• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华北房山景儿峪组顶部古风化壳常量元素地球化学特征及其古气候意义

    马晓晨 王家生 陈粲 王舟

    马晓晨, 王家生, 陈粲, 王舟, 2018. 华北房山景儿峪组顶部古风化壳常量元素地球化学特征及其古气候意义. 地球科学, 43(11): 3853-3872. doi: 10.3799/dqkx.2018.235
    引用本文: 马晓晨, 王家生, 陈粲, 王舟, 2018. 华北房山景儿峪组顶部古风化壳常量元素地球化学特征及其古气候意义. 地球科学, 43(11): 3853-3872. doi: 10.3799/dqkx.2018.235
    Ma Xiaochen, Wang Jiasheng, Chen Can, Wang Zhou, 2018. Major Element Compositions and Paleoclimatic Implications of Paleo-Regolith on Top Jingeryu Formation in Fangshan, North China. Earth Science, 43(11): 3853-3872. doi: 10.3799/dqkx.2018.235
    Citation: Ma Xiaochen, Wang Jiasheng, Chen Can, Wang Zhou, 2018. Major Element Compositions and Paleoclimatic Implications of Paleo-Regolith on Top Jingeryu Formation in Fangshan, North China. Earth Science, 43(11): 3853-3872. doi: 10.3799/dqkx.2018.235

    华北房山景儿峪组顶部古风化壳常量元素地球化学特征及其古气候意义

    doi: 10.3799/dqkx.2018.235
    基金项目: 

    国家水合物专项 DD20160211

    国家自然科学基金项目 41472085

    国家自然科学基金项目 41772091

    国家重点研发计划课题 2016YFA0601102

    详细信息
      作者简介:

      马晓晨(1992-), 男, 博士研究生, 主要从事地史重大转折期古气侯和古海洋等研究

      通讯作者:

      王家生

    • 中图分类号: P595

    Major Element Compositions and Paleoclimatic Implications of Paleo-Regolith on Top Jingeryu Formation in Fangshan, North China

    • 摘要: 风化壳的元素地球化学组成可以反映风化壳的发育类型及其气候特征,地史时期形成的古风化壳的元素地球化学组成可以揭示古风化壳的类型及其古气候特征.华北地区新元古代晚期(景儿峪组)至寒武纪(府君山组)期间的地层记录缺乏连续性,广泛发育一套典型的古风化壳,该古风化壳的发育过程可能记录了晚新元古代至早寒武纪期间的古气候特点.针对华北房山地区景儿峪组顶部保存的古风化壳中常量元素的组成、元素迁移富集特征和风化系数等分布规律开展了较系统分析,结果表明:(1)SiO2、Al2O3、TFe2O3、CaO是景儿峪组顶部古风化壳的主要组分,Al2O3、TFe2O3、TiO2、K2O在风化壳的中上部相对富集,SiO2则轻微亏损,CaO、Na2O、MgO、P2O5被迁移淋失;(2)硅铝系数、硅铝铁系数、化学蚀变指数(CIA)、残积系数、风化淋溶系数(BA)等地球化学指标的垂向变化特征指示该古风化壳形成于温暖湿润条件下中等强度的化学风化作用,其风化过程可能经历了由较弱至较强再逐渐减弱的演变过程;(3)与现代发育于湖南、贵州、云南等地碳酸盐岩类基岩之上的风化壳元素地球化学特征对比,发现景儿峪组顶部古风化壳的Si淋失度和Fe、Al富集度均较低.综合研究区古风化壳的常量元素地球化学特征,同时结合新元古代晚期至寒武纪的华北板块古纬度迁移特征,认为房山地区景儿峪组顶部发育的古风化壳形成于温暖湿润的亚热带-热带气候,为脱硅富铝化程度较低的硅铝粘土型风化壳.

       

    • 图  1  房山地区地质简图

      吕金波等(2016)修改.a.黄院Ⅰ剖面;b.黄院Ⅱ剖面;c.龙宝峪剖面;d.北沟剖面

      Fig.  1.  Simplified geological map of the Fangshan area

      图  2  房山地区景儿峪组与府君山组之间古风化壳剖面顶部露头特征

      Fig.  2.  The outcrop characteristics of paleo-regolith on the top Jingeryu and Fujunshan formations in Fangshan area

      图  3  房山地区景儿峪组与府君山之间古风化壳剖面野外露头

      Fig.  3.  The outcrops of the paleo-regolith between Jingeryu and Fujunshan formations in Fangshan area

      图  4  房山地区景儿峪组-府君山组之间古风化壳剖面常量元素质量百分含量变化曲线

      Fig.  4.  The variations of major element contents in the paleo-regolith between Jingeryu and Fujunshan formations in Fangshan area

      图  5  景儿峪组与府君山组之间古风化壳中常量元素迁移因子示意图

      Fig.  5.  The diagram of the major element mobility factors in paleo-regolith between Jingeryu and Fujunshan formations

      图  6  房山地区景儿峪组与府君山组之间古风化壳剖面风化强度特征变化

      Fig.  6.  Changes in weathering intensity of the paleo-regoUth between Jingeryu and Fujunshan formations in Fangshan area

      图  7  房山地区景儿峪组-府君山组之间古风化壳与中国南方现代风化壳SiO2-Al2O3-Fe2O3

      Fig.  7.  The diagram of SiO2-Al2O3-Fe2O3 compositions within the paleo-regolith between Jingeryu and Fujunshan in Fangshan area and the modern regolith sections from South China

      表  1  黄院Ⅰ剖面常量元素含量及风化系数(%)

      Table  1.   Major element contents and weathering parameters of Huangyuan Ⅰ profile (%)

      样品号 厚度(cm) SiO2 Al2O3 TFe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO S/A S/R A/(NK) A/(CNK) CIA 残积系数 BA
      豹皮灰岩 HY-19-1 152.50 4.28 0.14 0.10 6.05 46.61 0.022 0.051 0.014 0.002 0.034 51.97 35.71 1.53 0.00 - - -
      HY-18-1 125.00 0.61 0.11 0.10 4.81 50.29 0.019 0.038 0.014 0.002 0.035 9.43 5.97 1.52 0.00 - - -
      HY-17-1 82.00 1.05 0.14 0.20 17.04 35.51 0.016 0.043 0.014 0.005 0.073 12.75 6.67 1.92 0.00 - - -
      HY-16-1 74.00 17.48 0.29 0.45 15.49 27.75 0.018 0.130 0.016 0.009 0.058 102.47 51.51 1.70 0.01 - - -
      HY-15-1 70.50 7.66 0.73 0.86 10.50 38.32 0.023 0.260 0.038 0.04 0.099 17.84 10.19 2.28 0.01 - - -
      风化板岩 HY-14-1 65.00 42.63 6.14 2.37 0.77 24.76 0.07 2.140 0.270 0.420 0.051 11.80 9.47 2.52 0.13 70.64 0.16 0.74
      HY-13-1 65.00 42.65 3.95 1.97 0.50 27.23 0.047 1.280 0.170 0.310 0.060 18.36 13.93 2.69 0.08 71.90 0.10 0.71
      HY-12-1 61.50 38.87 5.77 3.67 0.65 26.47 0.063 1.920 0.220 0.240 0.058 11.45 8.15 2.64 0.11 71.58 0.16 0.68
      HY-11-1 58.75 46.34 10.44 1.91 0.96 19.05 0.099 3.550 0.470 0.770 0.043 7.55 6.76 2.60 0.27 71.42 0.31 0.63
      HY-10-1 55.00 69.95 12.24 0.91 1.18 4.72 0.110 4.220 0.630 0.710 0.011 9.72 9.28 2.57 0.92 71.24 1.09 0.65
      HY-9-1 52.25 33.04 3.73 1.02 0.70 32.96 0.044 1.190 0.150 0.260 0.072 15.06 12.82 2.74 0.06 72.20 0.07 0.86
      HY-8-1 50.50 32.90 5.52 1.15 0.87 31.33 0.06 1.770 0.250 0.290 0.069 10.13 8.94 2.73 0.09 72.27 0.11 0.79
      钙质板岩 HY-7-1 47.25 34.46 4.20 1.91 1.13 30.69 0.048 1.340 0.330 0.280 0.065 13.95 10.81 2.74 0.07 72.26 0.09 1.07
      HY-6-1 42.75 36.51 4.98 2.06 1.06 28.97 0.051 1.570 0.190 0.340 0.065 12.46 9.86 2.79 0.09 72.69 0.11 0.92
      HY-5-1 38.25 32.65 3.89 1.63 0.96 32.32 0.043 1.210 0.160 0.250 0.076 14.27 11.26 2.81 0.06 72.79 0.08 1.00
      HY-4-2 34.25 33.55 2.72 1.47 0.73 33.06 0.037 0.880 0.092 0.240 0.083 20.97 15.60 2.68 0.04 71.64 0.06 1.08
      HY-4-1 30.75 29.11 2.67 1.42 0.67 35.52 0.036 0.890 0.110 0.310 0.084 18.53 13.84 2.60 0.04 71.12 0.05 1.05
      HY-3-1 22.50 38.42 4.85 1.91 1.28 27.82 0.049 1.470 0.210 0.300 0.069 13.47 10.76 2.89 0.09 73.41 0.11 1.04
      HY-2-1 10.25 39.14 7.10 2.40 1.29 25.30 0.064 2.240 0.320 0.480 0.056 9.37 7.71 2.80 0.15 72.89 0.17 0.84
      HY-1-2 3.75 37.54 5.88 1.66 1.16 27.85 0.060 2.040 0.240 0.390 0.064 10.85 9.20 2.54 0.11 70.92 0.13 0.91
      HY-1-1 1.25 37.48 6.55 1.37 1.13 27.34 0.065 2.220 0.280 0.480 0.066 9.73 8.58 2.60 0.13 71.41 0.14 0.84
      下载: 导出CSV

      表  2  黄院Ⅱ剖面常量元素含量及风化系数(%)

      Table  2.   Major element contents and weathering parameters of Huangyuan Ⅱ profile (%)

      样品号 厚度(cm) SiO2 Al2O3 TFe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO S/A S/R A/(NK) A/(CNK) CIA 残积系数 BA
      豹皮灰岩 HY2-23-1 141.50 1.01 0.071 0.072 8.21 46.11 0.042 0.036 0.016 0.005 0.037 24.18 14.69 0.66 0.00 - - -
      HY2-22-1 125.50 0.71 0.095 0.130 11.10 42.65 0.029 0.048 0.014 0.005 0.048 12.71 6.79 0.95 0.00 - - -
      HY2-21-1 114.50 0.98 0.110 0.100 9.73 44.00 0.025 0.059 0.016 0.005 0.045 15.15 9.59 1.05 0.00 - - -
      HY2-20-3 107.00 12.86 0.270 0.190 3.52 44.54 0.021 0.090 0.016 0.014 0.031 80.97 55.90 2.04 0.00 - - -
      风化板岩 HY2-20-2 105.25 49.34 4.490 1.400 0.40 23.39 0.056 1.150 0.160 0.470 0.053 18.68 15.58 3.35 0.10 75.82 0.12 0.55
      HY2-20-1 102.75 45.36 4.650 2.500 0.34 24.80 0.060 0.920 0.160 0.350 0.072 16.58 12.35 4.24 0.10 79.55 0.14 0.44
      HY2-19-1 99.75 30.14 4.080 2.520 0.32 33.77 0.032 0.560 0.150 0.250 0.042 12.56 9.01 6.18 0.07 85.13 0.09 0.37
      HY2-18-1 97.50 30.51 4.060 1.220 0.29 34.51 0.045 0.620 0.180 0.220 0.029 12.78 10.72 5.44 0.06 83.18 0.08 0.38
      HY2-17-1 93.50 30.32 4.350 1.830 0.96 33.44 0.068 0.950 0.200 0.180 0.025 11.85 9.34 3.81 0.07 77.61 0.09 0.85
      HY2-16-1 90.00 32.71 4.400 1.240 0.57 32.44 0.110 1.040 0.190 0.230 0.023 12.64 10.71 3.36 0.07 74.70 0.09 0.67
      HY2-15-1 87.50 24.83 4.620 1.500 1.38 35.93 0.077 1.150 0.210 0.190 0.033 9.14 7.57 3.36 0.07 75.48 0.08 1.09
      HY2-14-1 85.00 17.92 2.300 0.550 0.40 43.29 0.030 0.650 0.100 0.170 0.025 13.25 11.49 3.05 0.03 74.10 0.03 0.79
      钙质板岩 HY2-13-1 81.50 34.04 4.180 1.080 0.58 32.43 0.043 1.400 0.180 0.230 0.044 13.84 11.89 2.63 0.07 71.57 0.08 0.75
      HY2-12-1 78.75 30.36 4.960 1.280 0.83 33.34 0.048 1.700 0.220 0.290 0.042 10.41 8.94 2.58 0.08 71.24 0.09 0.83
      HY2-11-1 76.00 31.41 3.460 1.010 0.52 34.33 0.037 1.120 0.140 0.160 0.047 15.43 13.01 2.71 0.05 72.13 0.06 0.77
      HY2-10-1 70.00 43.97 7.320 2.840 1.26 22.56 0.070 2.740 0.350 1.140 0.055 10.21 8.19 2.37 0.17 69.56 0.21 0.88
      HY2-9-1 62.00 39.18 6.840 2.190 0.90 26.47 0.062 2.440 0.300 0.490 0.054 9.74 8.09 2.49 0.13 70.58 0.16 0.75
      HY2-8-1 56.00 41.35 5.860 2.090 0.99 25.58 0.058 2.180 0.270 0.380 0.053 12.00 9.77 2.38 0.12 69.63 0.15 0.87
      HY2-7-1 37.00 42.07 6.650 2.70 1.31 24.15 0.064 2.430 0.300 1.240 0.055 10.75 8.54 2.43 0.14 70.02 0.18 0.93
      HY2-6-1 29.00 41.37 5.970 2.390 1.14 25.37 0.061 2.220 0.270 1.030 0.061 11.78 9.39 2.38 0.12 69.58 0.15 0.92
      HY2-5-1 25.00 35.58 4.850 2.090 1.01 29.88 0.056 1.770 0.210 0.640 0.072 12.47 9.78 2.41 0.09 69.74 0.11 0.97
      HY2-4-1 19.75 35.73 4.920 2.360 1.16 29.60 0.051 1.710 0.210 0.660 0.068 12.35 9.45 2.54 0.09 70.86 0.11 1.01
      HY2-3-1 15.75 35.79 4.780 2.420 1.24 29.70 0.050 1.600 0.210 0.650 0.071 12.73 9.62 2.63 0.09 71.55 0.11 1.06
      HY2-2-1 9.00 47.16 8.000 2.650 1.49 19.99 0.070 2.620 0.360 1.120 0.049 10.02 8.27 2.70 0.20 72.25 0.24 0.86
      HY2-1-2 3.75 41.81 6.040 2.730 1.36 24.50 0.061 2.140 0.280 1.120 0.061 11.77 9.14 2.49 0.13 70.54 0.16 0.99
      HY2-1-1 1.25 43.51 6.310 2.760 1.33 23.36 0.061 2.190 0.290 0.880 0.059 11.72 9.17 2.55 0.14 71.00 0.18 0.95
      下载: 导出CSV

      表  3  龙宝峪剖面常量元素含量及风化系数(%)

      Table  3.   Major element contents and weathering parameters of Longbaoyu profile (%)

      样品号 厚度(cm) SiO2 Al2O3 TFe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO S/A S/R A/(NK) A/(CNK) CIA 残积系数 BA
      豹皮灰岩 LBY-26 157.5 0.43 0.084 0.12 5.56 48.96 0.007 0.047 0.014 0.005 0.007 8.70 4.55 1.34 0.00 - - -
      LBY-25 142.5 0.44 0.078 0.17 6.86 47.07 0.007 0.039 0.019 0.007 0.008 9.59 4.01 1.45 0.00 - - -
      LBY-24 132.5 0.39 0.081 0.14 6.22 48.24 0.006 0.028 0.022 0.007 0.010 8.19 3.89 2.01 0.00 - - -
      LBY-23 118.5 5.93 1.720 1.17 11.36 37.01 0.011 0.770 0.120 0.032 0.027 5.86 4.09 2.01 0.03 - - -
      LBY-22 116.5 3.57 0.960 0.69 6.74 44.76 0.008 0.390 0.059 0.021 0.022 6.32 4.34 2.20 0.01 - - -
      LBY-21 115.5 4.37 1.420 0.88 7.57 42.59 0.008 0.570 0.089 0.032 0.023 5.23 3.75 2.25 0.02 - - -
      LBY-20 114.5 7.81 2.010 1.48 12.12 34.53 0.010 0.840 0.130 0.037 0.033 6.61 4.50 2.17 0.03 - - -
      LBY-19 113.5 19.74 5.940 2.46 13.82 22.32 0.022 2.500 0.400 0.100 0.038 5.65 4.47 2.16 0.14 - - -
      LBY-18 111.5 25.02 5.540 1.93 9.04 25.87 0.019 2.300 0.350 0.120 0.035 7.68 6.28 2.19 0.11 - - -
      LBY-17 106.0 3.21 0.130 0.20 4.72 48.80 0.006 0.039 0.022 0.007 0.031 41.98 21.19 2.49 0.00 - - -
      LBY-16 100.5 0.86 0.140 0.14 3.95 50.81 0.006 0.053 0.022 0.009 0.028 10.44 6.38 2.08 0.00 - - -
      风化板岩 LBY-15 98.0 60.7 3.430 1.50 0.42 18.05 0.037 1.160 0.140 0.330 0.037 30.08 23.53 2.60 0.10 71.30 0.13 0.71
      LBY-14 96.0 55.76 2.610 0.79 0.27 22.11 0.031 0.880 0.095 0.240 0.035 36.32 30.44 2.59 0.06 71.18 0.08 0.67
      LBY-13 94.0 47.1 3.180 1.11 0.30 26.27 0.039 1.060 0.110 0.320 0.047 25.18 20.60 2.62 0.06 71.32 0.08 0.64
      LBY-12 92.0 42.43 3.040 1.43 0.30 28.69 0.036 1.040 0.110 0.300 0.058 23.73 18.25 2.56 0.06 70.91 0.07 0.66
      LBY-11 89.5 46.23 3.330 1.40 0.40 26.36 0.039 1.170 0.140 0.310 0.054 23.60 18.61 2.50 0.07 70.43 0.09 0.73
      LBY-10 86.5 44.53 4.280 1.51 0.49 26.32 0.051 1.420 0.170 0.460 0.064 17.69 14.44 2.63 0.09 71.47 0.11 0.69
      LBY-09 83.5 37.11 4.810 1.83 0.86 29.44 0.050 1.720 0.240 0.440 0.088 13.12 10.56 2.47 0.09 70.31 0.11 0.88
      LBY-08 81.0 34.99 5.710 2.52 1.19 29.17 0.054 1.950 0.270 0.480 0.073 10.42 8.13 2.59 0.10 71.34 0.13 0.93
      钙质板岩 LBY-07 77.5 39.36 5.960 2.63 1.36 26.35 0.056 2.050 0.290 0.250 0.071 11.23 8.76 2.57 0.12 71.22 0.15 0.99
      LBY-06 67.5 32.62 6.220 3.08 1.51 29.72 0.055 2.050 0.250 0.430 0.080 8.92 6.78 2.69 0.11 72.11 0.14 1.01
      LBY-05 52.5 34.68 5.200 2.46 1.46 29.65 0.047 1.640 0.240 0.160 0.085 11.34 8.71 2.80 0.09 72.89 0.12 1.09
      LBY-04 42.5 28.06 3.760 1.87 1.07 35.33 0.032 1.220 0.150 0.460 0.097 12.69 9.63 2.73 0.06 72.46 0.07 1.11
      LBY-03 32.5 38.68 6.350 2.86 1.59 26.27 0.056 2.030 0.250 1.050 0.080 10.36 8.05 2.77 0.13 72.68 0.16 1.01
      LBY-02 17.5 48.24 5.910 3.09 1.62 20.58 0.120 1.680 0.310 1.320 0.081 13.88 10.41 2.93 0.15 72.71 0.19 1.07
      LBY-01 2.5 45.92 5.760 2.53 1.51 22.82 0.240 1.590 0.230 1.070 0.100 13.55 10.59 2.72 0.13 69.61 0.16 1.11
      下载: 导出CSV

      表  4  北沟剖面常量元素含量及风化系数(%)

      Table  4.   Major element contents and weathering parameters of Beigou profile (%)

      样品号 厚度(cm) SiO2 Al2O3 TFe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO S/A S/R A/(NK) A/(CNK) CIA 残积系数 BA
      豹皮灰岩 BG-19 689.50 0.69 0.130 0.100 2.34 53.14 0.006 0.048 0.014 0.005 0.007 9.02 6.05 2.10 0.00 - - -
      BG-18 679.50 0.32 0.031 0.058 1.38 54.53 0.004 0.016 0.011 0.002 0.006 17.55 8.00 1.29 0.00 - - -
      BG-17 674.50 0.55 0.130 0.100 1.52 54.25 0.004 0.031 0.014 0.002 0.007 7.19 4.83 3.23 0.00 - - -
      BG-16 665.50 0.70 0.071 0.100 1.66 53.91 0.005 0.033 0.016 0.000 0.008 16.76 8.83 1.61 0.00 - - -
      BG-15 652.00 0.82 0.097 0.130 2.34 53.01 0.006 0.043 0.011 0.000 0.009 14.37 7.75 1.72 0.00 - - -
      BG-14 642.50 0.37 0.130 0.190 7.02 47.43 0.008 0.046 0.011 0.002 0.016 4.84 2.50 2.06 0.00 - - -
      BG-13 632.50 4.76 0.071 0.400 18.00 31.80 0.011 0.030 0.008 0.007 0.029 113.97 24.82 1.40 0.00 - - -
      BG-12 622.00 1.63 0.110 0.750 19.08 31.90 0.006 0.042 0.014 0.014 0.055 25.19 4.71 1.98 0.00 - - -
      BG-11 613.50 3.27 0.930 0.890 19.10 30.12 0.016 0.380 0.068 0.032 0.035 5.98 3.71 2.12 0.02 - - -
      风化板岩 BG-10 601.00 4.90 1.460 0.940 19.44 28.61 0.071 0.460 0.097 0.037 0.036 5.71 4.05 2.37 0.03 66.58 0.02 34.46
      BG-09 583.00 7.09 2.430 1.220 18.74 27.39 0.026 0.970 0.150 0.044 0.041 4.96 3.76 2.22 0.05 68.10 0.03 20.13
      BG-08 567.50 9.89 2.430 1.310 17.94 26.44 0.023 0.900 0.160 0.051 0.044 6.92 5.15 2.40 0.05 69.78 0.03 19.26
      BG-07 555.00 14.92 4.280 1.830 15.92 24.04 0.042 1.560 0.250 0.081 0.043 5.93 4.66 2.43 0.09 70.04 0.06 9.91
      BG-06 510.00 17.75 5.620 0.990 15.36 22.71 0.140 2.010 0.340 0.078 0.042 5.37 4.83 2.33 0.13 68.02 0.08 7.44
      BG-05 480.00 24.72 6.690 2.910 13.00 19.80 0.330 2.240 0.450 0.120 0.055 6.28 4.92 2.25 0.17 65.55 0.12 5.48
      钙质板岩 BG-04 460.00 23.70 6.250 2.950 13.96 19.59 0.340 2.090 0.400 0.100 0.061 6.45 4.96 2.21 0.16 64.86 0.11 6.24
      BG-03 153.00 32.92 4.490 1.450 0.88 32.00 0.053 1.590 0.190 0.530 0.066 12.46 10.34 2.48 0.07 70.27 0.09 0.92
      BG-02 142.50 32.42 3.280 1.470 0.88 33.02 0.041 1.250 0.160 0.340 0.074 16.80 13.07 2.30 0.05 68.74 0.07 1.14
      BG-01 3.75 31.08 2.720 1.630 0.82 34.36 0.039 1.050 0.110 0.280 0.081 19.43 14.06 2.26 0.04 68.21 0.06 1.23
      注:表 1~4中主量元素氧化物以百分含量(%)表示;CIA=[Al2O3/(Al2O3+CaO*+K2O+Na2O)]×100,n(CaO*)=n(CaO)-10/3·n(P2O5);残积系数表达式为(Al2O3+Fe2O3)/(CaO+Na2O+MgO);BA=[(CaO*+Na2O+K2O+MgO)/Al2O3]×100;受岩性影响“—”表示未求府君山组豹皮灰岩中的CIA、残积系数和BA值.
      下载: 导出CSV

      表  5  景儿峪组与府君山组之间古风壳与现代风化壳风化系数统计表

      Table  5.   The statistic of weathering coefficient in paleo-regolith between Jingeryu and Fujunshan formations and modern regolith sections

      剖面 CIA(%) S/A S/R 资料来源
      范围 均值 范围 均值 范围 均值
      黄院Ⅰ 71.41~73.41 72.16 7.55~20.97 13.69 6.76~15.60 10.89 本文研究数据
      黄院Ⅱ 70.00~70.54 70.77 9.14~18.68 12.43 7.57~15.58 10.04
      龙宝峪 69.61~72.71 71.51 8.92~36.32 18.05 6.78~30.44 14.34
      北沟 68.21 68.21 4.96~16.80 7.88 3.76~13.07 6.19
      贵阳BY-Ⅱ 67.70~84.20 77.00 12.26~27.64 19.55 9.87~20.08 14.90 (Liu et al., 2013)
      昆明石林 95.93~96.88 96.46 2.73~10.88 6.29 2.03~7.47 4.39 (张涛等,2017)
      湖南吉首 58.13~76.75 69.81 3.64~5.73 4.15 3.02~5.33 3.47 (王世杰等,2002)
      下载: 导出CSV
    • [1] Bahlburg, H., Dobrzinski, N., 2011.A Review of the Chemical Index of Alteration (CIA) and Its Application to the Study of Neoproterozoic Glacial Deposits and Climate Transitions.Geological Society London Memoirs, 36(1):81-92. https://doi.org/10.1144/m36.6
      [2] Cao, W.J., Ji, H.B., Zhu, X.F., et al., 2012.Contrast of Geochemical Features of the Typical Weathered Profiles in Guizhou Plateau.Carsologica Sinica, 31(2):131-138 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr201202004
      [3] Chen, W., Ren, M.Q., Lu, Z.Y., et al., 2010.Research on the Property of Soil Geochemistry in Typical Karst Area in Guizhou Province.Carsologica Sinica, 29(3):246-252 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr201003005
      [4] Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance.Geology, 23(10):921-924.https://doi.org/10.1130/0091-7613(1995)023<0921:uteopm>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0921:uteopm>2.3.co;2
      [5] Feng, Z.G., Ma, Q., Li, S.P., et al., 2013.Weathering Mechanism of Rock-Soil Interface in Weathering Profile Derived from Carbonate Rocks:Preliminary Study of Leaching Simulation in Rock Powder Layer.Acta Geologica Sinica, 87(1):119-132 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201301012.htm
      [6] Feng, Z.G., Wang, S.J., Liu, X.M., et al., 2007.Micro-Area Transportation of Residues:A Style of Forming the Red Weathering Crusts of Carbonate Rocks.Acta Geologica Sinica, 81(1):127-138 (in Chinese with English abstract). doi: 10.1007/BF02840071
      [7] Feng, Z.G., Wang, S.J., Sun, C.X., 2002.Discussion on Possible Causes of Increases in Si/Al Ratio in Surface Layers of Some Lateritic Profiles.Geology-Geochemistry, 30(4):7-14 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx200204002
      [8] Ferrier, K.L., Riebe, C.S., Hahm, W.J., 2016.Testing for Supply-Limited and Kinetic-Limited Chemical Erosion in Field Measurements of Regolith Production and Chemical Depletion.Geochemistry, Geophysics, Geosystems, 17(6):2270-2285. https://doi.org/10.1002/2016gc006273
      [9] Gallagher, T.M., Sheldon, N.D., 2013.A New Paleothermometer for Forest Paleosols and Its Implications for Cenozoic Climate.Geology, 41(6):647-650. https://doi.org/10.1130/g34074.1
      [10] Gao, J., Li, R., Li, J.J., et al., 2016.Grain Size Distribution, Element Migration, and Stable Carbon Isotope Characteristics of Dolomite Weathering Profiles in Xinpu, North of Guizhou Province.Acta Ecologica Sinica, 36(5):1409-1420 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201605025
      [11] Gao, L., Wang, D.H., Xiong, X.Y., et al., 2014.Summary on Aluminum Ore Deposits Minerogenetic Regulation in China.Acta Geologica Sinica, 88(12):2284-2295 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201412010
      [12] Gao, L.Z., Ding, X.Z., Pang, W.H., et al., 2011.New Geologic Time Scale of Meso- and Neoproterozoic of China and Geochronologic Constraint by SHRIMP Zircon U-Pb Dating.Journal of Stratigraphy, 35(1):1-7(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100347162
      [13] Gay, A.L., Grandstaff, D.E., 1980.Chemistry and Mineralogy of Precambrian Paleosols at Elliot Lake, Ontario, Canada.Precambrian Research, 12(1-4):349-373. https://doi.org/10.1016/0301-9268(80)90035-2
      [14] Goldberg, K., Humayun, M., 2010.The Applicability of the Chemical Index of Alteration as a Paleoclimatic Indicator:An Example from the Permian of the Paraná Basin, Brazil.Palaeogeography, Palaeoclimatology, Palaeoecology, 293(1):175-183. https://doi.org/10.1016/j.palaeo.2010.05.015.
      [15] Gu, S.Y., Mao, J.Q., Zhang, Q.H., 2002.Tl, Nb, Ta, Zr, Hf, and Th Mobility during Altered Rhyolite Weathering in Longtang, Guangxi.Journal of Guizhou University of Technology (Natural Science Edition), 31(1):14-17 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzgydx200201004
      [16] Guo, W.L., Su, W.B., 2014.Geochemistry and Implication to Paleoclimate of the ~1.4 Ga Ancient Weathering Crust in the North of the North China Craton.Geoscience, 28(2):243-255 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201402001.htm
      [17] Guo, Y.Y., Mo, D.W., Mao, L.J., et al., 2013.Geochemical Characteristics and Weathering Intensity of the Yanbandang Profile in Liyang Plain, the Middle Reach of the Changjiang River.Scientia Geographica Sinica, 33(3):335-341 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013040900038561
      [18] Hoffman, P.F., Kaufman, A.J., Halverson, G.P., et al., 1998.A Neoproterozoic Snowball Earth.Science, 281:1342-1346. https://doi.org/10.1126/science.281.5381.1342.
      [19] Hong, H.L., Wang, C.W., Zeng, K.F., et al., 2013.Geochemical Constraints on Provenance of the Mid-Pleistocene Red Earth Sediments in Subtropical China.Sedimentary Geology, 290(4):97-108. https://doi.org/10.1016/j.sedgeo.2013.03.008.
      [20] Huang, J.H., Tan X.F., Cheng C.J., et al., 2016.Structural Features of Weathering Crust of Granitic Basement Rock and Its Petroleum Geological Significance-A Case Study of the Basement Weathering Crust of Dongping Area in Qaidam Basin.Earth Science, 41(12):2041-2060 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201612006
      [21] Kuang, H.W., Li, J.H., Peng, N., et al., 2009.The C and O Isotopic Compositions and Their Evolution Recorded in the Carbonate Interval of the Yanshan Area from 1.6 to 1.0 Ga, and Their Geological Implications.Earth Science Frontiers, 16(5):118-133 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200905012
      [22] Li, M.R., Wang, S.S., Qiu, J., 1996.The Ages of Glauconites from Tieling and Jingeryu Formations, Beijing-Tianjin Area.Acta Petrologica Sinica, 12(3):416-423 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600847810
      [23] Li, R.W., Chen, J.S., Chen, Z.M., 2000.Characteristics of the C- And O-Isotopic Compositions of Carbonates in the Weathering Profile at the Unconformable Boundary between the Early Cambrian and Late Proterozoic in Ji County.Scientia Geologica Sinica, 35(1):55-59 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200001006
      [24] Li, Z.X., Evans, D.A.D., Halverson, G.P., 2013.Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland.Sedimentary Geology, 294:219-232. https://doi.org/10.1016/j.sedgeo.2013.05.016.
      [25] Liu, Q., Chen, M., Liu, W., et al., 2009.Origin of Natural Gas from the Ordovician Paleo-Weathering Crust and Gas-Filling Model in Jingbian Gas Field, Ordos Basin, China.Journal of Asian Earth Sciences, 35(1):74-88. https://doi.org/10.1016/j.jseaes.2009.01.005.
      [26] Liu, W.J., Liu, C.Q., Zhao, Z.Q., et al., 2013.Elemental and Strontium Isotopic Geochemistry of the Soil Profiles Developed on Limestone and Sandstone in Karstic Terrain on Yunnan-Guizhou Plateau, China:Implications for Chemical Weathering and Parent Materials.Journal of Asian Earth Sciences, 68(4):138-152. https://doi.org/10.1016/j.jseaes.2013.02.017.
      [27] Liu, Y.P., Cheng G.F., Liu K., et al.2017.Ore-Forming Role and Its Model of a Sedimentary(Accumulation)Type of Iron Deposits from Basalt-Paleo-Weathering Crust in Western Guizhou.Geological Science and Technology Information, 36(4):107-112 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201704013.htm
      [28] Lü, J.B., Zheng, G.S., Li, A.N., et al., 2016.The Progress of Beijing Geological Survey since 1916-The Revision and Compilation of 'Regional Geology of Beijing Municipality'.Geological Bulletin of China, 35(11):1906-1917 (in Chinese with English abstract).
      [29] Marker, M.E., McFarlane, M.J., Wormald, R.J., 2002.A Laterite Profile near Albertinia, Southern Cape, South Africa:Its Significance in the Evolution of the African Surface.South African Journal of Geology, 105(1):67-74. https://doi.org/10.2113/1050067.
      [30] McLennan, S.M., 1993.Weathering and Global Denudation.Journal of Geology, 101(2):295-303. doi: 10.1086/648222
      [31] Middelburg, J.J., van der Weijden, C.H., Woittiez, J.R.W., 1988.Chemical Processes Affecting the Mobility of Major, Minor and Trace Elements during Weathering of Granitic Rocks.Chemical Geology, 68(3):253-273. https://doi.org/10.1016/0009-2541(88)90025-3.
      [32] Nesbitt, H.W., Young, G.M., 1982.Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites.Nature, 299 (5885):715-717. https://doi.org/10.1038/299715a0
      [33] Óskarsson, B.V., Riishuus, M.S., Arnalds, Ó., 2012.Climate-Dependent Chemical Weathering of Volcanic Soils in Iceland.Geoderma, 189-190(6):635-651. https://doi.org/10.1016/j.geoderma.2012.05.030
      [34] Qi, L., Yu, W.C., Du, Y.S., et al., 2015.Paleoclimate Evolution of the Cryogenian Tiesi'ao Formation-Datangpo Formation in Eastern Guizhou Province:Evidence from the Chemical Index of Alteration.Geological Science and Technology Information, 34(6):47-57 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201506007.htm
      [35] Qiu, S.F., Zhu, Z.Y., Yang, T., et al., 2014.Chemical Weathering of Monsoonal Eastern China:Implications from Major Elements of Topsoil.Journal of Asian Earth Sciences, 81(4):77-90. https://doi.org/10.1016/j.jseaes.2013.12.004.
      [36] Retallack, G.J., 2015.Late Ordovician Glaciation Initiated by Early Land Plant Evolution and Punctuated by Greenhouse Mass Extinctions.Journal of Geology, 123(6):509-538. https://doi.org/10.1086/683663.
      [37] Schatz, A.K., Scholten, T., Kühn, P., 2015.Paleoclimate and Weathering of the Tokaj (Hungary) Loess-Paleosol Sequence.Palaeogeography, Palaeoclimatology, Palaeoecology, 426:170-182. https://doi.org/10.1016/j.palaeo.2015.03.016.
      [38] Sheldon, N.D., Tabor, N.J., 2009.Quantitative Paleoenvironmental and Paleoclimatic Reconstruction Using Paleosols.Earth-Science Reviews, 95(1):1-52. https://doi.org/10.1016/j.earscirev.2009.03.004.
      [39] Shields-Zhou, G.A., Porter, S., Halverson, G.P., 2016.A New Rock-Based Definition for the Cryogenian Period (Circa 720-635 Ma).Episodes, 39(1):3-8. https://doi.org/10.18814/epiiugs/2016/v39i1/89231.
      [40] Song, Z.L., Liu, C.Q., Han, G.L., et al., 2006.Enrichment and Release of Rare Earth Elements during Weathering of Sedimentary Rocks in Wujiang Catchments, Southwest China.Journal of Rare Earths, 24(4):491-496. https://doi.org/10.1016/s1002-0721(06)60149-x
      [41] Tong, J.N., Xu, R., Yuan, Y.M., 2013.Lithostratigraphy and Reconstruction of Sedimentary Sequence and Environment in Zhoukoudian Area of Beijing.Journal of Earth Sciences and Environment, 35(1):15-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201301002
      [42] Veevers, J.J., 2004.Gondwanaland from 650-500 Ma Assembly through 320 Ma Merger in Pangea to 185-100 Ma Breakup:Supercontinental Tectonics via Stratigraphy and Radiometric Dating.Earth-Science Reviews, 68(1):1-132. https://doi.org/10.1016/j.earscirev.2004.05.002.
      [43] Wang, S, J., Sun C.X., Feng Z.G., et al., 2002.Mineralogical and Geochemical Characteristics of the Limestone Weathering Profile in Jishou, Western Hunan Province, China.Acta Mineralogica Sinica, 22(1):19-29 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200201004
      [44] Wang, Z.Q., Yin C.Y., Gao L.Z., et al., 2006.The Character of the Chemical Index of Alteration and Discussion of Subdivision and Correlation of the Nanhua System in Yichang Area.Geological Review, 52(5):577-585 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005044
      [45] Wen, X.Y., Huang, C.M., Wang, C.S., 2015.Critical Events in Paleoenvironmental and Paleoclimatic Change Revealed by Deep-Time Paleosols.Chinese Journal of Soil Science, 46(5):1272-1280 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trtb201505037
      [46] White, A.F., 1983.Surface Chemistry and Dissolution Kinetics of Glassy Rocks at 25 ℃.Geochimica et Cosmochimica Acta, 47(4):805-815. https://doi.org/10.1016/0016-7037(83)90114-x
      [47] Xiong, P.S., 2015.Major Elements Geochemical Characteristics of the Granite-Type Laterite Profile in Gan Xian, Jiangxi Province.Geological Journal of China Universities, 21(3):553-558 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201503018
      [48] Xiong, Z.F., Gong, Y.M., 2006.Geochemical Characteristics and Climatic Environmental Significance of the Red Weathering Crusts in the Beidaihe Coast, North China.Earth Science Frontiers, 13(6):177-186 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200606021
      [49] Xu, L.F., Wei, J., Jiang, W., 2010.The Weathering Characteristics of the Reticulate Red Clay in Southern Anhui Province and Its Paleo-Environmental Significance.Chinese Journal of Soil Science, 41(1):7-12 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trtb201001002
      [50] Xu, S.J., Ni, Z.C., Ding, X.C., 2016.Geochemical Characteristics of Major Elements of the Pingyin Loess in Shandong Province.Bulletin of Mineralogy, Petrology and Geochemistry, 35(2):353-359 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201602023
      [51] Yan, D.P., Zhou, M.F., Zhao, D., et al., 2011.Origin, Ascent and Oblique Emplacement of Magmas in a Thickened Crust:An Example from the Cretaceous Fangshan Adakitic Pluton, Beijing.Lithos, 123(1):102-120. https://doi.org/10.1016/j.lithos.2010.11.015
      [52] Yan, D.T., Chen, D.Z., Wang, Q.C., et al., 2010.Large-Scale Climatic Fluctuations in the Latest Ordovician on the Yangtze Block, South China.Geology, 38(7):599-602. https://doi.org/10.1130/G30961.1
      [53] Yang, J.H., Cawood, P.A., Du, Y.S., et al., 2016.Reconstructing Early Permian Tropical Climates from Chemical Weathering Indices.Geol.Soc.Am.Bull., 128(5/6):739-751. https://doi.org/10.1130/b31371.1
      [54] Yang, J.H., Cawood, P.A., Du, Y.S., et al., 2018.Early Wuchiapingian Cooling Linked to Emeishan Basaltic Weathering.Earth and Planetary Science Letters, 492:102-111. https://doi.org/10.1016/j.epsl.2018.04.004.
      [55] Yang, R.D., Wang, W., Zhang, X.D., et al., 2008.A New Type of Rare Earth Elements Deposit in Weathering Crust of Permian Basalt in Western Guizhou, NW China.Journal of Rare Earths, 26(5):753-759. https://doi.org/10.1016/s1002-0721(08)60177-5.
      [56] Yang, Y.F., Li, D.C., Zhang, G.L., et al., 2010.Evolution of Chronosequential Soils Derived from Volcanic Basalt on Tropical Leizhou Peninsula, South China.Acta Pedologica Sinica, 47(5):817-825 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201005002
      [57] Zhang, J.Y., Ma, C.Q., Wang, R.J., et al., 2013.Mineralogical, Geochronological and Geochemical Characteristics of Zhoukoudian Intrusion and Their Magmatic Source and Evolution.Earth Science, 38 (1):68-86 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201301007
      [58] Zhang, L., Ji, H.B., Gao, J., et al., 2015.Geochemical Characteristics of Major, Trace and Rare Earth Element in Typical Carbonate Weathered Profiles of Guizhou Plateau.Geochimica, 44(4):323-336 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201504002
      [59] Zhang, Q.D., Song, T.R., He, Z.J., et al., 2002.Pb-Pb Age Determination of Meso-to Neoproterozoic Carbonates in the Ming Tombs District, Beijing.Geological Review, 48(4):416-423 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005859
      [60] Zhang, S.H., Li, Z.X., Wu, H.C., et al., 2000.New Paleomagnetic Results from the Neoproterozoic Successions in Southern North China Block and Paleogeographic Implications.Science in China (Series D), 43(S1):233-244. https://doi.org/10.1016/j.precamres.2014.09.018.
      [61] Zhang, T., Ji, H.B., Wen, Y.H., et al., 2017.Geochemical Characteristics of Red Weathering Crust on Carbonate Rocks in Shilin County, Kunming.Geological Journal of China Universities, 23(3):465-477 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX201703009.htm
      [62] Zhao, Z., Wang, D., Pan, H., et al., 2017.REE Geochemistry of a Weathering Profile in Guangxi, Southern China, and Genesis of Ion-Adsorption Type REE Deposit.Earth Science, 42(10):1697-1706 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201710005
      [63] Zhou, X.B., Li, J.H., Wang, H.H., et al., 2014.Reconstruction of Cambrian Global Paleo-Plates and Paleogeography.Marine Origin Petroleum Geology, 19(2):1-7 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201402002
      [64] Zhu, S.X., Liu, H., Hu, J., 2012.On the Disintegration of the Neoproterozoic Qingbaikouan System in Yanshan Range, North China.Geological Survey and Research, 35(2):81-95 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201202002
      [65] 曹万杰, 季宏兵, 朱先芳, 等, 2012.贵州高原地区典型风化剖面地球化学特征及其对比研究.中国岩溶, 31(2):131-138. http://d.old.wanfangdata.com.cn/Periodical/zgyr201202004
      [66] 陈武, 任明强, 芦正艳, 等, 2010.贵州典型喀斯特区土壤地球化学特征研究.中国岩溶, 29(3):246-252. http://d.old.wanfangdata.com.cn/Periodical/zgyr201003005
      [67] 冯志刚, 马强, 李石朋, 等, 2013.碳酸盐岩风化壳岩-土界面风化作用机制——对岩粉层淋溶模拟的初步研究.地质学报, 87(1):119-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201301012
      [68] 冯志刚, 王世杰, 刘秀明, 等, 2007.微地域搬运——碳酸盐岩红色风化壳形成过程的一种方式.地质学报, 81(1):127-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200701015
      [69] 冯志刚, 王世杰, 孙承兴, 2002.引起红土表层硅铝比值增大原因的可能性探讨.地质地球化学, 30(4):7-14. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx200204002
      [70] 高杰, 李锐, 李今今, 等, 2016.白云岩风化剖面的粒度分布、元素迁移及碳同位素特征——以黔北新蒲剖面为例.生态学报, 36(5):1409-1420. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201605025
      [71] 高兰, 王登红, 熊晓云, 等, 2014.中国铝矿成矿规律概要.地质学报, 88(12):2284-2295. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412010
      [72] 高林志, 丁孝忠, 庞维华, 等, 2011.中国中-新元古代地层年表的修正——锆石U-Pb年龄对年代地层的制约.地层学杂志, 35(1):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100347162
      [73] 顾尚义, 毛健全, 张启厚, 2002.广西龙塘蚀变流纹岩风化过程中Ti、Nb、Ta、Zr、Hf、Th的活动性研究.贵州工业大学学报(自然科学版), 31(1):14-17. http://d.old.wanfangdata.com.cn/Periodical/gzgydx200201004
      [74] 郭文琳, 苏文博, 2014.华北克拉通北部14亿年前古风化壳的地球化学特征及古气候意义.现代地质, 28(2):243-255. http://d.old.wanfangdata.com.cn/Periodical/xddz201402001
      [75] 郭媛媛, 莫多闻, 毛龙江, 等, 2013.澧阳平原岩板垱剖面地球化学特征与风化强度研究.地理科学, 33(3):335-341. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013040900038561
      [76] 黄建红, 谭先锋, 程承吉, 等, 2016.花岗质基岩风化壳结构特征及油气地质意义:以柴达木盆地东坪地区基岩风化壳为例.地球科学, 41(12):2041-2060. http://earth-science.net/WebPage/Article.aspx?id=3400
      [77] 旷红伟, 李家华, 彭楠, 等, 2009.燕山地区1.6~1.0 Ga时期碳酸盐岩碳、氧同位素组成、演化及其地质意义.地学前缘, 16(5):118-133. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201201007
      [78] 李明荣, 王松山, 裘冀, 1996.京津地区铁岭组、景儿峪组海绿石40Ar-39Ar年龄.岩石学报, 12(3):416-423. http://www.cnki.com.cn/Article/CJFDTotal-YSXB603.006.htm
      [79] 李任伟, 陈锦石, 陈志明, 2000.蓟县早寒武-新元古不整合界面处风化壳碳酸盐碳、氧同位素组成特征.地质科学, 35(1):55-59. http://d.old.wanfangdata.com.cn/Periodical/dzkx200001006
      [80] 刘幼平, 程国繁, 刘坤, 等, 2017.贵州西部地区"玄武岩-古风化壳沉积(堆积)型"铁矿成矿作用与成矿模式.地质科技情报, 36(4):107-112. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704013.htm
      [81] 吕金波, 郑桂森, 李安宁, 等, 2016.北京百年地质调查的传承与发展——《北京市区域地质志》修编.地质通报, 35(11):1906-1917. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201611013
      [82] 齐靓, 余文超, 杜远生, 等, 2015.黔东南华纪铁丝坳期-大塘坡期古气候的演变:来自CIA的证据.地质科技情报, 34(6):47-57. http://www.cqvip.com/QK/93477A/201506/666841191.html
      [83] 童金南, 徐冉, 袁晏明, 2013.北京周口店地区岩石地层及沉积序列和沉积环境恢复.地球科学与环境学报, 35(1):15-23. http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb201301002
      [84] 王世杰, 孙承兴, 冯志刚, 等, 2002.发育完整的灰岩风化壳及其矿物学和地球化学特征.矿物学报, 22(1):19-29. http://d.old.wanfangdata.com.cn/Periodical/kwxb200201004
      [85] 王自强, 尹崇玉, 高林志, 等, 2006.宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论.地质论评, 52(5):577-585. http://d.old.wanfangdata.com.cn/Periodical/dzlp200605008
      [86] 文星跃, 黄成敏, 王成善, 2015.重要环境与气候变化事件:深时古土壤的记录与响应.土壤通报, 46(5):1272-1280. http://d.old.wanfangdata.com.cn/Periodical/trtb201505037
      [87] 熊平生, 2015.江西赣县花岗岩型红土剖面常量元素地球化学特征.高校地质学报, 21(3):553-558. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201503018
      [88] 熊志方, 龚一鸣, 2006.北戴河红色风化壳地球化学特征及气候环境意义.地学前缘, 13(6):177-186. http://d.old.wanfangdata.com.cn/Periodical/dxqy200606021
      [89] 许良峰, 魏骥, 姜伟, 2010.皖南网纹红土的剖面风化特征及其古气候意义.土壤通报, 41(1):7-12. http://d.old.wanfangdata.com.cn/Periodical/trtb201001002
      [90] 徐树建, 倪志超, 丁新潮, 2016.山东平阴黄土剖面常量元素地球化学特征.矿物岩石地球化学通报, 35(2):353-359. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201602023
      [91] 杨艳芳, 李德成, 张甘霖, 等, 2010.雷州半岛玄武岩发育的时间序列土壤的发生演变.土壤学报, 47(5):817-825. http://d.old.wanfangdata.com.cn/Periodical/trxb201005002
      [92] 张金阳, 马昌前, 王人镜, 等, 2013.周口店岩体矿物学、年代学、地球化学特征及其岩浆起源与演化.地球科学, 38(1):68-86. http://earth-science.net/WebPage/Article.aspx?id=2345
      [93] 张莉, 季宏兵, 高杰, 等, 2015.贵州碳酸盐岩风化壳主元素、微量元素及稀土元素的地球化学特征.地球化学, 44(4):323-336. http://d.old.wanfangdata.com.cn/Periodical/dqhx201504002
      [94] 张巧大, 宋天锐, 和政军, 等, 2002.北京十三陵地区中-新元古界碳酸盐岩Pb-Pb年龄研究.地质论评, 48(4):416-423. http://d.old.wanfangdata.com.cn/Periodical/dzlp200204012
      [95] 张涛, 季宏兵, 温月花, 等, 2017.昆明石林碳酸盐岩红色风化壳元素地球化学特征.高校地质学报, 23(3):465-477. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201703009
      [96] 赵芝, 王登红, 潘华, 等, 2017.广西某地花岗岩风化壳中稀土元素特征与iREE矿床成矿机制.地球科学, 42(10):1697-1706. http://earth-science.net/WebPage/Article.aspx?id=3667
      [97] 周肖贝, 李江海, 王洪浩, 等, 2014.寒武纪全球板块构造与古地理环境再造.海相油气地质, 19(2):1-7. http://d.old.wanfangdata.com.cn/Periodical/hxyqdz201402002
      [98] 朱士兴, 刘欢, 胡军, 2012.论燕山地区青白口系的解体.地质调查与研究, 35(2):81-95. http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz201202002
    • 加载中
    图(7) / 表(5)
    计量
    • 文章访问数:  3604
    • HTML全文浏览量:  1213
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-07-09
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回