩写:Bi.黑云母;Qtz.石英;Hb.角闪石;Mag.磁铁矿;Anh.硬石膏;Cc.方解石
Fig. 4. Geological characteristics of samples from the Erik iron deposit
图 5 磁铁矿/全陆壳多元素蛛网图
a.YLK-Ⅰ组,与硬石膏共生稠密浸染状磁铁矿;b.YLK-Ⅱ组,与方解石共生纹层状磁铁矿;大陆地壳数据来自Rudnick and Gao(2003)
Fig. 5. Multi element variation spider diagrams for magnetite, normalized to bulk continental crust
图 6 磁铁矿Ti-Mg,Ti-Al,Ni-Co,Al-Ga二元图解
ZKA3-1为块状磁铁矿; ZKA1-2为条带状磁铁矿; ZK10-371, ZK0-531均为稠密浸染状磁铁矿; 数据来自Zhou et al.(2017)
Fig. 6. Bi-plots of Ni vs. Co, Ti vs. Mg, Ti vs. Al, and Al vs. Ga of magnetite
图 7 不同类型磁铁矿/全陆壳多元素蛛网图
IOCG、BIF、矽卡岩型铁矿床、Ⅰ型花岗岩、安山岩、Cu-Ni-PGE矿床和斑岩矿床的磁铁矿数据来自Dare et al.(2014);大陆地壳数据来自Rudnick and Gao(2003)
Fig. 7. Multi-element spider diagrams of average trace element concentrations of different genesis magnetites normalized to the bulk continental crust
图 8 磁铁矿Ti与Ni/Cr二元图
Fig. 8. Bi-plot of Ti vs. Ni/Cr ratio (un-normalized) of magnetite to distinguish magmatic and hydrothermal settings
图 9 磁铁矿(Al+Mn)-(Ti+V)形成温度
底图据Nadoll et al.(2014);数据来源:叶里克,本文;赞坎铁矿:ZKA1-2,ZKA3-1,ZK10-371,ZK10-531数据与图 6相同,据Zhou et al.(2017);鞍本地区弓长岭BIFs铁矿据Sun et al.(2018)
Fig. 9. Relation of Al+Mn vs. Ti+V for different formation temperatures of magnetite
图 11 Ca+Al+Mn-Ti+V (a) Ni/(Cr+Mn)-Ti+V (b)矿床类型
底图据Dupuis and Beaudoin(2011);Skarn.矽卡岩型矿床;BIF.条带状铁建造;IOCG.铁氧化物型铜金矿床;Kiruna.基鲁纳型铁矿床;Porphyry.斑岩型铁矿床;Fe-Ti-V.岩浆钒钛磁铁矿.ZKA1-2、ZKA3-1、ZK10-371、ZK10-531数据来自Zhou et al.(2017)
Fig. 11. Diagram of Ca+Al+Mn-Ti+V (a) Ni/(Cr+Mn)-Ti+V (b) ore deposit types
表 1 叶里克铁矿磁铁矿微量元素分析结果表(10-6)
Table 1. Magnetite trace elements of the Erik iron deposit (10-6)
样品编号 Ⅰ组:与石膏共生稠密浸染状磁铁矿 Ⅱ组:与方解石共生纹层状磁铁矿 YLK1-2-2 YLK1-2-3 YLK1-2-4 YLK1-2-5 YLK1-2-6 YLK1-2-7 平均 YLK1-2-8 YLK1-2-9 YLK1-2-10 YLK1-2-11 YLK1-2-12 YLK1-2-13 平均 Mg 267.13 119.08 152.40 171.49 153.19 181.73 174.17 185.94 198.94 258.55 242.85 200.14 313.45 233.31 Al 932.76 841.57 917.18 878.28 784.70 691.87 841.06 835.05 880.97 922.36 743.69 1 034.24 923.58 889.98 Si 2 409.01 1 154.56 1 021.93 608.21 78.89 726.26 999.81 630.01 1 243.13 870.03 1 665.29 631.26 1 001.04 1 006.79 Mn 1 176.37 1 028.64 1 143.26 1 099.52 1 133.57 950.04 1 088.57 1 090.53 1 050.16 1 159.88 1 102.52 1 197.40 1 092.70 1 115.53 Ti 600.00 600.00 720.00 720.00 840.00 660.00 690.00 600.00 564.00 582.00 540.00 560.00 600.00 574.33 Ca 73.72 20.34 - - 20.95 101.89 36.15 84.04 182.07 95.70 563.35 88.88 203.08 202.85 Sc - - - - 0.16 - 0.03 0.08 0.25 - 0.01 0.26 0.04 0.11 V 3 422.70 3 391.50 3 260.53 3 439.24 3 826.39 3 970.94 3 551.88 3 796.86 3 658.96 3 340.41 3 370.56 3 395.92 3 445.47 3 501.36 Cr 7.79 4.18 2.63 6.29 7.32 2.72 5.16 5.91 8.78 11.87 - 5.06 8.64 6.71 Co 3.92 4.38 4.16 3.99 3.93 4.56 4.16 4.28 3.93 4.08 4.37 4.07 4.14 4.15 Ni 55.90 45.88 55.81 50.59 64.19 54.67 54.51 51.74 51.98 52.84 54.80 51.95 58.49 53.63 Cu 0.13 - 0.80 0.21 1.12 0.00 0.38 0.84 0.83 - 0.94 1.04 0.01 0.61 Zn 133.46 84.46 142.58 109.81 84.71 85.42 106.74 87.73 103.45 102.87 88.77 109.07 115.26 101.19 Ga 28.70 27.48 30.60 26.56 27.03 25.97 27.72 27.64 26.44 27.84 30.28 30.44 30.39 28.84 Y 0.57 - - - 0.01 0.07 0.11 0.01 0.04 0.06 1.14 0.06 1.64 0.49 Zr 0.72 1.49 1.18 0.51 1.24 1.11 1.04 0.99 1.29 0.32 82.49 1.23 0.95 14.55 Nb 0.11 0.01 - - 0.01 0.04 0.03 - 0.02 0.01 0.04 - 0.04 0.02 Mo 0.10 0.04 0.12 0.08 0.08 - 0.07 - 0.09 0.15 0.16 0.08 0.19 0.11 Sn 2.02 1.49 2.49 1.81 1.92 1.14 1.81 2.12 1.93 2.44 1.74 2.09 1.95 2.05 Hf - 0.02 - - - - 0.00 0.03 0.03 - 2.11 - - 0.36 Pb 1.01 0.07 0.06 0.05 0.15 0.28 0.27 0.17 0.51 0.15 0.74 0.15 0.15 0.31 Ge 1.09 0.39 0.68 0.67 0.38 1.00 0.70 1.53 0.78 0.54 0.80 0.80 0.61 0.84 W 0.13 - - - - - 0.02 0.02 - - 0.03 - 0.40 0.08 Ta 0.02 - 0.01 - - 0.01 0.01 - - 0.01 0.03 - 0.08 0.02 P - 7.11 30.74 - 66.57 59.15 27.26 - 18.10 20.69 - 4.67 - 7.24 Ni/Cr 7.18 10.98 21.22 8.04 8.77 20.10 10.57 8.75 5.92 4.45 - 10.27 6.77 7.99 Ti/V 0.18 0.18 0.22 0.21 0.22 0.17 0.19 0.16 0.15 0.17 0.16 0.16 0.17 0.16 注:“-”为低于检出限或未检测到. -
[1] ASKI., 2016.China's Iron Ore Imports Reached a Record High of 9.5272 Billion Tons in 2015.http://www.askci.com/news/chanye/2016/01/13/155836w0g6.shtm (in Chinese). [2] Balan, E., Villiers, J.P.R.D., Eeckhout, S.G., et al., 2006.The Oxidation State of Vanadium in Titanomagnetite from Layered Basic Intrusions.American Mineralogist, 91(5-6):953-956. https://doi.org/10.2138/am.2006.2192 [3] Bian, X.W., Zhu, H.P., Ji, W.H., et al., 2013.The Discovery of Qingbaikouan Plutonite in Taxorgan, Xinjiang, and Evidence from Zircon LA-ICP-MS U-Pb Dating of Intrusive Rock.Northwestern Geology, 46(1):22-31 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-XBDI201301007.htm [4] Bordage, A., Balan, E., Villiers, J.P.R.D., et al., 2011.V Oxidation State in Fe-Ti Oxides by High-Energy Resolution Fluorescence-Detected X-Ray Absorption Spectroscopy.Physics and Chemistry of Minerals, 38(6):449-458. https://doi.org/10.1007/s00269-011-0418-3 [5] Carew, M.J., 2004.Controls on Cu-Au Mineralisation and Fe Oxide Metasomatism in the Eastern Fold Belt, NW Queensland, Australia (Dissertation).James Cook University, Queensland. [6] Chen, D.H., Wu, Y.Z., Li, W.M., et al., 2013.Geological Characteristics and Genesis of the Iron Deposits in the Taxkorgan Area, West Kunlun.Geotectonica et Metallogenia, 37(4):671-684 (in Chinese with English abstract). https://www.researchgate.net/publication/289151673_Geological_characteristics_and_genesis_of_the_iron_deposits_in_the_Taxkorgan_area_west_Kunlun [7] Chen, W.T., Zhou, M.F., Gao, J.F., et al., 2015.Geochemistry of Magnetite from Proterozoic Fe-Cu Deposits in the Kangdian Metallogenic Province, SW China.Mineralium Deposita, 50(7):795-809. https://doi.org/10.1007/s00126-014-0575-7 [8] Chung, D., Zhou, M.F., Gao, J.F., et al., 2015.In-Situ LA-ICP-MS Trace Elemental Analyses of Magnetite:The Late Palaeoproterozoic Sokoman Iron Formation in the Labrador Trough, Canada.Ore Geology Reviews, 65:917-928. https://doi.org/10.1016/j.oregeorev.2014.09.030 [9] Dare, S.A.S., Barnes, S.J., Beaudoin, G., et al., 2014.Trace Elements in Magnetite as Petrogenetic Indicators.Mineralium Deposita, 49(7):785-796. https://doi.org/10.1007/s00126-014-0529-0 [10] Dill, H.G., 2010.The "Chessboard" Classification Scheme of Mineral Deposits:Mineralogy and Geology from Aluminum to Zirconium.Earth-Science Reviews, 100(1-4):1-420. https://doi.org/10.1016/j.earscirev.2009.10.011 [11] Dong, L.H., Feng, J., Liu, D.Q., et al., 2010a.Research for Classification of Metallogenic Unit of Xinjiang.Xinjiang Geology, 28(1):1-15 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz201001001 [12] Dong, L.H., Feng, J., Zhuang, D.Z., et al., 2011a.Discussion of Metallogenic Models, Mineralization Characteristic and Main Type of Rich Iron Ore of Xinjiang.Xinjiang Geology, 29(4):416-422 (in Chinese with English abstract). [13] Dong, L.H., Feng, J., Zhuang, D.Z., et al., 2011b.Xinjiang Geological Mineral Exploration Retrospect and Prospect.Xinjiang Geology, 29(1):1-6 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/xjdz201101001 [14] Dong, L.H., Li, J.H., Feng, J., et al., 2012.The Main Achievement and Progress of Xinjiang Geology and Mineral Exploration in 2011.Xinjiang Geology, 30(1):1-4 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz201201001 [15] Dong, L.H., Qu, X., Zhu, Z.X., et al., 2010b.Tectonic Evolution and Metallogenesis of Xinjiang, China.Xinjiang Geology, 28(4):351-357 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201004002.htm [16] Dupuis, C., Beaudoin, G., 2011.Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types.Mineralium Deposita, 46(4):319-335. https://doi.org/10.1007/s00126-011-0334-y [17] Gao, J.F., Zhou, M.F., LightFoot, P.C., et al., 2013.Sulfde Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfde Deposit, Xinjiang, Northwestern China.Economic Geology, 108:1833-1848. doi: 10.2113/econgeo.108.8.1833 [18] Geology and Mineral Bureau of Xinjiang Uygur Autonomous Region, 1993.Regional Geology of Xinjiang Uygur Autonomous Region.Geological Publishing House, Beijing (in Chinese). [19] Hu, H., Li, J.W., Lentz, D., et al., 2014.Dissolution-Reprecipitation Process of Magnetite from the Chengchao Iron Deposit:Insights into Ore Genesis and Implication for In-Situ Chemical Analysis of Magnetite.Ore Geology Reviews, 57:393-405. https://doi.org/10.1016/j.oregeorev.2013.07.008 [20] Huang, C.Y., 2014.Geological Characteristics and Genesis of the Iron Ore Deposit in the Bulunkuole Group, West Kunlun, Xinjiang (Dissertation).Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract). [21] Huang, X.W., Zhou, M.F., Qiu, Y.Z., et al., 2015.In-Situ LA-ICP-MS Trace Elemental Analyses of Magnetite:The Bayan Obo Fe-REE-Nb Deposit, North China.Ore Geology Reviews, 65:884-899. https://doi.org/10.1016/j.oregeorev.2014.09.010 [22] Ji, W.H., Li, R.S., Chen, S.J., et al., 2011.The Discovery of Palaeoproterozoic Volcanic Rocks in the Bulunkuoler Group from the Tianshuihai Massif in Xinjiang of Northwest China and Its Geological Significance.Science in China (Series D), 41(9):1268-1280 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100000068 [23] Jia, R.Y., Jiang, Y.H., Liu, Z., et al., 2013.Petrogenesis and Tectonic Implications of Early Silurian High-K Calc-Alkaline Granites and Their Potassic Microgranular Enclaves, Western Kunlun Orogen, NW Tibetan Plateau.International Geology Review, 55(8):958-975. https://doi.org/10.1080/00206814.2012.755766 [24] Li, H.M., Wang, R.J., Xiao, K.Y., et al., 2010.Feasibility Analysis of Ensuring Iron Demand Mainly by Domestic Resources.Geological Bulletin of China, 29(1):1-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201001001.htm [25] Li, W.H., Yang, C.M., 1983.Palaeotectonic and Geochemical Environment of Precambrian Submarine Volcanic Sedimentary Metamorphic Iron Ore in Luanxian of the Hebei Province.Earth Science, 8(3):117-126 (in Chinese with English abstract). [26] Li, W.Y., Zhang, Z.W., Gao, Y.B., et al., 2011.Important Metallogenic Events and Tectonic Response of Qinling, Qilian and Kunlun Orogenic Belts.Geology in China, 38(5):1135-1149 (in Chinese with English abstract). [27] Li, X.D., Wang, K.Z., 2000.The Tethys Framwork and Its Tectonic Signeficance of Southwest Tarim and the Adjacent Region.Xinjiang Geology, 18(2):113-120 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz200002003 [28] Li, X.D., Wang, Y.L., Huang, Z.L., 1996.Kangxiwar Shove Tectonic Belt (KSBT) and Its Significance.Xinjiang Geology, 14(3):204-212 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XJDI603.001.htm [29] Liao, S.Y., Jiang, Y.H., Jiang, S.Y., et al., 2010.Subducting Sediment-Derived Arc Granitoids:Evidence from the Datong Pluton and Its Quenched Enclaves in the Western Kunlun Orogen, Northwest China.Mineralogy and Petrology, 100(1-2):55-74. https://doi.org/10.1007/s00710-010-0122-x [30] Lin, S.K., 2015.Study on Geochemistry and Zircon U-Pb Ages Dacite Porphyry from the Zankan Iron Deposit West Kunlun Area (Dissertation).Kunming Universty of Science and Technology, Kunming (in Chinese with English abstract). [31] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [32] Nadoll, P., Angerer, T., Mauk, J.L., et al., 2014.The Chemistry of Hydrothermal Magnetite:A Review.Ore Geology Reviews, 61:1-32. https://doi.org/10.1016/j.oregeorev.2013.12.013 [33] Qiao, G.B., Wang, P., Wu, Y.Z., et al., 2015.Formation Age of Ore-Bearing Strata of the Zankan Iron Deposit in Taxkorgan Landmass of Western Kunlun Mountains and Its Geological Significance.Geology in China, 42(3):616-629 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DIZI201503016.htm [34] Qu, J.F., Zhang, L.F., Ai, Y.L., et al., 2007.High-Pressure Granulite from Western Kunlun, Northwestern China:Its Metamorphic Evolution, Zircon SHRIMP U-Pb Ages and Tectonic Implication.Science in China (Series D), 37(4):429-441 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgkx-ed200707001 [35] Robinson, A.C., 2015.Mesozoic Tectonics of the Gondwanan Terranes of the Pamir Plateau.Journal of Asian Earth Sciences, 102:170-179. https://doi.org/10.1016/j.jseaes.2014.09.012 [36] Robinson, A.C., Ducea, M., Lapen, T.J., 2012.Detrital Zircon and Isotopic Constraints on the Crustal Architecture and Tectonic Evolution of the Northeastern Pamir.Tectonics, 31(2):1-16. https://doi.org/10.1029/2011tc003013 [37] Rudnick, R.L., Gao, S.2003.Composition of the Continental Crust.Treatise on Geochemistry, 3:1-64. http://cn.bing.com/academic/profile?id=e4e7bfe526622b0f272f13e9a0ae5c2c&encoded=0&v=paper_preview&mkt=zh-cn [38] Çengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993.Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia.Nature, 364(6435):299-307. https://doi.org/10.1038/364299a0 [39] Shen, Q.H., Song, H.X., 2015.Progress, Prospecting and Key Scientific Problems in Origin Researches of High-Grade Iron Ore of the Banded Iron Formation (BIF) in the North China Craton.Acta Petrologica Sinica, 31(10):2795-2815 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201510001 [40] Shen, Q.H., Song, H.X., Zhao, Z.R.2009.Characteristics of Rare Earth Elements and Trace Elements in Hanwang Neo-Archaean Banded Iron Formations, Shandong Province.Acta Geoscientica Sinica, 30(6):693-699 (in Chinese with English abstract). [41] Shi, G.H., Xie, Y.Q., 2014.The Occurrence Features of Ore Bodys from the Erik Iron Deposit and Analysises on Prespecting.West-China Exploration Engineering, 9:134-138 (in Chinese with English abstract). [42] Sun, X.H., Zhu, X.Q., Tang, H.S., et al., 2014.The Gongchangling BIFs from the Anshan-Benxi Area, NE China:Petrological-Geochemical Characteristics and Genesis of High-Grade Iron Ores.Ore Geology Reviews, 60:112-125. https://doi.org/10.1016/j.oregeorev.2013.12.017 [43] Sun, X.H., Zhu, X.Q., Tang, H.S., et al., 2018.In Situ LA-ICP-MS Trace Element Analysis of Magnetite from the Late Neoarchean Gongchangling BIFs, NE China:Constraints on the Genesis of High-Grade Iron Ore.Geological Journal, 53(2):8-20. https://doi.org/10.1002/gj.3004 [44] Toplis, M.J., Carroll, M.R., 1995.An Experimental Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral-Melt Equilibria in Ferro-Basaltic Systems.Journal of Petrology, 36(5):1137-1170. https://doi.org/10.1093/petrology/36.5.1137 [45] Wang, C.M., Zhang, L., Tang, H.S., et al., 2017.Genesis of the Kaladawan Fe-Mo Ore Field in Altyn, Xinjiang, China:Constraints from Mineralogy and Geochemistry.Ore Geology Reviews, 81:587-601. https://doi.org/10.1016/j.oregeorev.2016.09.001 [46] Wang, J.P., 2008.Geological Features and Tectonic Significance of Melange Zone in the Taxkorgan Area, West Kunlun.Geological Bulletin of China, 27(12):2057-2066 (in Chinese with English abstract). [47] Wang, S.Y., Yao, J.X., Xiao, X.C., et al., 2003.Discovery of a Silurian Graptolite Fauna at Daftar, Taxkorgan County, Xinjiang.Geological Bulletin of China, 22(10):839-840 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200310014.htm [48] Xiao, W.J., Windley, B.F., Liu, D.Y., et al., 2005.Accretionary Tectonics of the Western Kunlun Orogen, China:A Paleozoic-Early Mesozoic, Long-Lived Active Continental Margin with Implications for the Growth of Southern Eurasia.The Journal of Geology, 113(6):687-705. https://doi.org/10.1086/449326 [49] Xu, Z.Q., Qi, X.X., Liu, F.L., et al., 2004.The Kangxiwar Caledonian Khondalite Series in West Kunlun, China, and Its Geological Significance.Acta Geologica Sinica, 78(6):733-743 (in Chinese with English abstract). [50] Yan, C.H., Chen, C.J., Cao, X.Z., et al., 2012.The Discovery of the "Pamir-Type" Iron Deposits in Taxkorgan Area of Xinjiang and Its Geological Significance.Geological Bulletin of China, 31(4):549-557 (in Chinese with English abstract). [51] Yang, K.G., Liu, Q., Zhang, C.L., et al., 2003.The Newly Discovered Granulite in the West Kunlun Kangxiwa Fault Zone.Geological Science and Technology Information, 22(1):100, 104 (in Chinese). [52] Yang, W.Q., 2013.The Indosinian Metamorphism, Magmatism and Formation Age of Bunlunkuole Rock Group in Taxkorgan-Kangxiwar Tectonic Belt, Western Kunlun (Dissertation).Northwest Universty, Xi'an (in Chinese with English abstract). [53] Yang, W.Q., Liu, L., Cao, Y.T., et al., 2011.Geochronological Evidence of Indosinian (High-Pressure) Metamorphic Event and Its Tectonic Significance in Taxkorgan Area of the Western Kunlun Mountains, NW China.Science in China (Series D), 41(8):1047-1060 (in Chinese with English abstract). https://www.deepdyve.com/lp/springer-journals/geochronological-evidence-of-indosinian-high-pressure-metamorphic-RSf6HC1vFe [54] Yao, J.X., Xiao, X.C., Gao, L.D., et al., 2005.Discovery and Geological Significance of the Permian Sporopollen Fossils from Daftar, Taxkorgan, Xinjiang.Journal of Palaeogeography, 7(3):321-326 (in Chinese with English abstract). [55] Zeng, W., Sun, F.Y., Zhao, C.S., et al., 2015.Genesis of Qieliekeqi Iron Deposit in West Kunlun, Xinjiang:Evidence from Geochemistry and Fluid Inclusions.Geoscience, 29(6):1296-1308 (in Chinese with English abstract). [56] Zhang, C.L., Li, H.K., Wang, H.Y., 2012.A Review on Precambrian Tectonic Evolution of Tarim Block:Possibility of Interaction between Neoproterozoic Plate Subduction and Mantle Plume.Geological Review, 58(5):923-936 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000001891 [57] Zhang, C.L., Li, Z.X., Li, X.H., et al., 2007.An Early Paleoproterozoic High-K Intrusive Complex in Southwestern Tarim Block, NW China:Age, Geochemistry, and Tectonic Implications.Gondwana Research, 12(1-2):101-112. https://doi.org/10.1016/j.gr.2006.10.006 [58] Zhang, C.L., Lu, S.N., Yu, H.F., et al., 2007.Tectonic Evolution of the Western Kunlun Orogenic Belt in Northern Qinghai-Tibet Plateau:Evidence from Zircon SHRIMP and LA-ICP-MS U-Pb Geochronology.Science in China (Series D), 37(2):145-154 (in Chinese). [59] Zhang, C.L., Yu, H.F., Wang, A.G., et al., 2005.Dating of Triassic Granites in the Western Kunlun Mountains and Its Tectonic Significane.Acta Geologica Sinica, 79(5):645-652 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200505009 [60] Zhang, C.L., Zou, H.B., Ye, X.T., et al., 2018a.A Newly Identified Precambrian Terrane at the Pamir Plateau:The Archean Basement and Neoproterozoic Granitic Intrusions.Precambrian Research, 304:73-87. https://doi.org/10.1016/j.precamres.2017.11.006 [61] Zhang, C.L., Zou, H.B., Ye, X.T., et al., 2018b.Tectonic Evolution of the NE Section of the Pamir Plateau:New Evidence from Field Observations and Zircon U-Pb Geochronology.Tectonophysics, 723:27-40. https://doi.org/10.1016/j.tecto.2017.11.036 [62] Zhang, H., Wang, Z.Q., Ma, C.Q., et al., 2018.Proto-Tethys Record in Paleo-Tethys Belt of East Kunlun:Evidence from Kuhai Mafic Blocks.Earth Science, 43(4):1164-1182 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.714 [63] Zhang, S.B., 2016.Genesis of Gypsolyte-Iron Formation of West Kunlun-Pamir Type Iron Deposits:A Case Study of Laobing Iron Deposit.Mineral Resources and Geology, 30(2):151-156 (in Chinese with English abstract). [64] Zhang, Z.C., Hou, T., Li, H.M., et al., 2014.Enrichment Mechanism of Iron in Magmatichydrothermal System.Acta Petrologica Sinica, 30(5):1189-1204 (in Chinese with English abstract). [65] Zhang, Z.C., Hou, T., Santosh, M., et al., 2014.Spatio-Temporal Distribution and Tectonic Settings of the Major Iron Deposits in China:An Overview.Ore Geology Reviews, 57:247-263. https://doi.org/10.1016/j.oregeorev.2013.08.021 [66] Zhao, Y.M., 2004.Status of the Resources of Ironic Ores in China and Counter-Measures.Georeview, 50(4):396, 417 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/OA000005445 [67] Zhao, Y.M., 2013.Main Genetic Types and Geological Characteristics of Iron-Rich Ore Deposits in China.Mineral Deposits, 32(4):685-704 (in Chinese with English abstract). [68] Zhao, Y.M., Wu, L.S., Bai, G., et al., 2004.Metallogeny of the Major Metallic Ore Deposits in China.Geological Publishing House, Beijing, 13-62 (in Chinese). [69] Zhou, Z.J., Tang, H.S., Chen, Y.J., et al., 2017.Trace Elements of Magnetite and Iron Isotopes of the Zankan Iron Deposit, Westernmost Kunlun, China:A Case Study of Seafloor Hydrothermal Iron Deposits.Ore Geology Reviews, 80:1191-1205. https://dx.doi.org/10.1016/j.oregeorev.2016.09.020 [70] Zhou, Z.J., Tang, H.S., Wu, Y.S., et al., 2018.Geology, Geochemistry and Genesis of the Zankan Iron Deposit in the West Kunlun Orogen, Xinjiang, China.Ore Geology Reviews, https://dx.doi.org/10.1016/j.oregeorev.2017.09.009 [71] Zhu, J., Li, Q.G., Chen, X., et al., 2017.Geochemistry and Petrogenesis of the Early Palaeozoic Appinite-Granite Complex in the Western Kunlun Orogenic Belt, NW China:Implications for Palaeozoic Tectonic Evolution.Geological Magazine, 32:1-26. https://doi.org/10.1017/s0016756817000450 [72] Zhu, J., Li, Q.G., Wang, Z.Q., et al., 2016.Magmatism and Tectonic Implications of Early Cambrian Granitoid Plutons in Tianshuihai Terrane of the Western Kunlun Orogenic Belt, Northwest China.Northwestren Geology, 49(4):1-18 (in Chinese with English abstract). [73] 中商情报网, 2016.2015年中国铁矿石进口9.5272亿吨创历史最高纪录水平.http://www.askci.com/news/chanye/2016/01/13/155836w0g6.shtm [74] 边小卫, 朱海平, 计文化, 等, 2013.新疆塔什库尔干县南青白口纪侵入体的发现——来自LA-ICP-MS锆石U-Pb同位素测年的证据.西北地质, 46(1):22-31. doi: 10.3969/j.issn.1009-6248.2013.01.003 [75] 陈登辉, 伍跃中, 李文明, 等, 2013.西昆仑塔什库尔干地区磁铁矿矿床特征及其成因.大地构造与成矿学, 37(4):671-684. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201304012 [76] 董连慧, 冯京, 刘德权, 等, 2010a.新疆成矿单元划分方案研究.新疆地质, 28(1):1-15. http://d.old.wanfangdata.com.cn/Periodical/xjdz201001001 [77] 董连慧, 冯京, 庄道泽, 等, 2011a.新疆富铁矿成矿特征及主攻类型成矿模式探讨.新疆地质, 29(4):416-422. http://d.old.wanfangdata.com.cn/Periodical/xjdz201104012 [78] 董连慧, 冯京, 庄道泽, 等, 2011b.新疆地质矿产勘查回顾与展望.新疆地质, 29(1):1-6. http://d.old.wanfangdata.com.cn/Periodical/xjdz201101001 [79] 董连慧, 李基宏, 冯京, 等, 2012.新疆地质矿产勘查2011年主要成果和进展.新疆地质, 30(1):1-4. doi: 10.3969/j.issn.1000-8845.2012.01.001 [80] 董连慧, 屈迅, 朱志新, 等, 2010b.新疆大地构造演化与成矿.新疆地质, 28(4):351-357. http://d.old.wanfangdata.com.cn/Periodical/xjdz201004002 [81] 新疆维吾尔自治区地质矿产局, 1993.新疆维吾尔自治区区域地质志.北京:地质出版社. [82] 黄朝阳, 2014.西昆仑布伦阔勒群铁矿床地质特征及成因研究(博士学位论文).广州: 中国科学院广州地球化学研究所. http://d.wanfangdata.com.cn/Thesis/Y2675842 [83] 计文化, 李荣社, 陈守建, 等, 2011.甜水海地块古元古代火山岩的发现及其地质意义.中国科学(D辑), 41(9):1268-1280. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201109006.htm [84] 李厚民, 王瑞江, 肖克炎, 等, 2010.立足国内保障国家铁矿资源需求的可行性分析.地质通报, 29(1):1-7. doi: 10.3969/j.issn.1671-2552.2010.01.001 [85] 李万亨, 杨昌明, 1983.冀东滦县地区前震旦纪海底火山沉积变质铁矿的古构造及地球化学环境.地球科学, 8(3):117-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000259224 [86] 李文渊, 张照伟, 高永宝, 等, 2011.秦祁昆造山带重要成矿事件与构造响应.中国地质, 38(5):1135-1149. doi: 10.3969/j.issn.1000-3657.2011.05.002 [87] 李向东, 王克卓, 2000.塔里木盆地西南及邻区特提斯格局和构造意义.新疆地质, 18(2):113-120. doi: 10.3969/j.issn.1000-8845.2000.02.003 [88] 李向东, 王元龙, 黄智龙, 1996.康西瓦走滑构造带及其大地构造意义.新疆地质, 14(3):204-212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600829132 [89] 林尚康, 2015.西昆仑赞坎铁矿区英安斑岩地球化学特征及U-Pb年代学研究(硕士学位论文).昆明: 昆明理工大学. [90] 乔耿彪, 王萍, 伍跃中, 等, 2015.西昆仑塔什库尔干陆块赞坎铁矿赋矿地层形成时代及其地质意义.中国地质, 42(3):616-629. doi: 10.3969/j.issn.1000-3657.2015.03.016 [91] 曲军峰, 张立飞, 艾永亮, 等, 2007.西昆仑塔什库尔干高压麻粒岩PT轨迹、SHRIMP锆石定年及其大地构造意义.中国科学(D辑), 37(4):429-441. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200704001 [92] 沈其韩, 宋会侠, 2015.华北克拉通条带状铁建造中富铁矿成因类型的研究进展、远景和存在的科学问题.岩石学报, 31(10):2795-2815. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201510001 [93] 沈其韩, 宋会侠, 赵子然, 2009.山东韩旺新太古代条带状铁矿的稀土和微量元素特征.地球学报, 30(6):693-699. doi: 10.3321/j.issn:1006-3021.2009.06.002 [94] 石光辉, 谢月桥, 2014.叶里克铁矿矿体产状特征及找矿标志分析.西部探矿工程, 9:134-138. http://d.old.wanfangdata.com.cn/Periodical/xbtkgc201409044 [95] 王建平, 2008.西昆仑塔什库尔干混杂岩的地质特征及其大地构造意义.地质通报, 27(12):2057-2066. doi: 10.3969/j.issn.1671-2552.2008.12.011 [96] 王世炎, 姚建新, 肖序常, 等, 2003.新疆塔什库尔干县达布达尔志留纪笔石动物群的新发现.地质通报, 22(10):839-840. doi: 10.3969/j.issn.1671-2552.2003.10.015 [97] 许志琴, 戚学祥, 刘福来, 等, 2004.西昆仑康西瓦加里东期孔兹岩系及地质意义.地质学报, 78(6):733-743. doi: 10.3321/j.issn:0001-5717.2004.06.003 [98] 燕长海, 陈曹军, 曹新志, 等, 2012.新疆塔什库尔干地区"帕米尔式"铁矿床的发现及其地质意义.地质通报, 31(4):549-557. doi: 10.3969/j.issn.1671-2552.2012.04.008 [99] 杨坤光, 刘强, 张传林, 等, 2003.西昆仑康西瓦断裂带新发现的麻粒岩.地质科技情报, 22(1):100, 104. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200301024 [100] 杨文强, 2013.西昆仑塔县-康西瓦构造带印支期变质、岩浆作用及布伦阔勒岩群的形成时代(博士学位论文).西安: 西北大学. http://cdmd.cnki.com.cn/Article/CDMD-10697-1013253366.htm [101] 杨文强, 刘良, 曹玉亭, 等, 2011.西昆仑塔什库尔干印支期(高压)变质事件的确定及其构造地质意义.中国科学(D辑), 41(8):1047-1060. http://d.old.wanfangdata.com.cn/Conference/7417414 [102] 姚建新, 肖序常, 高联达, 等, 2005.新疆塔什库尔干县达布太尔地区二叠纪孢粉化石的发现及其地质意义.古地理学报, 7(3):321-326. doi: 10.3969/j.issn.1671-1505.2005.03.003 [103] 曾威, 孙丰月, 赵财胜, 等, 2015.新疆西昆仑切列克其铁矿成因——地球化学及流体包裹体证据.现代地质, 29(6):1296-1308. doi: 10.3969/j.issn.1000-8527.2015.06.004 [104] 张传林, 李怀坤, 王洪燕, 2012.塔里木地块前寒武纪地质研究进展评述.地质论评, 58(5):923-936. doi: 10.3969/j.issn.0371-5736.2012.05.014 [105] 张传林, 陆松年, 于海峰, 等, 2007.青藏高原北缘西昆仑造山带构造演化:来自锆石SHRIMP及LA-ICP-MS测年的证据.中国科学(D辑), 37(2):145-154. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200702001 [106] 张传林, 于海锋, 王爱国, 等, 2005.西昆仑西段三叠纪两类花岗岩年龄测定及其构造意义.地质学报, 79(5):645-652. doi: 10.3321/j.issn:0001-5717.2005.05.009 [107] 张航, 王宗起, 马昌前, 等, 2018.东昆仑古特提斯构造带中的原特提斯记录:来自苦海镁铁质岩块的证据.地球科学, 43(4):1164-1182. http://www.earth-science.net/WebPage/Article.aspx?id=3795 [108] 张哨波, 2016.西昆仑帕米尔式铁矿床膏铁建造成因探讨——以老并铁矿为例.矿产与地质, 30(2):151-156. doi: 10.3969/j.issn.1001-5663.2016.02.002 [109] 张招崇, 侯通, 李厚民, 等, 2014.岩浆-热液系统中铁矿的富集机制探讨.岩石学报, 30(5):1189-1204. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201405001&dbname=CJFD&dbcode=CJFQ [110] 赵一鸣, 2004.中国铁矿资源现状、保证程度和对策.地质论评, 50(4):396-417. doi: 10.3321/j.issn:0371-5736.2004.04.018 [111] 赵一鸣, 2013.中国主要富铁矿床类型及地质特征.矿床地质, 32(4):685-704. doi: 10.3969/j.issn.0258-7106.2013.04.004 [112] 赵一鸣, 吴良士, 白鸽, 等, 2004.中国主要金属矿床成矿规律.北京:地质出版社, 13-62. [113] 朱杰, 李秋根, 王宗起, 等, 2016.西昆仑甜水海地体早寒武世花岗岩浆作用及其构造意义.西北地质, 49(4):1-18. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=XBDI201604001&dbname=CJFD&dbcode=CJFQ