Zircon U-Pb Geochronology and Geochemistry of Koka Granite and Its Geological Significance, Eritrea
-
摘要: Koka花岗岩位于厄立特里亚Nakfa地区以西,是Koka金矿床的主要赋矿围岩.岩体具有富SiO2(67.94%~78.40%)、Na2O+K2O(5.86%~8.76%)、Al2O3(11.05%~16.51%)、FeOT(2.46%~3.80%),弱过铝质-强过铝质(A/CNK为1.09~1.55),低CaO(0.06%~1.85%)、MgO(0.15%~0.39%)的主量元素特征,同时轻稀土富集,重稀土相对亏损,强烈亏损Sr、P、Ti元素,REE分配曲线呈现燕式分布和明显的负铕异常,表明岩体具有A型花岗岩的特征.岩体锆石LA-ICP-MS U-Pb年龄显示其成岩年龄为851.2±1.9 Ma,属早新元古代,不同于区域上广泛分布的与造山后伸展作用相关的A型花岗岩(650~540 Ma),结合区域研究成果认为,其可能形成于由俯冲作用而引起的弧后拉张环境.岩体锆石具有一定的Ce正异常,Ce4+/Ce3+变化范围为3.86~146.31,平均为32.4,指示岩浆的氧逸度相对较低,结合岩浆源区为较“干”的体系特征,暗示该岩体成矿潜力较低,难以形成相关的大型、超大型矿床.Abstract: Koka granite, located in the west of the Nakfa region in Eritrea, is the main host rock of Koka gold deposit. The major elements of the granite are characteristiced by high SiO2 (67.94%-78.40%), Na2O+K2O (5.86%-8.76%), Al2O3 (11.05%-16.51%) and FeOT (2.46%-3.80%), weakly peraluminous to strongly peraluminous (A/CNK is 1.09-1.55), and low CaO (0.06%-1.85%), MgO (0.15%-0.39%). It is also enriched in LREEs and relatively depleted in HREEs, strongly depleted in Sr, P, Ti. The REE distribution curve shows characteristics such as swallow distribution and apparent negative europium anomalies. All of these indicate that the Koka granite has an affinity of A-type granite. Zircon LA-ICP-MS U-Pb dating shows the granite formed in early period of the Neoproterozoic with the diagenetic age of 851.2±1.9 Ma. This is different from the A-type granite which is widely distributed and related to the extension after collisional orogen (650-540 Ma). Combined with the regional geological research results, it is suggested that Koka granite was formed in a back-arc extensional environment which resulted from subduction. The zircon has a certain Ce positive anomaly, and variation range of the Ce4+/Ce3+ is 3.86-146.31, with an average of 32.4, indicating low degree of magmatic oxygen fugacity. Meanwhile the parental magma of Koka granite is "dry", suggesting that the metallogenic potentiality is low, and it is hard to form related large or super large deposits.
-
Key words:
- Koka gold deposit /
- zircon U-Pb dating /
- geochemistry /
- Eritrea
-
图 1 区域地质简图(a,b)及Koka金矿区地质图(c)
图a据Johnson et al.(2011)修改;图b据Teklay et al.(2006)修改;图c据Chalice金矿有限公司, 2010, 厄立特里亚Koka金矿地质勘查报告,珀斯
Fig. 1. Sketch of regional geology (a, b) and geology map of Koka gold deposit (c)
图 4 Koka花岗岩锆石REE球粒陨石配分模式(a)和Ce4+/Ce3+值分布(b)
Fig. 4. Primitive mantle normalized REE diagram (a) and scattergram of Ce4+/Ce3+value (b) of the zircon from Koka granite
图 5 Koka金矿区花岗岩TAS图解(a),Na2O-K2O图解(b)
图a据Middlemost(1985);图b据Maniar and Piccoli(1989)
Fig. 5. TAS diagram (a), Na2O-K2O (b) diagram of granite from Koka gold deposit
图 6 Koka花岗岩稀土元素球粒陨石标准化(a)和微量元素原始地幔标准化图(b)
Fig. 6. Primitive mantle normalized REE diagram (a) and chondirite normalized multi-element diagram (b) of zircon for Koka granite
图 7 Koka金矿区花岗岩(Na2O+K2O)/CaO(a)、FeOT/MgO与Zr+Nb+Ce+Y(b)和FeOT/(FeOT+MgO)与SiO2(c)判别图
图a、b据Whalen et al.(1987);图c据Frost et al.(2001)
Fig. 7. Diagram of classification of granite origin from Koka gold deposit:(Na2O+K2O)/CaO (a), FeOT/MgO vs. Zr+Nb+Ce+Y (b), FeOT/(FeOT+MgO)vs. SiO2 (c)
图 8 Koka金矿区花岗岩构造判别图
底图a据Harris et al.(1986);图b~d据Pearce et al.(1984);ORG.洋脊花岗岩;WPG.板内花岗岩;VAG.火山弧花岗岩;Syn-COLG.同碰撞花岗岩;LCC-PCG.碰撞晚期-碰撞后花岗岩
Fig. 8. Structure discrimination diagram of granite from Koka gold deposit
图 9 Koka金矿区花岗岩构造环境判别图
图据Eby(1992);IAB.岛弧玄武岩;OIB.洋岛玄武岩
Fig. 9. Tectonic discrimination diagram of granite from Koka gold deposit
图 10 厄立特里亚部分前/碰撞花岗岩、火山岩及后碰撞花岗岩年龄分布
年龄数据据Teklay et al.(2002a, 2002b, 2003)
Fig. 10. The distribution of pre-syn granites, volcanic and post granites, and their geochronological data in Eritrea
-
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Andersson, U. B., Ghebreab, W., Teklay, M., 2006. Crustal Evolution and Metamorphism in East-Central Eritrea, South-East Arabian-Nubian Shield. Journal of African Earth Sciences, 44(1):45-65. https://doi.org/10.1016/j.jafrearsci.2005.11.006 [3] Ballard, J. R., Palin, M. J., Campbell, I. H., 2002. Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon:Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3):347-364. https://doi.org/10.1007/s00410-002-0402-5 [4] Bonin, B., 2007. A-Type Granites and Related Rocks:Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2):1-29. https://doi.org/10.1016/j.lithos.2006.12.007 [5] Chen, X. C., Hu, R. Z., Bi, X. W., et al., 2015. Petrogenesis of Metaluminous A-Type Granitoids in the Tengchong-Lianghe Tin Belt of Southwestern China:Evidences from Zircon U-Pb Ages and Hf-O Isotopes, and Whole-Rock Sr-Nd Isotopes. Lithos, 212-215:93-110. https://doi.org/10.1016/j.lithos.2014.11.010 [6] Doebrich, J. L., Zahony, S. G., Leavitt, J. D., et al., 2004. Ad Duwayhi, Saudi Arabia:Geology and Geochronology of a Neoproterozoic Intrusion-Related Gold System in the Arabian Shield. Economic Geology, 99(4):713-741. https://doi.org/10.2113/gsecongeo.99.4.713 [7] Drury, S. A., De Souza Filho, C. R., 1998. Neoproterozoic Terrane Assemblages in Eritrea:Review and Prospects. Journal of African Earth Sciences, 27(3-4):331-348. https://doi.org/10.1016/s0899-5362(98)00066-9 [8] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7):641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co; 2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 [9] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033 [10] Harris, N. B. W., Marzouki, F. M. H., Ali, S., 1986. The Jabel Sayid Complex, Arabian Shield:Geochemical Constraints on the Origin of Peralkaline and Related Granites. Journal of the Geological Society, 143(2):287-295. https://doi.org/10.1144/gsjgs.143.2.0287 [11] Hu, P. Y., Li, C., Wu, Y. W., et al., 2016. A Back-Arc Extensional Environment of the Early Carboniferous Paleo-Tethys Ocean in Tibetan Plateau:Evidences from A-Type Granites. Acta Petrologica Sinica, 32(4):1219-1231 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201604020 [12] Johnson, P. R., Andresen, A., Collins, A. S., et al., 2011. Late Cryogenian-Ediacaran History of the Arabian-Nubian Shield:A Review of Depositional, Plutonic, Structural, and Tectonic Events in the Closing Stages of the Northern East African Orogen. Journal of African Earth Sciences, 61(3):167-232. https://doi.org/10.1016/j.jafrearsci.2011.07.003 [13] King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371 [14] Košler, J., Fonneland, H., Sylvester, P., et al., 2002. U-Pb Dating of Detrital Zircons for Sediment Provenance Studies-A Comparison of Laser Ablation ICPMS and SIMS Techniques. Chemical Geology, 182(2-4):605-618. https://doi.org/10.1016/s0009-2541(01)00341-2 [15] Kröner, A., Linnebacher, P., Stern, R. J., et al., 1991. Evolution of Pan-African Island Arc Assemblages in the Southern Red Sea Hills, Sudan, and in Southwestern Arabia as Exemplified by Geochemistry and Geochronology. Precambrian Research, 53(1-2):99-118. https://doi.org/10.1016/0301-9268(91)90007-w [16] Liu, B., Ma, C. Q., Guo, P., et al., 2013. Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications. Earth Science, 38(5):947-962 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201305005 [17] Liu, C. S., Chen, X. M., Chen, P. R., et al., 2003. Subdivision, Discrimination Criteria and Genesis for A Type Rock Suites. Geological Journal of China Universities, 9(4):573-591 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200304011 [18] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [19] Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America, Boulder. [20] Ludwig, .R., 2001. SQUID 1.02, A User's Manual. Berkeley Geochronological Center, Berkeley. [21] Mahdy, N. M., El Kalioubi, B. A., Wohlgemuth-Ueberwasser, C. C., et al., 2015. Petrogenesis of U- and Mo-Bearing A2-Type Granite of the Gattar Batholith in the Arabian Nubian Shield, Northeastern Desert, Egypt:Evidence for the Favorability of Host Rocks for the Origin of Associated Ore Deposits. Ore Geology Reviews, 71:57-81. https://doi.org/10.1016/j.oregeorev.2015.05.001 [22] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [23] Middlemost E. A. K., 1985. Magmas and Magmatic Rocks. An Introduction to Igneous Petrology, Longman, New York. [24] Möller, A., O'Brien, P. J., Kennedy, A., et al., 2003. Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry:An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway). Geological Society, London, Special Publications, 220(1):65-81. https://doi.org/10.1144/gsl.sp.2003.220.01.04 [25] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [26] Richards, J. P., 2015. The Oxidation State, and Sulfur and Cu Contents of Arc Magmas:Implications for Metallogeny. Lithos, 233:27-45. https://doi.org/10.1016/j.lithos.2014.12.011 [27] Stern, R. J., 1994. Arc-Assembly and Continental Collision in the Neoproterozoic African Orogen:Implications for the Consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences, 22(1):319-351. https://doi.org/10.1146/annurev.earth.22.1.319 [28] Stern, R. J., Johnson, P., 2010. Continental Lithosphere of the Arabian Plate:A Geologic, Petrologic, and Geophysical Synthesis. Earth-Science Reviews, 101(1-2):29-67. https://doi.org/10.1016/j.earscirev.2010.01.002 [29] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [30] Teklay, M., 1997. Petrology, Geochemistry and Geochronology of Neoproterozoic Magmatiic Arc Rocks from Eritrea: Implications for Crustal Evolution in the Southern Nubian Shield. Memoir, Asmara. [31] Teklay, M., 2006. Neoproterozoic Arc-Back-Arc System Analog to Modern Arc-Back-Arc Systems:Evidence from Tholeiite-Boninite Association, Serpentinite Mudflows and Across-Arc Geochemical Trends in Eritrea, Southern Arabian-Nubian Shield. Precambrian Research, 145(1-2):81-92. https://doi.org/10.1016/j.precamres.2005.11.015 [32] Teklay, M., Berhe, K., Reimold, W. U., et al., 2002a. Geochemistry and Geochronology of a Neoproterozoic Low-K Tholeiite-Boninite Association in Central Eritrea. Gondwana Research, 5(3):597-611. https://doi.org/10.1016/s1342-937x(05)70632-8 [33] Teklay, M., Kröner, A., Mezger, K., 2002b. Enrichment from Plume Interaction in the Generation of Neoproterozoic Arc Rocks in Northern Eritrea:Implications for Crustal Accretion in the Southern Arabian-Nubian Shield. Chemical Geology, 184(1-2):167-184. https://doi.org/10.1016/s0009-2541(01)00359-x [34] Teklay, M., Haile, T., Kröner, A., et al., 2003. A Back-Arc Palaeotectonic Setting for the Augaro Neoproterozoic Magmatic Rocks of Western Eritrea. Gondwana Research, 6(4):629-640. https://doi.org/10.1016/s1342-937x(05)71012-1 [35] Trail, D., Watson, E. B., Tailby, N. D., 2011. The Oxidation State of Hadean Magmas and Implications for Early Earth's Atmosphere. Nature, 480(7375):79-82. https://doi.org/10.1038/nature10655 [36] Wang, Q., Zhao, Z. H., Xiong, X. L., 2000. The Ascertainment of Late-Yanshanian A-Type Granite in Tongbai-Dabie Orogenic Belt. Acta Petrologica et Mineralogica, 19(4):297-306 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200004002 [37] Wang, Y. L., Li, Y. J., Wei, J. H., et al., 2018. Origin of Late Silurian A-Type Granite in Wulonggou Area, East Kunlun Orogen:Zircon U-Pb Age, Geochemistry, Nd and Hf Isotopic Constraints. Earth Science, 43(4):1219-1236 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804018 [38] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [39] White, A. J. R., 1979. Source of Granite Magmas. Geological Society of America, Boulder. [40] Woldehaimanot, B., 2000. Tectonic Setting and Geochemical Characterisation of Neoproterozoic Volcanics and Granitoids from the Adobha Belt, Northern Eritrea. Journal of African Earth Sciences, 30(4):817-831. https://doi.org/10.1016/s0899-5362(00)00054-3 [41] Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites:Recognition and Research. Science in China (Series D), 47(7):745-765 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010 [42] Xiang, P., Wang, J. X., 2013. Ore Geology Character and Type of Koka Gold Deposit, Eritrea. Acta Mineralogica Sinica, (S2):1067-1068 (in Chinese with English abstract). [43] Xu, B. L., Yan, G. H., Zhang, C., et al., 1998. Petrological Subdivision and Source Material of A-Type Granites. Earth Science Frontiers, 5(3):113-124 (in Chinese with English abstract). [44] Yan, J. M., Sun, G. S., Sun, F. Y., et al., 2019. Geochronology, Geochemistry, and Hf Isotopic Compositions of Monzogranites and Mafic-Ultramafic Complexes in the Maxingdawannan Area, Eastern Kunlun Orogen, Western China:Implications for Magma Sources, Geodynamic Setting, and Petrogenesis. Journal of Earth Science, 30(2):335-347. https://doi.org/10.1007/s12583-018-1203-8 [45] Yu, Y. S., Gao, Y., Yang, Z. S., et al., 2011. Zircon LA-ICP-MS U-Pb Dating and Geochemistry of Intrusive Rocks from Gunjiu Iron Deposit in the Nixiong Ore Field, Coqen, Tibet. Acta Petrologica Sinica, 27(7):1949-1960 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201107004 [46] Zhang, Q., Jin, W. J., Li, C. D., et al., 2010. Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents:Index. Acta Petrologica Sinica, 26(4):985-1015 (in Chinese with English abstract). [47] 胡培远, 李才, 吴彦旺, 等, 2016.青藏高原古特提斯洋早石炭世弧后拉张:来自A型花岗岩的证据.岩石学报, 32(4):1219-1231. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201604020 [48] 刘彬, 马昌前, 郭盼, 等, 2013.东昆仑中泥盆世A型花岗岩的确定及其构造意义.地球科学, 38(5):947-962. doi: 10.3799/dqkx.2013.093 [49] 刘昌实, 陈小明, 陈培荣, 等, 2003. A型岩套的分类、判别标志和成因.高校地质学报, 9(4):573-591 http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200304011 [50] 王强, 赵振华, 熊小林, 2000.桐柏-大别造山带燕山晚期A型花岗岩的厘定.岩石矿物学杂志, 19(4):297-306 doi: 10.3969/j.issn.1000-6524.2000.04.002 [51] 王艺龙, 李艳军, 魏俊浩, 等, 2018.东昆仑五龙沟地区晚志留世A型花岗岩成岩:U-Pb年代学、地球化学、Nd及Hf同位素制约.地球科学, 43(4):1219-1236 doi: 10.3799/dqkx.2018.717 [52] 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001 [53] 向鹏, 王建雄, 2013.厄立特里亚Koka金矿地质特征及矿床类型.矿物学报, (S2):1067-1068. http://d.old.wanfangdata.com.cn/Conference/8301188 [54] 许保良, 阎国翰, 张臣, 等, 1998. A型花岗岩的岩石学亚类及其物质来源.地学前缘, 5(3):113-124. doi: 10.3321/j.issn:1005-2321.1998.03.011 [55] 于玉帅, 高原, 杨竹森, 等, 2011.西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征.岩石学报, 27(7):1949-1960 http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107004 [56] 张旗, 金惟俊, 李承东, 等, 2010.再论花岗岩按照Sr-Yb的分类:标志.岩石学报, 26(4):985-1015. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004001 -
dqkx-45-1-156-Table1-3.pdf