• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    厄立特里亚Koka花岗岩锆石U-Pb年代学、地球化学特征及其地质意义

    赵凯 姚华舟 王建雄 Ghebsha FitwiGhebretnsae 向文帅 杨镇

    赵凯, 姚华舟, 王建雄, Ghebsha FitwiGhebretnsae, 向文帅, 杨镇, 2020. 厄立特里亚Koka花岗岩锆石U-Pb年代学、地球化学特征及其地质意义. 地球科学, 45(1): 156-167. doi: 10.3799/dqkx.2018.237
    引用本文: 赵凯, 姚华舟, 王建雄, Ghebsha FitwiGhebretnsae, 向文帅, 杨镇, 2020. 厄立特里亚Koka花岗岩锆石U-Pb年代学、地球化学特征及其地质意义. 地球科学, 45(1): 156-167. doi: 10.3799/dqkx.2018.237
    Zhao Kai, Yao Huazhou, Wang Jianxiong, Ghebsha Fitwi Ghebretnsae, Xiang Wenshuai, Yang Zhen, 2020. Zircon U-Pb Geochronology and Geochemistry of Koka Granite and Its Geological Significance, Eritrea. Earth Science, 45(1): 156-167. doi: 10.3799/dqkx.2018.237
    Citation: Zhao Kai, Yao Huazhou, Wang Jianxiong, Ghebsha Fitwi Ghebretnsae, Xiang Wenshuai, Yang Zhen, 2020. Zircon U-Pb Geochronology and Geochemistry of Koka Granite and Its Geological Significance, Eritrea. Earth Science, 45(1): 156-167. doi: 10.3799/dqkx.2018.237

    厄立特里亚Koka花岗岩锆石U-Pb年代学、地球化学特征及其地质意义

    doi: 10.3799/dqkx.2018.237
    基金项目: 

    中国地质调查局项目 DD20160109

    详细信息
      作者简介:

      赵凯(1987-), 男, 博士、工程师, 主要从事矿床学与地球化学研究

    • 中图分类号: P588.1;P597

    Zircon U-Pb Geochronology and Geochemistry of Koka Granite and Its Geological Significance, Eritrea

    • 摘要: Koka花岗岩位于厄立特里亚Nakfa地区以西,是Koka金矿床的主要赋矿围岩.岩体具有富SiO2(67.94%~78.40%)、Na2O+K2O(5.86%~8.76%)、Al2O3(11.05%~16.51%)、FeOT(2.46%~3.80%),弱过铝质-强过铝质(A/CNK为1.09~1.55),低CaO(0.06%~1.85%)、MgO(0.15%~0.39%)的主量元素特征,同时轻稀土富集,重稀土相对亏损,强烈亏损Sr、P、Ti元素,REE分配曲线呈现燕式分布和明显的负铕异常,表明岩体具有A型花岗岩的特征.岩体锆石LA-ICP-MS U-Pb年龄显示其成岩年龄为851.2±1.9 Ma,属早新元古代,不同于区域上广泛分布的与造山后伸展作用相关的A型花岗岩(650~540 Ma),结合区域研究成果认为,其可能形成于由俯冲作用而引起的弧后拉张环境.岩体锆石具有一定的Ce正异常,Ce4+/Ce3+变化范围为3.86~146.31,平均为32.4,指示岩浆的氧逸度相对较低,结合岩浆源区为较“干”的体系特征,暗示该岩体成矿潜力较低,难以形成相关的大型、超大型矿床.

       

    • 图  1  区域地质简图(a,b)及Koka金矿区地质图(c)

      图a据Johnson et al.(2011)修改;图b据Teklay et al.(2006)修改;图c据Chalice金矿有限公司, 2010, 厄立特里亚Koka金矿地质勘查报告,珀斯

      Fig.  1.  Sketch of regional geology (a, b) and geology map of Koka gold deposit (c)

      图  2  Koka花岗岩岩体露头(a)、手标本(b)与镜下照片(c,d)

      Q.石英;Pl.斜长石;Kfs.钾长石;Py.黄铁矿

      Fig.  2.  Outcrop photograph (a), hand specimen photograph (b) and photomicrographs (c, d) of Koka granite

      图  3  Koka花岗岩锆石U⁃Pb年龄谐和图

      Fig.  3.  U⁃Pb concordia diagram of zircon for Koka granite

      图  4  Koka花岗岩锆石REE球粒陨石配分模式(a)和Ce4+/Ce3+值分布(b)

      标准化值据Sun and McDonough(1989)

      Fig.  4.  Primitive mantle normalized REE diagram (a) and scattergram of Ce4+/Ce3+value (b) of the zircon from Koka granite

      图  5  Koka金矿区花岗岩TAS图解(a),Na2O-K2O图解(b)

      图a据Middlemost(1985);图b据Maniar and Piccoli(1989)

      Fig.  5.  TAS diagram (a), Na2O-K2O (b) diagram of granite from Koka gold deposit

      图  6  Koka花岗岩稀土元素球粒陨石标准化(a)和微量元素原始地幔标准化图(b)

      标准化值据Sun and McDonough(1989)

      Fig.  6.  Primitive mantle normalized REE diagram (a) and chondirite normalized multi-element diagram (b) of zircon for Koka granite

      图  7  Koka金矿区花岗岩(Na2O+K2O)/CaO(a)、FeOT/MgO与Zr+Nb+Ce+Y(b)和FeOT/(FeOT+MgO)与SiO2(c)判别图

      图a、b据Whalen et al.(1987);图c据Frost et al.(2001)

      Fig.  7.  Diagram of classification of granite origin from Koka gold deposit:(Na2O+K2O)/CaO (a), FeOT/MgO vs. Zr+Nb+Ce+Y (b), FeOT/(FeOT+MgO)vs. SiO2 (c)

      图  8  Koka金矿区花岗岩构造判别图

      底图a据Harris et al.(1986);图b~d据Pearce et al.(1984);ORG.洋脊花岗岩;WPG.板内花岗岩;VAG.火山弧花岗岩;Syn-COLG.同碰撞花岗岩;LCC-PCG.碰撞晚期-碰撞后花岗岩

      Fig.  8.  Structure discrimination diagram of granite from Koka gold deposit

      图  9  Koka金矿区花岗岩构造环境判别图

      图据Eby(1992);IAB.岛弧玄武岩;OIB.洋岛玄武岩

      Fig.  9.  Tectonic discrimination diagram of granite from Koka gold deposit

      图  10  厄立特里亚部分前/碰撞花岗岩、火山岩及后碰撞花岗岩年龄分布

      年龄数据据Teklay et al.(2002a, 2002b, 2003)

      Fig.  10.  The distribution of pre-syn granites, volcanic and post granites, and their geochronological data in Eritrea

      图  11  Koka花岗岩形成的构造环境模式

      Fig.  11.  The structural environment model of Koka granite

    • [1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      [2] Andersson, U. B., Ghebreab, W., Teklay, M., 2006. Crustal Evolution and Metamorphism in East-Central Eritrea, South-East Arabian-Nubian Shield. Journal of African Earth Sciences, 44(1):45-65. https://doi.org/10.1016/j.jafrearsci.2005.11.006
      [3] Ballard, J. R., Palin, M. J., Campbell, I. H., 2002. Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon:Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3):347-364. https://doi.org/10.1007/s00410-002-0402-5
      [4] Bonin, B., 2007. A-Type Granites and Related Rocks:Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2):1-29. https://doi.org/10.1016/j.lithos.2006.12.007
      [5] Chen, X. C., Hu, R. Z., Bi, X. W., et al., 2015. Petrogenesis of Metaluminous A-Type Granitoids in the Tengchong-Lianghe Tin Belt of Southwestern China:Evidences from Zircon U-Pb Ages and Hf-O Isotopes, and Whole-Rock Sr-Nd Isotopes. Lithos, 212-215:93-110. https://doi.org/10.1016/j.lithos.2014.11.010
      [6] Doebrich, J. L., Zahony, S. G., Leavitt, J. D., et al., 2004. Ad Duwayhi, Saudi Arabia:Geology and Geochronology of a Neoproterozoic Intrusion-Related Gold System in the Arabian Shield. Economic Geology, 99(4):713-741. https://doi.org/10.2113/gsecongeo.99.4.713
      [7] Drury, S. A., De Souza Filho, C. R., 1998. Neoproterozoic Terrane Assemblages in Eritrea:Review and Prospects. Journal of African Earth Sciences, 27(3-4):331-348. https://doi.org/10.1016/s0899-5362(98)00066-9
      [8] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7):641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co; 2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
      [9] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      [10] Harris, N. B. W., Marzouki, F. M. H., Ali, S., 1986. The Jabel Sayid Complex, Arabian Shield:Geochemical Constraints on the Origin of Peralkaline and Related Granites. Journal of the Geological Society, 143(2):287-295. https://doi.org/10.1144/gsjgs.143.2.0287
      [11] Hu, P. Y., Li, C., Wu, Y. W., et al., 2016. A Back-Arc Extensional Environment of the Early Carboniferous Paleo-Tethys Ocean in Tibetan Plateau:Evidences from A-Type Granites. Acta Petrologica Sinica, 32(4):1219-1231 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201604020
      [12] Johnson, P. R., Andresen, A., Collins, A. S., et al., 2011. Late Cryogenian-Ediacaran History of the Arabian-Nubian Shield:A Review of Depositional, Plutonic, Structural, and Tectonic Events in the Closing Stages of the Northern East African Orogen. Journal of African Earth Sciences, 61(3):167-232. https://doi.org/10.1016/j.jafrearsci.2011.07.003
      [13] King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371
      [14] Košler, J., Fonneland, H., Sylvester, P., et al., 2002. U-Pb Dating of Detrital Zircons for Sediment Provenance Studies-A Comparison of Laser Ablation ICPMS and SIMS Techniques. Chemical Geology, 182(2-4):605-618. https://doi.org/10.1016/s0009-2541(01)00341-2
      [15] Kröner, A., Linnebacher, P., Stern, R. J., et al., 1991. Evolution of Pan-African Island Arc Assemblages in the Southern Red Sea Hills, Sudan, and in Southwestern Arabia as Exemplified by Geochemistry and Geochronology. Precambrian Research, 53(1-2):99-118. https://doi.org/10.1016/0301-9268(91)90007-w
      [16] Liu, B., Ma, C. Q., Guo, P., et al., 2013. Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications. Earth Science, 38(5):947-962 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201305005
      [17] Liu, C. S., Chen, X. M., Chen, P. R., et al., 2003. Subdivision, Discrimination Criteria and Genesis for A Type Rock Suites. Geological Journal of China Universities, 9(4):573-591 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200304011
      [18] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      [19] Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America, Boulder.
      [20] Ludwig, .R., 2001. SQUID 1.02, A User's Manual. Berkeley Geochronological Center, Berkeley.
      [21] Mahdy, N. M., El Kalioubi, B. A., Wohlgemuth-Ueberwasser, C. C., et al., 2015. Petrogenesis of U- and Mo-Bearing A2-Type Granite of the Gattar Batholith in the Arabian Nubian Shield, Northeastern Desert, Egypt:Evidence for the Favorability of Host Rocks for the Origin of Associated Ore Deposits. Ore Geology Reviews, 71:57-81. https://doi.org/10.1016/j.oregeorev.2015.05.001
      [22] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      [23] Middlemost E. A. K., 1985. Magmas and Magmatic Rocks. An Introduction to Igneous Petrology, Longman, New York.
      [24] Möller, A., O'Brien, P. J., Kennedy, A., et al., 2003. Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry:An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway). Geological Society, London, Special Publications, 220(1):65-81. https://doi.org/10.1144/gsl.sp.2003.220.01.04
      [25] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      [26] Richards, J. P., 2015. The Oxidation State, and Sulfur and Cu Contents of Arc Magmas:Implications for Metallogeny. Lithos, 233:27-45. https://doi.org/10.1016/j.lithos.2014.12.011
      [27] Stern, R. J., 1994. Arc-Assembly and Continental Collision in the Neoproterozoic African Orogen:Implications for the Consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences, 22(1):319-351. https://doi.org/10.1146/annurev.earth.22.1.319
      [28] Stern, R. J., Johnson, P., 2010. Continental Lithosphere of the Arabian Plate:A Geologic, Petrologic, and Geophysical Synthesis. Earth-Science Reviews, 101(1-2):29-67. https://doi.org/10.1016/j.earscirev.2010.01.002
      [29] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [30] Teklay, M., 1997. Petrology, Geochemistry and Geochronology of Neoproterozoic Magmatiic Arc Rocks from Eritrea: Implications for Crustal Evolution in the Southern Nubian Shield. Memoir, Asmara.
      [31] Teklay, M., 2006. Neoproterozoic Arc-Back-Arc System Analog to Modern Arc-Back-Arc Systems:Evidence from Tholeiite-Boninite Association, Serpentinite Mudflows and Across-Arc Geochemical Trends in Eritrea, Southern Arabian-Nubian Shield. Precambrian Research, 145(1-2):81-92. https://doi.org/10.1016/j.precamres.2005.11.015
      [32] Teklay, M., Berhe, K., Reimold, W. U., et al., 2002a. Geochemistry and Geochronology of a Neoproterozoic Low-K Tholeiite-Boninite Association in Central Eritrea. Gondwana Research, 5(3):597-611. https://doi.org/10.1016/s1342-937x(05)70632-8
      [33] Teklay, M., Kröner, A., Mezger, K., 2002b. Enrichment from Plume Interaction in the Generation of Neoproterozoic Arc Rocks in Northern Eritrea:Implications for Crustal Accretion in the Southern Arabian-Nubian Shield. Chemical Geology, 184(1-2):167-184. https://doi.org/10.1016/s0009-2541(01)00359-x
      [34] Teklay, M., Haile, T., Kröner, A., et al., 2003. A Back-Arc Palaeotectonic Setting for the Augaro Neoproterozoic Magmatic Rocks of Western Eritrea. Gondwana Research, 6(4):629-640. https://doi.org/10.1016/s1342-937x(05)71012-1
      [35] Trail, D., Watson, E. B., Tailby, N. D., 2011. The Oxidation State of Hadean Magmas and Implications for Early Earth's Atmosphere. Nature, 480(7375):79-82. https://doi.org/10.1038/nature10655
      [36] Wang, Q., Zhao, Z. H., Xiong, X. L., 2000. The Ascertainment of Late-Yanshanian A-Type Granite in Tongbai-Dabie Orogenic Belt. Acta Petrologica et Mineralogica, 19(4):297-306 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200004002
      [37] Wang, Y. L., Li, Y. J., Wei, J. H., et al., 2018. Origin of Late Silurian A-Type Granite in Wulonggou Area, East Kunlun Orogen:Zircon U-Pb Age, Geochemistry, Nd and Hf Isotopic Constraints. Earth Science, 43(4):1219-1236 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804018
      [38] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      [39] White, A. J. R., 1979. Source of Granite Magmas. Geological Society of America, Boulder.
      [40] Woldehaimanot, B., 2000. Tectonic Setting and Geochemical Characterisation of Neoproterozoic Volcanics and Granitoids from the Adobha Belt, Northern Eritrea. Journal of African Earth Sciences, 30(4):817-831. https://doi.org/10.1016/s0899-5362(00)00054-3
      [41] Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites:Recognition and Research. Science in China (Series D), 47(7):745-765 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010
      [42] Xiang, P., Wang, J. X., 2013. Ore Geology Character and Type of Koka Gold Deposit, Eritrea. Acta Mineralogica Sinica, (S2):1067-1068 (in Chinese with English abstract).
      [43] Xu, B. L., Yan, G. H., Zhang, C., et al., 1998. Petrological Subdivision and Source Material of A-Type Granites. Earth Science Frontiers, 5(3):113-124 (in Chinese with English abstract).
      [44] Yan, J. M., Sun, G. S., Sun, F. Y., et al., 2019. Geochronology, Geochemistry, and Hf Isotopic Compositions of Monzogranites and Mafic-Ultramafic Complexes in the Maxingdawannan Area, Eastern Kunlun Orogen, Western China:Implications for Magma Sources, Geodynamic Setting, and Petrogenesis. Journal of Earth Science, 30(2):335-347. https://doi.org/10.1007/s12583-018-1203-8
      [45] Yu, Y. S., Gao, Y., Yang, Z. S., et al., 2011. Zircon LA-ICP-MS U-Pb Dating and Geochemistry of Intrusive Rocks from Gunjiu Iron Deposit in the Nixiong Ore Field, Coqen, Tibet. Acta Petrologica Sinica, 27(7):1949-1960 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201107004
      [46] Zhang, Q., Jin, W. J., Li, C. D., et al., 2010. Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents:Index. Acta Petrologica Sinica, 26(4):985-1015 (in Chinese with English abstract).
      [47] 胡培远, 李才, 吴彦旺, 等, 2016.青藏高原古特提斯洋早石炭世弧后拉张:来自A型花岗岩的证据.岩石学报, 32(4):1219-1231. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201604020
      [48] 刘彬, 马昌前, 郭盼, 等, 2013.东昆仑中泥盆世A型花岗岩的确定及其构造意义.地球科学, 38(5):947-962. doi: 10.3799/dqkx.2013.093
      [49] 刘昌实, 陈小明, 陈培荣, 等, 2003. A型岩套的分类、判别标志和成因.高校地质学报, 9(4):573-591 http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200304011
      [50] 王强, 赵振华, 熊小林, 2000.桐柏-大别造山带燕山晚期A型花岗岩的厘定.岩石矿物学杂志, 19(4):297-306 doi: 10.3969/j.issn.1000-6524.2000.04.002
      [51] 王艺龙, 李艳军, 魏俊浩, 等, 2018.东昆仑五龙沟地区晚志留世A型花岗岩成岩:U-Pb年代学、地球化学、Nd及Hf同位素制约.地球科学, 43(4):1219-1236 doi: 10.3799/dqkx.2018.717
      [52] 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001
      [53] 向鹏, 王建雄, 2013.厄立特里亚Koka金矿地质特征及矿床类型.矿物学报, (S2):1067-1068. http://d.old.wanfangdata.com.cn/Conference/8301188
      [54] 许保良, 阎国翰, 张臣, 等, 1998. A型花岗岩的岩石学亚类及其物质来源.地学前缘, 5(3):113-124. doi: 10.3321/j.issn:1005-2321.1998.03.011
      [55] 于玉帅, 高原, 杨竹森, 等, 2011.西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征.岩石学报, 27(7):1949-1960 http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107004
      [56] 张旗, 金惟俊, 李承东, 等, 2010.再论花岗岩按照Sr-Yb的分类:标志.岩石学报, 26(4):985-1015. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004001
    • dqkx-45-1-156-Table1-3.pdf
    • 加载中
    图(11)
    计量
    • 文章访问数:  2434
    • HTML全文浏览量:  863
    • PDF下载量:  48
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-07-06
    • 刊出日期:  2020-01-15

    目录

      /

      返回文章
      返回